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The discovery of leptin has imparted great impetus to adipose tissue research by demonstrating a more active role for
the adipocyte in energy regulation. Besides leptin, however, the adipose tissue also secretes a large number other
signals. Cytokine signals, TNFa and IL-6, and components of the alternative pathway of complement in¯uence
peripheral fuel storage, mobilization and combustion, as well as energy homeostasis. In addition to the acute
regulation of fuel metabolism, adipose tissue also in¯uences steroid conversion and sexual maturation. In this way,
adipose tissue is an active endocrine organ, in¯uencing many aspects of fuel metabolism through a network of local
and systemic signals, which interact with the established neuroendocrine regulators of adipose tissue. Thus, insulin,
catecholamines and anterior pituitary endocrine axes interact at multiple levels with both cytokines and leptin. It may
be proposed that the existence of this network of adipose tissue signalling pathways, arranged in an hierarchical
fashion, constitutes a metabolic repertoire which enables the organism to adapt to a range of different metabolic
challenges, including starvation, reproduction, times of physical activity, stress and infection, as well as short periods
of gross energy excess. However, the occurrence of more prolonged periods of energy surplus, leading to obesity, is
an unusual state in evolutionary terms, and the adipose tissue signalling repertoire, although sophisticated, adapts
poorly to these conditions. Rather, the responses of the adipose tissue endocrine network to obesity are maladaptive,
and lay the foundations of metabolic disease.

Keywords: adipose tissue; insulin; catecholamines; leptin; TNFa; IL-6

Introduction

Adipose tissue participates actively in energy regula-
tion, through a network of endocrine, paracrine and
autocrine signals. This network, the complexity of
which was not suspected until relatively recently,
enables the adipose tissue to in¯uence metabolic
activity at many other sites, including skeletal
muscle, liver and the brain. In 1987 Siiteri identi®ed
the endocrine role of adipose tissue in relation to sex
steroids.1 A more modern view would include a
diverse range of signals emanating from adipose
tissue, such as leptin,2 tumour necrosis factor-a
(TNFa),3 interleukin-6 (IL-6),4 and their respective
soluble receptors, non-esteri®ed fatty acids (NEFA)5

and acylation stimulating protein (ASP). 6 The rela-
tionships between sex steroids and glucocorticoids,
and adipose tissue distribution and heterogeneity are
better understood. Adipose tissue also secretes impor-
tant regulators of lipoprotein metabolism including
lipoprotein lipase (LPL), cholesteryl ester transfer
protein (CETP) and apolipoprotein E. 7±9 The increas-
ing number of adipose tissue products also includes

plasminogen activator inhibitor-1 (PAI-1), 10 trans-
forming growth factor-b (TGFb),9 angiotensinogen11

and possibly insulin-like growth factor-1 (IGF-1),12

the roles of which remain to be fully de®ned. Afferent
signals modulating adipocyte function include cate-
cholamines, insulin, and anterior pituitary endocrine
axes. Recent investigations strongly suggest that sev-
eral of these afferent signals also in¯uence efferent
signalling by adipose tissue. Thus the adipose tissue
lies at the heart of a network of autocrine, paracrine
and endocrine signals (Figure 1).

There are two types of adipose tissue, white and
brown, with different physiological roles. In this
article, we shall ®rstly focus on the evidence for the
synthesis and secretion by white adipose tissue of
endocrine and paracrine signals involved in the reg-
ulation of energy balance, with particular reference to
cytokines and leptin. Secondly, we shall examine the
evidence for interactions between these adipose
tissue-derived mediators and other neuroendocrine
pathways. An exhaustive review of adipose tissue
products such as the enzymes of lipoprotein metabo-
lism, angiotensinogen, and growth factors TGFb and
IGF-1, however, is beyond the scope of this article,
and the reader is referred elsewhere.7±12 We propose
an hypothesis of adipose tissue endocrine function in
which an hierarchy of signals enables the adipose
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tissue both to regulate and co-ordinate peripheral fuel
metabolism at different sites (Figure 2), appropriately
to the prevailing metabolic circumstances. It is sug-
gested that a prominent role has evolved for leptin and
other cytokines in the regulation of energy expendi-
ture in the lean state. Obesity, however, gives rise to
quantitative and qualitative alterations in adipose
tissue signalling, not only failing to restore energy
equilibrium, but giving rise to maladaptive effects
which predispose to metabolic disease.

Signals emanating from adipose
tissue

(a) Leptin

Leptin, the circulating product of the obesity (ob)
gene, is a 16 kDa glycoprotein expressed and secreted
primarily by the adipocyte. The two most-discussed

actions of leptin have been its feedback effect on
hypothalamic energy regulation and its role in the
maturation of reproductive function. For excellent
accounts of both the fascinating story of the discovery
of leptin, and the elucidation of its central actions on
energy regulation, the reader is referred to recent
reviews.2,13 The permissive role of leptin in reproduc-
tive function has been observed in animal studies.
Thus, the female ob=ob mouse is infertile, and this
infertility is reversed by the administration of leptin.14

Furthermore, in normal mice, injections of leptin have
been shown to advance the onset of puberty.15 There-
fore, leptin appears to signal to the hypothalamus
when suf®cient energy has been stored to enable the
organism to embark on the energy-intensive repro-
ductive cycle.

Regulation of leptin production and bioactivity

Leptin biosynthesis and release is governed by
a complex array of neuroendocrine, endocrine and
paracrine signals which impinge on the adipocyte.

