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Microbiota assembly is perturbed in children with undernutrition, resulting in persistent microbiota
immaturity that is not rescued by current nutritional interventions. Evidence is accumulating that
this immaturity is causally related to the pathogenesis of undernutrition and its lingering sequelae.
Preclinical models in which human gut communities are replicated in gnotobiotic mice have pro-
vided an opportunity to identify and predict the effects of different dietary ingredients onmicrobiota
structure, expressed functions, and host biology. This capacity sets the stage for proof-of-concept
tests designed to deliberately shape the developmental trajectory and configurations of microbiota
in children representing different geographies, cultural traditions, and states of health. Developing
these capabilities for microbial stewardship is timely given the global health burden of childhood
undernutrition, the effects of changing eating practices brought about by globalization, and the
realization that affordable nutritious foods need to be developed to enhance our capacity to culti-
vate healthier microbiota in populations at risk for poor nutrition.
Introduction
Understanding the determinants of the nutritional value of

different foods has never been more important, with population

stabilization being unlikely this century (Gerland et al., 2014)

and growing challenges related to sustainable agriculture. An in-

tegral part of understanding how best to deliver nutritious food to

a burgeoning population is understanding how the microbial

community in our gut (the microbiota) is shaped by what we

eat and how that community in turn shapes our development

and health. Nowhere will this kind of insight be more crucial

than in raising the world’s children.

Current obstacles to achieving healthy and productive lives

and societies are reflected in the United Nations’ millennium

development goals that include reductions in child mortality

and hunger and improvements in maternal health (http://www.

un.org/millenniumgoals/). The scope of the problem of child-

hood undernutrition is described by parameters such as

the International Food Policy Research Institute’s Global

Hunger Index (http://www.ifpri.org/publication/2014-global-

hunger-index), which is an aggregate measure of calorie intake

plus the rates of children being underweight and childhood mor-

tality within a given region or country.

Much has been said about how changing patterns of food pref-

erences brought about by economic development, globalization,

andchanges in food technologyand fooddistributionsystemsare

producing dramatic changes in how, what, and when we eat.

These changes, combined with rapid population expansion and

issues related to sustainable agriculture, create the need and
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the opportunity to drive innovation in the area of identifying new,

affordable, and nutritious foods. Here, we focus on the impor-

tance of understanding the postnatal developmental biology of

our gut microbial community—a highly adaptable microbial

‘‘organ’’ that is critically involved in the biotransformation of foods

toproducts that canshapemanyaspectsof humanbiology. In our

view, studies of human gut microbial communities will markedly

revise current thinking about many aspects of human nutrition.

The knowledge gained could and should catalyze efforts to inte-

grateagriculturalpolicies, foodproduction, andnutritional recom-

mendations for consumers representing different ages, cultural

traditions, and geographies. Preclinical research platforms are

now available to evaluate the effects of foods that we currently

consume and those that we envision creating in the future on

the gut microbial community and host biology in ways that can

inform clinical studies. Furthermore, studies of children with un-

dernutrition are highlighting the importance of postnatal develop-

ment of the gut microbiota for achieving healthy growth and

providing us with a new set of metrics to define the efficacy of

nutritional recommendations and interventions directed at in-

fants, the maternal-infant dyad, and children. Finally, we empha-

size the importance of addressing ethical, social, and regulatory

issues related to research in this area now rather than later.

Defining Human Postnatal Development from a
Microbial Perspective
The human gut microbiota is composed of all three domains of

life; Bacteria, which predominate, Archaea, and Eukarya, plus
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viruses. The gut microbiota is composed of relatively few bacte-

rial phyla compared to communities in other body habitats and is

notable for its strain-level diversity. Application of low-error

sequencingmethods to PCR amplicons generated from the bac-

terial phylogenetic marker gene encoding the principal RNA in

the small subunit of ribosomes (16S rRNA) has indicated that,

once acquired, the majority of bacterial strains in a healthy adult

are retained for long periods of time (Faith et al., 2013). Thus,

early colonizers, once established in the gut ecosystem, have

the potential to exert their effects on our biological features

and health status for most and perhaps all of our adult lives.

This latter finding emphasizes the importance of understanding

whether there is a definable program of community assembly

in healthy infants/children and whether such a program is shared

or varies considerably across populations with distinct dietary

habits and culinary traditions residing in different geographic lo-

cations. If such a developmental program were definable and a

significant contributor to healthy growth, fostering its proper

and full execution could represent the basis of an arm of preven-

tive medicine designed to ensure long-term health through

informed microbial stewardship.

