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Over the past 30 years much research has focused on
elucidating mechanisms linked to progression of obesity
and its cardiovascular comorbidities. As the central dogma
regarding the pathophysiology of obesity unfolds, it is
evident that the expansion of visceral adipose tissue
caused by overconsumption of nutrients plays a central
role. As visceral fat stores expand, adipocytes generate
increasing levels of reactive oxygen species (ROS) that
incite increased expression and secretion of inflamma-
tory adipokines (1–3). Oxidative stress leads to insulin
resistance within adipose tissue as well as in peripheral
tissues. Insulin resistance is one of the hallmarks of obe-
sity and accounts for many of its comorbidities, including
hypertension (4).

Accumulation of oxidative stress in adipose tissue is
one of the early events in the development of metabolic
syndrome in obesity (5). On the other hand, weight loss
by calorie restriction and/or exercise can ameliorate the
state of oxidative stress (6). Nonetheless, a cause and
effect relationship between oxidative stress and obesity
is not well understood. NADPH oxidase is a major con-
tributor to oxidative stress in many tissues, including
adipose tissue and the vasculature (5,7,8). Conversely,
factors causing oxidative stress, such as angiotensin II,
that induce insulin resistance do not necessarily induce
body weight gain (9). Therefore, whether oxidative stress,
per se, leads to weight gain is an important gap in our
understanding of the pathophysiology of obesity.

In this issue, Youn et al. (10) propose that oxidative
stress contributes to obesity rather than the other way
around, as has been the conventional thinking (a chicken-
and-egg scenario). The most significant finding of their
study is the first demonstration that ROS of vascular
origin play an important causal role in the development
of obesity. They hypothesize that ROS generated in vas-
cular smooth muscle cells (VSMCs) by NADPH oxidase
induce obesity. In this elegant study, they used both

knock-in and knockout mouse models designed to en-
hance or abrogate NADPH oxidase–mediated oxidative
stress. NADPH oxidase plays a major role in generating
ROS in VSMCs (7,8). These multisubunit oxidases consist
of one of the catalytic NOX proteins (NOX1 or NOX4 in
the vasculature) and p22phox, the latter acting to stabi-
lize NOX expression and serving as a docking station for
the remaining cytoplasmic subunits of the oxidase com-
plex (Fig. 1). To address their hypothesis, the authors
used a transgenic mouse (tgsm/p22phox) model that over-
expresses p22phox in VSMCs. In a previous report by this
group, they validated specific p22phox overexpression in
VSMCs and demonstrated concomitant increases in
NOX1 expression and H2O2 generation (11). Despite the
elevated level of oxidative stress, they detected no abnor-
malities in endothelium-dependent vasodilation in aortic
explants nor did they observe increases in systolic blood
pressure. They attributed the preservation of vascular
function to a compensatory response that counters the
deleterious effects of oxidative stress and is characterized
by an H2O2-induced increase in the expression of endo-
thelial nitric oxide synthase protein with subsequent gen-
eration of nitric oxide (NO), in concert with an increase in
extracellular superoxide dismutase expression (Fig. 1).

Youn et al. (10) report that 6-month-old tgsm/p22phox

mice fed a high-fat diet (HFD) for 6 weeks developed
markedly exaggerated obesity compared with HFD-fed
wild-type (WT) mice. Specifically, HFD-fed tgsm/p22phox

mice gained 50% more weight than their WT counter-
parts. HFD feeding also augmented body fat accumula-
tion, leptin levels, and glucose intolerance in tgsm/p22phox

mice, components of the metabolic syndrome, compared
with WT mice (Fig. 1). Importantly, weight gain was not
due to increased calories consumed by the tgsm/p22phox

mice. It should be noted that given a sufficiently long
exposure to an HFD, say 4–6 months depending on the
diet formulation, WT mice develop metabolic syndrome
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(Fig. 1). Thus, tgsm/p22phox mice exhibit a relatively rapid
induction of obesity, which the authors ascribe to the
early and marked increase in leptin levels that are likely
induced by the combination of elevated vascular ROS and
an HFD environment. The authors also suggest the pos-
sibility that ROS of vascular origin diffuse into nearby
skeletal muscle cells, inciting a feed-forward scenario to
induce mitochondrial ROS formation (ROS-induced ROS).
As such, vascular ROS may induce skeletal muscle dys-
function, leading to reduced activity and energy expendi-
ture that would promote obesity. Their results were
further supported by studies on knockout mice that are
deficient in vascular ROS production (p22phoxloxp/loxp/
tgsmmhc/cre mice). In these mice, HFD feeding did not in-
duce weight gain or leptin resistance. Moreover, knockout
mice fed an HFD exhibited decreased T-cell infiltration
into perivascular fat, suggesting that vascular ROS could
incite an inflammatory response that contributes to the
development of obesity.

The idea that ROS of vascular origin are a cause rather
than a consequence of obesity is very appealing, nonethe-
less several questions remain unanswered. First, in Fig. 3
of their article, it is evident that 6-month-old tgsm/p22phox

mice are approximately 15–20% heavier than WT mice
under baseline conditions. Despite being overweight,
tgsm/p22phox mice do not exhibit the suite of abnormalities
observed in HFD-fed tgsm/p22phox mice (Fig. 1). Perhaps
this could be interpreted as evidence that vascular ROS by
itself promotes a condition of overweight independent of
hyperleptinemia, glucose intolerance, and inflammation.
Second, the authors did not address whether the adaptive
mechanisms related to NO signaling (Fig. 1A) encoun-
tered in tgsm/p22phox mice fed a normal diet (11) are ab-
rogated in HFD-fed mice. In this regard, it might be
predicted that there will be a loss of vasoprotection in
concert with augmented obesity and a dysregulated in-
flammatory response, and this would eventually lead to
vascular dysfunction and hypertension. These issues may
help to answer the role of NO and immune function in
oxidative stress–mediated vascular dysfunction, as these
mice are targeted for vascular-mediated oxidative stress.
Third, it would also be interesting to know whether oxi-
dative stress–mediated responses to factors contributing
to hyperleptinemia, insulin resistance, reduced activity,
and inflammation, such as renin-angiotensin-aldosterone
system activation, could also be potentiated in tgsm/p22phox

Figure 1—Oxidative stress of vascular origin induces obesity. Panels A and B depict excessive superoxide generation by the NADPH
oxidase complex in VSMCs of tgsm/p22phox mice under baseline conditions and the compensatory vascular and metabolic responses that
contribute to preservation of vascular function as reported previously by the authors (11). WT mice fed a Western diet high in fat for several
months exhibit a number of abnormalities typically observed in metabolic syndrome (C). The consequences of feeding tgsm/p22phox mice an
HFD for 6 weeks are similar to those observed with long-term HFD feeding (D). ecSOD, extracellular superoxide dismutase; eNOS,
endothelial nitric oxide synthase; KO, knockout; PVAT, perivascular fat; RAAS, renin-angiotensin-aldosterone system.
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mice. It is hoped that future extensions of the study by
Youn et al. (10) will provide further mechanistic insight
into the pathophysiology of obesity and the role of vas-
cular oxidative stress in mediating vascular dysfunction in
obesity.
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