Figure 1 Adipose tissue: principal efferent and afferent signals. Afferent signals: The principal afferent regulators of adipocyte
metabolism are extrinsic to adipose tissue, and include insulin, catecholamines, and the anterior pituitary endocrine axes. Additional
paracrine and autocrine regulatory in¯uences include local adipose tissue products such as TNFa and ASP. Efferent signals: Adipose
tissue synthesises a wide range of signalling molecules, from both the adipocyte and stromovascular compartments. See text for other
signals secreted by adipose tissue. LPL� lipoprotein lipase; HSL�hormone-sensitive lipase; NEFA�non-esteri®ed fatty acids; IL-
6� interleukin-6; TNF� tumour necrosis factor; sR� soluble receptor; ASP�acylation stimulating protein; VLDL�very low density
lipoprotein; TAG� triacylglycerol.
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Insulin has been shown, both in vitro and in vivo, to
stimulate the production of leptin.16±18 In contrast,
catecholamines, acting through b2 and b3 adrenocep-
tors, rapidly suppress leptin production13 (see Inter-
actions between Catecholamines and Leptin).
However, additional regulators stimulating leptin pro-
duction include TNFa,19 and glucocorticoids,17,

whereas thyroid hormones probably suppress leptin
production.21±23 Furthermore, it appears likely that
the bioactivity of secreted leptin may be further
potentiated or retarded by binding to soluble forms
of its receptor and speci®c leptin binding proteins.24±

26 Thus, leptin production is in¯uenced by nutritional
status, stress, and immune activation.

Peripheral metabolic actions of leptin

The presence of receptors for leptin, not only in the
hypothalamus, but also in peripheral tissues, including
adipose tissue, liver, skeletal muscle and islet cells,
suggests that leptin has peripheral, as well as central,
actions.27 ±30 Such actions have been con®rmed by
experimental studies which have suggested that leptin
can impair insulin signalling, both in skeletal muscle

and adipocytes. Leptin has been found to impair
insulin-mediated glucose uptake in mouse skeletal
muscle myotubules.29 Furthermore, in both Hep-G2
cells30 and skeletal muscle myotubules29 leptin was
found to inhibit phosphorylation of insulin receptor
substrate-1 (IRS-1). In rat adipocytes leptin has also
been found to inhibit insulin-mediated glucose uptake,
as well as lipogenesis, and to stimulate lipolysis and
protein kinase A (PKA) activation.28 Leptin stimulates
lipogenic enzymes in adipocyte cell lines.31 These
studies suggest a role for leptin in peripheral meta-
bolic regulation, and furthermore, have raised the
question whether the impaired insulin signalling in
obese subjects might result, in part, from increased
circulating leptin levels. At the present time, however,
the in-vivo relevance of such mechanisms remains to
be determined. Perhaps consistent with an in vivo
relationship between impaired insulin signalling and
increased plasma leptin levels are the results of retro-
spective studies in Pima Indians, in which insulin
resistance was found to be associated with reduced
subsequent weight gain,32 and lower plasma leptin
levels to precede weight gain.33 Thus, insulin

Figure 2 Endocrine and metabolic signals emanating from adipose tissue. The ®gure represents the major effects of signals from
adipose tissue, and the hierarchy of the stronger and weaker signals. Brain, liver, skeletal muscle and pancreas are believed to be the
main remote targets of adipose tissue-derived signals. The width of each arrow represents the relative strength of each signal. Please
see text for discussion of the multiple effects of these signals on the liver. SNS� sympathetic nervous system. Other abbreviations as
in Figure 1.
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resistance may be, in part, a maladaptive consequence
of high leptin levels, in response to overfeeding.

(b) Adipose tissue cytokines

Adipose tissue as a source of cytokines

TNFa and IL-6 are pro-in¯ammatory cytokines with
potent actions in host defence.34 Both these cytokines
may have important effects on lipid and glucose
metabolism.35 IL-6 and TNFa stimulate basal glucose
uptake into cultured adipocytes.36,37 Both cytokines
have been shown to inhibit LPL activity and TNFa
has been shown to stimulate lipolysis.38 In humans
IL-6 was also found to stimulate glucose and fatty
acid oxidation, as well as to induce the release of
glucagon and cortisol.39±41 Additionally, IL-6 has
been shown to stimulate insulin release from a ham-
ster islet cell line.42 Adipose tissue is a signi®cant
source of endogenous TNFa production, and its
expression is elevated in most rodent models of
obesity and implicated in human obesity.3,43 IL-6 is
also expressed in and released by human adipose
tissue and its circulating concentrations increase
with obesity.44,45 IL-6 mRNA and protein have both
been demonstrated in human adipose tissue.4,44

Remaining uncertainties include whether these cyto-
kines emanate from the adipocytes themselves or
from associated lymphoid tissue, and whether they
are able to act in an endocrine fashion to in¯uence
metabolism in remote tissues. The metabolic effects
of the modest elevations of systemic cytokines seen in
obesity need to be more fully explored.

Regulation of cytokine production and bioactivity

Cytokine action is tightly controlled by regulation at
the levels of both transcription and release, and by
counteracting mechanisms which limit their bioactiv-
ity.46 However, relatively little is yet known of the
regulation of cytokine release speci®cally by adipose
tissue. There are reports that claim both induction and
suppression of cytokine release by catecholamines.
Data from human studies suggests that isoprenaline,
the b-adrenergic agonist, increases IL-6 release, with
little or no effect on TNFa release.47 Although gluco-
corticoids down-regulate cytokine production in
immune tissue, we are not aware of any data on this
effect in adipose tissue.