Food is a major factor that shapes the proportional represen-

tation of microorganisms present in the gut microbiota and the

relative abundance of its genes (the microbiome). Reciprocally,

the configuration of the microbiota/microbiome influences the

nutritional value of food. One illustration of this interrelationship

comes from a culture-independent metagenomic analysis of

the gut microbiomes of infants, children, and adults belonging

to 150 families living in three countries located on three different

continents (metropolitan areas of the USA plus rural villages in

southern Malawi and the Amazonas state of Venezuela). The re-

sults revealed that the relative abundances of genes in the

microbiome that are related to vitamin biosynthesis (e.g., folate,

cobalamin, thiamine, and biotin), amino acid metabolism, and

processing of complex polysaccharides change in an identifiable

sequence during the postnatal period (Yatsunenko et al., 2012).

In addition, differences between Westernized (USA) and non-

Westernized populations were evident, with breastfed Malawian

and Amerindian babies having higher relative abundances of

microbial genes encoding enzymes involved in carbohydrate

metabolism, vitamin biosynthesis (e.g., components of the

biosynthetic pathway for riboflavin, a component of breast

milk, dairy products, and meat), and urease (Yatsunenko et al.,

2012). Urea represents up to 15% of breast milk nitrogen; its

degradation to ammonia can be used for microbial biosynthesis

of essential amino acids, potentially benefiting both the micro-

biota and host when diets are deficient in protein. Significant

differences in microbiome configuration were also observed

between breast-fed and formula-fed infants, with the latter

showing increased representation of genes involved in various

aspects of carbohydrate and amino acid metabolism and cobal-

amin (vitamin B12) biosynthesis (Yatsunenko et al., 2012). Cobal-

amin is not only important for the host; the ability to transport

cobalamin and other substituted corrins is an important determi-

nant of survival for members of the microbiota (Degnan et al.,

2014).

Together, these findings suggested that the gut community

should be considered when assessing the nutritional require-
ments at different stages of the human life cycle and in different

geographic/cultural settings. They also raised the question of

whether perturbations in the functional development of the

microbiota/microbiome were related to childhood undernutri-

tion, themajor cause of childhood deaths worldwide and amani-

festation of a complex set of still poorly understood intra- and

intergenerational factors, rather than food insecurity alone (Laz-

zerini et al., 2013; Caulfield et al., 2014; Richard et al., 2014).

Undernutrition and Gut Microbiota Immaturity
The World Health Organization’s (WHO) Multi-Center Growth

Reference Study (http://www.who.int/childgrowth/mgrs/en/)

defines three anthropometric (physical) parameters (weight-

for-age, height-for-age, and weight-for-height Z scores) to

describe normal early childhood growth and nutritional status

from its evaluation of 8,440 infants and children living in six

distinct sites around the world (USA, Oman, Norway, Brazil,

Ghana, and India). A recent study provided another definition

of healthy growth but from amicrobial perspective (Subramanian

et al., 2014). It did so by examining gutmicrobiota assembly in 50

children residing in Dhaka, Bangladesh whose anthropometry

during their first 2 years of life indicated healthy growth. Fecal

samples were collected monthly from birth through the end of

the second postnatal year, and the relative abundances of bac-

terial strains were analyzed by 16S rRNA amplicon sequencing.

The results revealed that interpersonal variation in the bacterial

component of their gut communities was significantly smaller

than the variation associated with age. Applying Random For-

ests, a machine-learning method, to regress relative abun-

dances of bacterial taxa across these children revealed age-

discriminatory bacterial strains. Separating these 50 children

into training and validation cohorts, the regression was opti-

mized to include the most informative taxa for accurate predic-

tion of microbiota ‘‘age.’’ The results were formally validated to

prevent over-fitting and over-estimation of generalizability and

produced a sparse model composed of 24 strains that could

be used in aggregate as a microbial signature for describing a

shared program of microbiota development in healthy individ-

uals and two derived metrics for defining deviations from that

normal program: ‘‘relative microbiota maturity’’ and ‘‘micro-

biota-for-age’’ Z (MAZ) score (Figure 1).