Soluble receptors for TNFa, IL-6 and leptin may be
important regulators of bioactivity. Most of the infor-
mation about cytokine soluble receptors has derived
from the study of immune cells, whereas very little is
yet known about the regulation of these soluble
receptors in adipose tissue. By binding to their
ligands, cytokine soluble receptors can act either as
antagonists or as carrier proteins. Cytokine-binding
proteins may produce agonist-like activities, instead
of the expected antagonist-like effects, when they
extend the half-life of an otherwise short-lived cyto-

kine.48 The soluble receptor systems for TNFa and IL-
6 will be discussed separately.

(i) TNFa soluble receptors TNFa interacts with two
cell±surface receptors, p55 (type 1) and p 75 (type
2).49 Expression of these two receptors seems to be
regulated by separate mechanisms, as they differ in
their cellular and tissue distribution. Arteriovenous
difference studies show in-vivo secretion of the solu-
ble receptors from human subcutaneous adipose
tissue. Release was observed from adipose tissue of
both isoforms of TNFa receptor,50 but not of TNFa
itself.4 The circulating levels of both soluble receptors
correlate with measures of adiposity.

The physiological role of the soluble receptors of
cytokines is controversial. It is known that both types
of soluble receptors can bind to TNFa in vitro and
inhibit its biological activity by competing with cell±
surface receptors for TNFa. Consequently, the release
of soluble receptors could serve as a mechanism for
binding and inhibiting the TNFa not immediately
bound to surface receptors, thus protecting other
cells and tissues and localising its action.51,52 It has
been suggested also, that release of soluble receptors
may be a mechanism for desensitizing the cell from
the effects of TNFa.52 On the other hand, it has been
reported that at low concentrations of TNFa, binding
to soluble receptors can stabilize TNFa and augment
some of its activities.48

(ii) Interleukin-6 soluble receptors The biological
activities of IL-6 are initiated by binding to a high-
af®nity receptor complex, consisting of two mem-
brane glycoproteins.53 The 80 kDa ligand binding
component (IL-6R) binds IL-6 with low-af®nity,
while a second 130 kDa signal-transducing component
(gp130), although not binding free IL-6, is required
for high-af®nity binding of gp80-bound IL-6. The
cDNAs for both IL-6R and gp130, have been cloned
and sequenced.54,55 A soluble form of the IL-6R with
a molecular weight of approximately 50 kDa has been
found,56 apparently arising from proteolytic cleavage
of the membrane-bound IL-6R. Recombinant soluble
IL-6R (IL-6Rs) has been shown to bind IL-6 in
solution and to augment the activity of the IL-6 as a
result of the binding of the IL-6=IL-6Rs complex to
the membrane-bound gp130.57,58 It has been sug-
gested that elevated levels of IL-6 are associated
with increased production of IL-6Rs.59 Recently,
evidence has been found also for a soluble form of
the gp130 receptor, which may have antagonist prop-
erties.60

However, neither the regulation, in vivo, of soluble
receptor release, nor their functional signi®cance, are
clearly understood. Few data have been published
regarding the regulation of these molecules in adipose
tissue. In-vivo studies in humans showed release from
sub-cutaneous adipose tissue of IL-6, but not its
soluble receptors,4,50 in contrast to the results obtained
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with TNFa and its soluble receptors. These data
suggest a novel regulatory role for adipose tissue in
the bioavailability of these cytokines.

Roles of cytokines in the regulation of energy

metabolism

(i) Cytokine actions on insulin signaling Studies in-
vitro have suggested that TNFa alters insulin signal-
ling, but the mechanism of this effect is still under
review. In-vitro studies on skeletal muscle suggest
that TNFa impairs insulin signalling by decreasing
phosphorylation of the insulin receptor and IRS-1.61,62

Other evidence suggests that TNFa may increase
tyrosine phosphorylation of IRS-1 and activate phos-
photidylinositol 3-kinase.63 Alternatively there is evi-
dence that TNFa may produce insulin resistance by
decreasing IRS-1 and GLUT4 expression.64 Recently
TNFa and ceramides were shown to increase basal
glucose uptake by adipose tissue. Their insulinomi-
metic effect may be via stimulation of phosphotidyli-
nositol 3-kinase and thereby increasing the synthesis
of GLUT 1, thus accounting for the increased basal
glucose uptake.37 High concentrations of both TNFa
and IL-6 have been shown also to increase basal
intracellular calcium, which negatively modulates
insulin-mediated stimulation of GLUT 4-dependent
glucose transport.65 Increased intracellular calcium in
skeletal myocytes can alter phosphorylation of GLUT
4, effectively blocking insulin stimulated glucose
uptake, and thereby contributing further to the impair-
ment of insulin signalling. However, the in-vivo sig-
ni®cance of these data are as yet unclear. Indeed,
whether such effects could result from the release of
TNFa from local or more distant adipose tissue depots
is still under investigation.

(ii) Cytokine actions on adipose tissue and lipid
metabolism Both TNFa and IL-6 in high concentra-
tions inhibit LPL activity and decrease its production
in murine adipocyte cell-lines, as well as increasing
lipolysis.66,67 This may down-regulate triglyceride
deposition, promote futile cycling, and increase fuel
mobilization from the adipose tissue.66,67 Consistent
with these actions, both TNFa and IL-6 cause weight
loss in mice,68 and this is inhibited by pre-treatment
with either anti-TNFa or anti-IL-6 monoclonal anti-
bodies. Administration of lipopolysaccharide (LPS) to
mice induced a transient weight loss, hypoglycaemia,
hypertriglyceridaemia and an increase in the hepatic
acute phase protein, ®brinogen. Pre-treatment with an
anti-IL-6 antibody resulted in a reduction in the LPS-
induced hypoglycaemia and weight loss, as well as
decreasing plasma ®brinogen, but had not effect on
the hypertriglyceridaemia. In similar studies, an anti-
TNFa antibody completely inhibited the elevation of
triglycerides, with only modest effects on weight loss,
and no effect on hypoglycaemia and ®brinogen

production.69 These results suggest distinct, but
related, roles for these two cytokines in metabolic
regulation.

(iii) Neuroendocrine actions of cytokines IL-6
receptors are present in the hypothalamus, which
supports a direct central role for this cytokine.70

IL-6 stimulates both thermogenesis and satiety,
through a range of central effects, including prosta-
glandin synthesis, corticotrophin releasing hormone
(CRH) release and activation of the hypothalamic±
pituitary±adrenal (HPA) axis.71 Cytokine modulation
of neuroendocrine mechanisms is further discussed in
the `Interactions of cytokines and leptin with endo-
crine pathways'.

Therefore, adipose tissue synthesises signi®cant
quantities of both IL-6 and TNFa. Both molecules
may have local paracrine=autocrine effects within
adipose tissue, and it may be suggested, furthermore,
that adipose tissue contributes signi®cantly to their
circulating levels. Cytokines of non-adipose tissue
origin may also play a signi®cant role in the systemic
metabolic adaptation to infection, including fuel
mobilization, insulin resistance in insulin-sensitive
tissues, and thermogenesis. Both cytokines are
strongly implicated in the regulation of energy bal-
ance at multiple sites (Figure 2). Although obesity
may increase circulating levels of these cytokines, and
this may contribute to some of the maladaptive con-
sequences of obesity, such as dyslipidaemia and
insulin resistance, the net biological effects of
increased circulating cytokine concentrations remain
to be clari®ed. Not only the absolute rate of cytokine
secretion by adipose tissue, but also the relative rates
of production of cytokines and their soluble receptors
will determine local, and contribute to systemic,
bioactivity of the cytokines.

(c) Acylation stimulating protein

Adipose tissue expresses a range of components of the
Alternative Pathway of Complement. Of these, much
attention has focused on C3adesArg, also known as
acylation stimulating protein (ASP). C3adesArg is
derived from the cleavage of the C3 complex, which
requires factors B and D (adipsin) to form C3a, which
is cleaved by a carboxypeptidase to yield C3adesArg.
Preadipocytes produce both C3 and adipsin. In-vitro
studies have shown that small amounts of ASP are
expressed by both ®broblasts and preadipocytes, but
ASP formation is, predominantly, a feature of the
mature and fully differentiated adipocyte.72

Several roles have been proposed for ASP in
adipocyte metabolism. ASP may play a role in the
uptake and esteri®cation of fatty acids to make tri-
acylglycerol to facilitate fatty acid storage in the
post-prandial state.73 ASP has been shown to
stimulate triglyceride synthesis via diacylglycerol
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acyl transferase (DGAT).74 ASP also stimulates trans-
location of glucose transporters to the cell surface.75

These effects may be mediated by activation of the
diacylglycerol=protein kinase C (DAG=PKC) path-
way.76 In-vitro experiments have shown that several
lipoproteins, including very low density lipoproteins
(VLDL), low density lipoproteins (LDL) and high
density lipoproteins (HDL), increase ASP release,
but the greatest effect is seen with chylomicrons.
Arteriovenous studies6 have demonstrated in-vivo
release of ASP both in the basal state and after a
mixed meal, concurrent with uptake chylomicron
triacylglycerol. The increase in ASP production in
this situation corresponds inversely with the uptake of
triacylglycerol, perhaps suggesting a cause±effect
relationship. There is evidence that ASP can act on
several different cell types of non-adipose tissues.
This suggests it can function as an endocrine signal.77

In support of the putative role for ASP in triglyceride
storage, studies in ASP functional knockout mice have
shown delayed triglyceride clearance compared to wild-
type mice, and this difference is further exaggerated in
female mice. When ASP was injected into the mice, an
increased clearance of triglycerides was observed. The
delay in triglyceride clearance in this model may be due
to the effect on LPL of increased concentrations of
NEFA. Lastly, although a receptor for ASP has not yet
been identi®ed, differences between adipose tissue
depots have been observed, with greater degrees of
ASP binding in subcutaneous compared to omental
fat, in females compared with males, and in morbidly
obese compared to non-obese individuals.

(d) Non-esteri®ed fatty acids (NEFA)

The regulation of lipolysis, which determines produc-
tion of non-esteri®ed fatty acids (NEFA), has been
reviewed in detail.78 Although not regarded tradition-
ally as an `endocrine' signal, elevated concentrations
of NEFA in the systemic circulation are associated
with impaired insulin sensitivity, and therefore repre-
sent a major determinant of carbohydrate storage and
oxidation.79 NEFA impairs insulin-stimulated glucose
uptake and glycogen synthase activity in skeletal
muscle, whilst in the liver gluconeogenesis is
enhanced, together with an increase in hepatic glucose
output. Furthermore, b-cell insulin secretion is also
stimulated by circulating NEFA. Therefore, increased
circulating NEFA likely contributes to the develop-
ment of insulin resistance in both skeletal muscle and
liver, and to hyperinsulinaemia, which are such pro-
minent abnormalities in obese individuals. This topic
also has been well reviewed more recently.5,80,81 It has
also been recognised that the local NEFA in adipose
tissue may stimulate the activity of LPL,82 and the
activity of uncoupling proteins (UCPs).83 In this
sense, NEFA is an important systemic and `autocrine'
signal derived from adipose tissue.

Interactions of cytokines and leptin
with endocrine pathways

Considerable evidence may be adduced in support of
important interactions between the classical endocrine
pathways regulating adipose tissue (the anterior pitui-
tary endocrine pathways, catecholamines and insulin)
and both leptin and the cytokines. Thus both leptin
and cytokines interact with pituitary±adrenal, pitui-
tary±gonadal, and pituitary±thyroid axes, whilst cyto-
kines additionally in¯uence the complement pathway
in adipose tissue.

Leptin and the HPA axis

The results of studies looking at the relationship
between plasma leptin and cortisol levels are con¯ict-
ing.84,85 The diurnal variation of leptin and cortisol is
reciprocal, leptin levels peaking during the nadir of
cortisol secretion. In cultured adrenocortical cells, phy-
siological doses of leptin were found to bring about a
dose-dependent inhibition of adrenocorticotropin
(ACTH)-stimulated cortisol production and P450 17a-
hydroxylase mRNA expression.86 In contrast, leptin
increases CRH expression in the para-ventricular
nucleus.87 However, peripheral CRH administration in
humans appears not to in¯uence plasma leptin levels
acutely,88 despite the observation that dexamethasone
can stimulate leptin production in cultured adipocytes.
Thus, leptin and HPA axis may be reciprocally related,
but with interactions at several levels.

An intact HPA axis may be necessary for the
normal actions of leptin on energy balance. Zakr-
zewska et al injected leptin, intracerebroventricularly,
into adrenalectomised and sham-operated rats and
found that the hypophagic and weight-reducing
effect of leptin was signi®cantly ampli®ed in the
adrenalectomised group, and that this effect was
partly abolished by treatment with dexamethasone.89

These observations led the investigators to postulate
that glucocorticoids exert a counter-regulatory in¯u-
ence on leptin action, and that activity of the HPA axis
may set the level of target-organ sensitivity to leptin.
Thus, a picture is emerging of reciprocal interactions
between energy balance and the HPA axis, in which
leptin may play an important role.

Cytokines and anterior pituitary function

Interactions between cytokines and the anterior pitui-
tary endocrine axes occur at multiple levels and in
both directions. TNFa, and particularly, IL-6 are
known to affect the release of anterior pituitary
hormones by an action on the hypothalamus and=or
the pituitary gland. They stimulate the HPA axis and
suppress the hypothalamic±pituitary±thyroid and
gonadal axes, and possibly growth hormone release.
The relative importance of systemically and locally
produced cytokines in achieving these responses, and
their precise sites of action, are as yet unclear.
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ACTH secretion from the pituitary gland is con-
trolled, in part, by the stimulatory effect of CRH from
the hypothalamus, and by the negative feedback of
glucocorticoids. The release of CRH, stimulated by
IL-6 is mediated by an eicosanoid cyclo-oxygenase
pathway.90 IL-6 and TNFa also stimulate ACTH
release in rats, when given intravenously or intra-
cerebroventricularly.91,92 Furthermore, co-administra-
tion of an anti-CRH antibody with the IL-6 or TNFa
blocks the effect of these cytokines on ACTH secre-
tion, suggesting that their actions are mediated by
CRH.89,91 Further support for this comes from in-vitro
studies, where IL-6 has been shown to stimulate CRH
release from rat medial basal hypothalamic frag-
ments.93 Also, recombinant human IL-6 increased
ACTH secretion by human fetal pituitary cultures.94

Lastly, glucocorticoids inhibit cytokine synthesis and
gene expression from immune cells.95

Evidence for the effects of TNFa and IL-6 on the
hypothalamic±pituitary±gonadal axis are con¯icting.
Their effects may be indirect via CRH which has been
shown to inhibit gonadotrophin releasing hormone
(GnRH) and luteinising hormone (LH) release.96,97

But, IL-6 infusions in human volunteers have been
shown to acutely stimulate growth hormone (GH) and
prolactin secretion.98 Also, in one study IL-6 and
TNFa injected intracerebroventricularly into ovariec-
tomised rats lowered serum LH, whereas in another,
IL-6 administered in a similar manner had no effect on
either LH or follicle stimulating hormone (FSH)
secretion.99,100 Gonadal function is often suppressed
during conditions where in¯ammatory cytokines are
raised, such as infections, and it is suggested that the
inhibitory effects of cytokines on the hypothalamic±
pituitary±gonadal axis may mediate this effect.

Both TNFa and IL-6 appear to in¯uence elements
of the hypothalamic±pituitary±thyroid axis. IL-6
inhibited thyroid stimulating hormone (TSH) release,
whereas it stimulated thyrotropin releasing hormone
(TRH) release both in vivo and in vitro.93,98,101 IL-6
also stimulates TSH secretion from anterior pituitary
cells in vitro.102 TNFa has been found to have a direct
inhibitory effect on thyroid hormone secretion, and
TNFa inhibits deiodinase activity in thyroid
gland.103,104 Thus, while TNFa may have inhibitory
effects on the hypothalamic±pituitary±thyroid axis,
the net effects of IL-6 are unclear.

In summary, cytokines synthesised in adipose tissue
may in¯uence anterior pituitary endocrine pathways,
by contributing to circulating concentrations, which
in¯uence endocrine function at hypothalamic, pitui-
tary, and target organ level. At present, however, the
in-vivo signi®cance, for energy metabolism, of much
of the above work remains to be determined.

Catecholamines and leptin

In studies on mouse adipocytes, catecholamines and
synthetic b3-adrenergic agonists have been shown to
rapidly suppress levels of leptin mRNA.105 These

effects of catecholamines are partially inhibited by
the b-adrenergic antagonist propranolol.106 These stu-
dies implicate both b3 and b2 in the regulation of
leptin. Studies, in humans, show acute suppression of
plasma leptin by isoprenaline, concurrent with
increased lipolysis.107,108 These studies suggest that
leptin production may be regulated very acutely by
sympathetic stimulation. The physiological signi®-
cance of this interaction is uncertain, but the possibi-
lity is raised that adrenergic stimulation may, by
suppressing plasma leptin levels, feed back to the
brain to reduce sympathetic out¯ow and thermogen-
esis. The SNS has not been regarded as a feedback-
regulated system, but these data suggest that the
activity of its adipose tissue division may be regulated
in this fashion.

It is recognised also that the actions of catechol-
amines on adipose tissue are modulated by thyroid
hormone. At the present time, however, the interaction
of leptin with the pituitary±thyroid axis is controver-
sial. In-vivo studies in humans,23 in-vitro studies on
cultured adipocytes,21 and experimental studies on
rodents22 have suggested that thyroid hormones may
suppress the production of leptin in adipose tissue.
However, not all investigators have observed this
relationship.109±111 We have interpreted our observa-
tions as suggesting that thyroid hormones may sup-
press leptin production through enhanced b-
adrenergic sensitivity in the adipocyte.23,108

Catecholamines and cytokines

While there are data suggesting that catecholamines
may regulate the production of IL-6 and TNFa, there
is no consensus as to whether this effect is stimulatory
or inhibitory. In primary cultures of murine adipo-
cytes, noradrenaline, isoprenaline and a b3-selective
agonist, CGP-12117 stimulated IL-6 gene expression
and protein secretion, while stimulation of the a-
adrenergic receptors had no effect.112 In human volun-
teers who underwent strenuous exercise, after pre-
treatment with placebo, hydrocortisone or dexametha-
sone, plasma noradrenaline and adrenaline peaked
after 15 min, but IL-6 peaked at 15 min and 45 min.
There was no effect of treatment on catecholamine
levels, but both hydrocortisone and dexamethasone
pre-treatment inhibited IL-6. In all three groups, IL-6
levels correlated positively with catecholamine levels
at 15 min.113 In contrast, in a study of LPS-induced
release of TNFa and IL-6 from human whole blood,
both noradrenaline and isoprenaline inhibited cytokine
production.114 Studies with isoprenaline infusions in

human volunteers have shown a stimulatory effect on
circulating IL-6 levels, but little or no change in TNFa
levels.47 Because these cytokines are produced by
several different cell types it is possible that the
regulation is different in adipocytes compared to
macrophages or endothelial cells, perhaps accounting
for contrasting results of different studies.
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Insulin, leptin and cytokines

Abundant experimental data support a stimulatory
effect of insulin on leptin secretion.2,16,17 In human
studies using the euglycaemic clamp technique,
increases in plasma leptin have been observed after
48 h and 72 h.16 Increases in plasma leptin in the fed
state and reductions in the fasting state, may be
explained by insulin. This subject has been reviewed
in detail elsewhere2 and will not be discussed further
here. Although several studies have observed relation-
ships between hyperglycaemia, hyperinsulinaemia
and elevated circulating levels of cytokines,115,116

the mechanisms responsible for these relationships
are poorly understood.

Relationship between leptin, interleukin-6 and TNFa
Several lines of evidence suggest that leptin is a
helical cytokine-like molecule, and that it shares
both structural and functional similarities with other
cytokines. These include receptor homology, signal-
ling via the JAK=STAT system, growth factor proper-
ties, and their circulation in plasma, either in the free
form or bound to speci®c serum proteins.117,118

Leptin, IL-6 and TNFa all play important signalling
roles in the regulation of fat mass (Table 1). All three
are expressed and released by the adipose tissue
(Table 2), and have been implicated in impairment
of insulin action in liver and skeletal muscle. TNFa
induces the release of both leptin and IL-6 from
adipose tissue19,119,120 (Figure 3). A recent study on
the regulation of leptin release by TNFa suggested
that the induction occurs acutely at the post-

translational level. Mice with TNFa gene knockout
had reduced circulating levels of leptin compared with
obese wild-type mice.121 Furthermore, as already
elaborated, all three molecules may in¯uence
hypothalamic neuroendocrine mechanisms (Table 1).

Adipose tissue distribution and
steroid conversion

Although adipose tissue does not synthesise steroid
hormones, de novo, it expresses enzymes which meta-
bolise both sex steroids and glucocorticoids,122 as well
as receptors for oestrogens,123 androgens and gluco-
corticoids.124 BjoÈrntorp has argued that changes in
glucocorticoid or sex steroids are a major determinant
of adipose tissue distribution, and has recently
reviewed this area.125 This hypothesis suggests that
both glucocorticoids and sex steroids, whose metabo-
lism is itself in¯uenced by adipose tissue, exert a
powerful in¯uence on regional adipose tissue devel-
opment. HPA axis activation might play a primary
role, interacting with other factors, in the expansion of
adipose tissue at visceral sites.125

Sex steroids

Adipose tissue possesses two enzymes of importance
to sex steroid metabolism, 17b-hydroxysteroid oxido-
reductase and cytochrome-p450-dependent aroma-
tase.122,124 17b-hydroxysteroid oxidoreductase con-
verts androstenedione, synthesised in the adrenal

Table 1 Leptin, TNFa and IL-6 as adipostatic agents. Summary of (i) some of the effects of cytokine-like molecules relevant to energy
balance, and (ii) some of the factors regulating their release

Leptin TNFa IL-6

Action of hormone=cytokine:
Appetite ## # #
Energy expenditure "" " "
Lipolysis (NEFA concentrations) " " "
Lipogenesis # ? ?
Reproduction " ? ?

Factors regulating hormone=cytokine:
Effect of food (cf fasting) " none none
Effect of prolonged fast # ? none
Effect of isoprenaline # � # from monocytes and " from adipocytes

Arrows indicate whether effect is to stimulate or suppress, double arrows indicate stronger effects. ? indicates no clear data. �
indicates no clear effect. Please see text for references.

Table 2 Leptin, TNFa and IL-6 as hormones released by adipose tissue. Summary of evidence that these cytokine-like molecules are
endocrine signals from adipose tissue

Leptin TNFa IL-6

Release by adipose tissue yes � yes
Proportion of circulating levels attributable to
adipose tissue

> 95% � 10±30%
(rest monocytes, endothelial cells and

®broblasts)
Release of its soluble receptors by adipose
tissue

� yes �

Correlation of circulating concentrations with
adiposity (Pearsons `r' value)

0.60±0.95 0.12±0.45 0.25±0.65

� indicates no clear effect. Please see text for references.
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cortex, to testosterone. This conversion may be a
signi®cant source of testosterone in normal women.
The same enzyme converts the relatively inactive
oestrogen, oestrone, to the more active oestradiol.
There is also aromatisation of androgens to oestro-
gens, by aromatase, in adipose tissue. Con®rmation of
a net release of testosterone, oestradiol and oestrone
from abdominal subcutaneous adipose tissue, in
women, but not in men, comes from arteriovenous
studies.126 However, continuing uncertainty exists as
to regional variation of sex steroid conversion and to
its contribution to whole body sex steroid production.

Excess body fat is associated with reduced fertility,
hyperandrogenism and hormone-sensitive can-
cers.125,126 The effect of obesity on sex steroid pro®le
is associated with `feminization' in men and `mascu-
linization' in women.127±129 The percentage contribu-
tion of adipose tissue as a source of sex steroids may
be greatest in post-menopausal women. However, the
extent to which testosterone production in women, or
oestrogen production in men, signi®cantly effects
reproductive function is controversial. Relative hyper-
androgenism has been associated with central obesity,
with its attendant metabolic disturbances,125,130

although what is cause and what is effect remains
undetermined.

Glucocorticoids

Although adipose tissue possesses 11-hydroxysteroid
dehydrogenase enzymes capable of inter-converting cor-
tisol and cortisone, it is uncertain whether cortisone=
cortisol inter-conversion in adipose tissue signi®cantly
in¯uences glucocorticoid bioavailability and bioactiv-
ity. However, local 11-b HSD activity may in¯uence
local cortisol-induced stimulation of aromatase activ-
ity.131 It has also been suggested that increased

11-bHSD expression in visceral adipose tissue could
contribute to the development of central obesity.132

Although obesity is associated with increased activity
of the hypothalamo±pituitary axis,133 plasma concen-
trations of cortisol are found to be normal in obese
individuals. Obesity is also associated with increased
levels of cortisol binding globulin. However, cortisol
binding globulin levels fall with weight reduction,
with no net change in free cortisol concentrations.134

The physiological signi®cance, if any, of the invol-
vement of adipose tissue in steroid hormone metabo-
lism in lean subjects is uncertain. It may be suggested,
however, that the changes in sex hormones, and
perhaps glucocorticoid metabolism observed in
obese subjects may in¯uence local steroid bioactivity
and general adipose tissue distribution. Whether such
changes are bene®cial or not is often unclear.

The effects of obesity on the
endocrine function of adipose tissue

In obesity, not only is adipose tissue function quanti-
tatively increased, but changes in both the relative
sizes of different adipose tissue depots, together with
changes at the cellular level, give rise to qualitative
alterations in its metabolism.

Endocrine consequences of an increased adipose tissue

mass

Increased production from adipose tissue of NEFA,5

leptin2 andcytokines4 contributes tochanges insystemic
metabolism of obese subjects causing insulin resistance.
Insulin resistance prevents further weight gain135 and
mobilizes energy stores. Impaired insulin signalling,
increased lipolysis, and perhaps central neuroendocrine
effects, such as HPA activation, may be adaptive under
certain circumstances, including the early stages of fuel
storageandinacutein¯ammation,whereassuchchanges
may become maladaptive during sustained weight gain.
Insulin resistance is one particularly maladaptive conse-
quenceofobesity, in termsofitspredispositiontocardio-
vascular disease.136 Other endocrine products of
adipose tissue may have similar initially bene®cial, but
later maladaptive effects. Thus, IL-6 may reduce LPL
action, reducing fuel storage and thereby limiting
weight gain,67 but IL-6 may also increase hepatic
synthesis of pro-coagulant molecules and contribute to
dyslipidaemia.

Adipose tissue in obese subjects may behave in a
qualitatively different manner to that of lean subjects;
for example there is little change in adipose tissue
post-prandial blood ¯ow,137 and markedly altered
post-prandial NEFA release.5,81 While there are cer-
tainly quantitative changes in the endocrine functions
of adipose tissue in obesity, it is less clear whether
there are also qualitative endocrine changes.

Figure 3 Interactions of cytokine-like molecules, insulin and
sympathetic activity.
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Endocrine consequences of regional adiposity

The relative sizes of the various adipose tissue depots
may exert a powerful in¯uence on the signalling proper-
ties of the tissue. The contrasting metabolic conse-
quences of android and gynoid obesity have long been
recognised.138 Although visceral obesity has been sug-
gested to be more pathological than generalised obesity,
there are generally close relationships between adipose
tissue mass and distribution, such that within each sex,
there is a strong tendency for more obese subjects to
have proportionately more upper-body, abdominal and
visceral fat.139±142 These relationships confound dis-
tinctions been the consequences of generalised, as
opposed to local, obesity. While some authors have
emphasised especially deleterious consequences of
visceral obesity,125,132 others have suggested there
may be few, or negligible, effects once total obesity,
sex, and level of physical ®tness and social class have
been taken into account.141,142

Differential adipose tissue distribution appears to
have signi®cant effects upon the endocrine function of
adipose tissue. Regional variations in adipose tissue
signalling functions include increased expression of
leptin143 and binding of ASP77 in subcutaneous adipose
tissue, and increased expression of 11-bHSD132 and
glucocorticoid receptors144 in visceral adipose tissue.
Differences in glucocorticoid sensitivity may underlie
differences in growth characteristics of visceral and
subcutaneous adipose tissue.145 A large visceral adipose
tissue depot is thought to increase hepatic exposure to
NEFA,146 with secondary impairment of hepatic insulin
clearance,147 increased hepatic synthesis of VLDL tri-
glyceride,148 and impaired peripheral glucose dispo-
sal.79 Furthermore, the increased b3 adrenoceptor
sensitivity of visceral adipose tissue may account for
its increased lipolytic activity and release of NEFA.149

The release of other mediators, including cytokines,143

by visceral adipose tissue may also have important
metabolic effects on the liver. Obesity is associated
also with reduced adipocyte b2-adrenergic receptor
sensitivity150 and an impaired lipolytic response to
adrenergic stimulation.151 These defects may be
caused by adipocyte adrenoceptor down-regulation in
the face of the increased sympathetic activation of
obesity.141 Adipose tissue at different sites also differs
with respect to the sensitivity of LPL release to modula-
tion by sex steroids.152 Lastly, it is possible to speculate
that visceral adipose tissue is less effective than sub-
cutaneous adipose tissue in regulating energy balance
through its production of leptin.143

Thrift, surplus and maladaptive signalling

Many of these endocrine and metabolic changes, as
they increase in degree, will further impair energy
homeostasis. Obesity increases adipose tissue produc-
tion of leptin,2 NEFA5 and IL-6,4 and may further
modulate cytokine bioactivity through altered release
of soluble receptors. Thus, the normal pro®les of
hormones, fatty acids and cytokines released by

adipose tissue, instead of being determined by the
prevailing metabolic needs of the individual (state of
feeding, levels of stress, physical activity and in¯am-
matory response, and reproductive activity) will be
shaped primarily by the degree and distribution of
obesity, together with qualitative changes in adipose
tissue behaviour at the cellular level. In this way, it
may be proposed that adipose tissue metabolism is
intrinsically thrifty, having evolved in an energy
de®cient environment. In the face of sustained surplus
energy intake, however, many of the changes in
adipose tissue signalling observed in obese subjects
are maladaptive, and predispose to metabolic disease.
One can only speculate whether the coexistence of
hyperleptinaemia with elevated NEFA and cytokines
may cause synergistic abnormalities and metabolic
problems.

Conclusions

Adipose tissue releases a wide range of signals, some
clearly endocrine, some probably auto- or paracrine. It
seems clear that this network of signals has profound
and widespread effects on energy balance. This net-
work, in which individual signals may operate in an
hierarchical fashion, appears to represent a metabolic
repertoire which may enable the organism to make
adaptive changes to fuel metabolism, one regulator
modulating the effects of another. Many of the mala-
daptive metabolic consequences of obesity may arise
from dysfunction of the adipose tissue endocrine net-
work. We are presently in a very exciting period
where the place of novel signals is being determined.
Some of these signals are recently recognised and the
physiological regulation has not been determined,
much less the effect of obesity on such regulation.
As yet, we know little about the interactions between
the signals, but advances are occurring rapidly. Adi-
pose tissue is increasingly being recognised as a
sophisticated endocrine organ, capable of orchestrat-
ing multiple effects, initially adipostatic, but likely to
become maladaptive in circumstances of continued
positive energy balance.
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9th International Congress on Obesity

Further information about the role of adipose tissue as
an endocrine organ emerged at the 9th ICO and its
satellite meeting `Endocrinology of Obesity' in Sep-
tember 1998. It is not possible to mention all these
new data, however of particular note there was further
evidence that leptin production is primarily from
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subcutaneous rather than visceral adipose tissue (Van
Harmelen et al, Int J Obes 22(suppl 3);1998: S41,
Jensen et al, op cit S81). Differential production of
secretory products by adipocytes from various depots
was also a theme of Hauner (op cit S45). Negrel
considered the possible paracrine functions of angio-
tensinogen, PGI2, PGF2a, and PAI-1 (op cit S20) as
well as discussing other secretory products whose
physiological roles remain uncertain. Matsuzawa and
colleagues (op cit S5, S42, S56 and others) reported an
exciting new adipose tissue secretory product that they
have termed adiponectin. This factor is present in the
systemic circulation and has remote effects, especially
on vascular tissue.
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