Severe acute malnutrition (SAM) is defined by weight-for-

height Z (WHZ) scoresmore than 3 SDs below themedian of chil-

dren in the WHO reference cohort. Application of this sparse

model to 64 Bangladeshi children with SAM (WHZ �4.2 ± 0.72

[SD]) revealed they had gut microbiota that appeared signifi-

cantly ‘‘younger’’ than their chronological age (relative micro-

biota maturity of �6 ± 0.7 months and MAZ scores of �1.7 ±

0.2). Moreover, this immaturity was incompletely and only tran-

siently rescued following a customary period of administration

of either one of two types of ready-to-use therapeutic foods

(RUTFs; typically given for 2 weeks until a 15% increase in

weight gain is achieved; http://www.ClinicalTrials.gov, number

NCT01331044). Bangladeshi children with moderate acute

malnutrition (WHZ between�3 and�2) also exhibited significant

microbiota immaturity, although less severe than children with

SAM (Subramanian et al., 2014). These results indicate that chil-

dren with SAM have a persistent developmental abnormality
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Figure 1. Developing Metrics for Describing Gut Microbial Community Development
(A) Bacterial taxa that discriminate different stages of development were identified by a machine learning-based (Random Forests) regression of 16S rRNA data
sets produced from monthly fecal samples, collected from anthropometrically healthy infants and children living in an urban slum in Dhaka, Bangladesh during
their first 2 years of postnatal life, to their respective chronologic ages at the time of sample collection (Subramanian et. al, 2014). Shown are depictions of the
typical distributions of these age-discriminatory taxa across the population. Taxawere selected based on their relative importance to the accuracy of the Random
Forests model using a permutation-based ‘‘feature importance.’’ The y axis in the graph defines maximum relative abundance for each taxon in the microbiota in
the context of the first 2 years of postnatal life.
(B) The most discriminatory taxa, as defined by their feature importance, were used as inputs into a sparse 24 taxon model whose output (‘‘microbiota age’’) is a
microbiota-based prediction of the chronologic age of a healthy child. The plot on the left of the panel shows microbiota age against chronologic age of healthy
children used as a training set to fit the regression (each dot is a fecal sample from an individual child). The plot on the right of the panel shows application of the
sparsemodel to a validation set composed of a different group of children living in the same location that were not used to train themodel. Applying themodel to a
separate validation set controls for over-fitting of the model to the training set and ensures its wider usability.
(C) Two metrics of microbiota maturation based on application of the model to two separate validation sets of singletons and a separate study of Bangladeshi
twins/triplets. ‘‘Relative microbiota maturity’’ is the deviation, in months, from a smooth-spline fit of microbiota age values with respect to chronologic age, fitted
using the validation data sets (see black dashed curve). The red dot represents a fecal sample collected from a focal child that is 11 months below the spline fit,
indicating negative relative microbiota maturity (i.e., an immature microbiota). MAZ is computed by dividing the difference between the focal child’s microbiota
age and the median microbiota age of healthy controls in the samemonthly chronologic age bin over the SDwithin the same age bin. The median and SD of each
bin are computed using the validation data sets. The distributions of microbiota maturity and MAZ scores in birth-cohort studies have been studied using linear
mixedmodels that take into account random variation specific to each serially sampled child and family while estimating the fixed variation attributable to a factor
observed across different children (e.g., diarrheal episodes) (Subramanian et al., 2014).
Note that using Random Forests to study microbiota maturation is advantageous because of its non-parametric assumptions and utility in the context of high
dimensional data sets (large numbers of predictors). Nonetheless, it is one of several methods that can be useful. For example, the rank-order Spearman
correlationmetric has been applied to infant microbiome data sets to detect monotonic relationships betweenmicrobiome-encoded functions/bacterial taxa and
postnatal age (Yatsunenko et. al, 2012).
affecting their gut microbial ‘‘organ’’ that is not durably repaired

with existing therapy.

These observations raise a critical question: is microbiota

immaturity a cause or an effect of childhood undernutrition?

Many studies have shown that, although current protocols for

treating children with (acute) undernutrition reduce mortality,

they do not rescue its long-term morbidities, including stunting,

immune dysfunction, and neurodevelopmental abnormalities

(Victora et al., 2008, Gaayeb et al., 2014, Kosek et al., 2013, Gal-

ler et al., 2012). For example, given the remarkable metabolic
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requirements of the neonatal brain, alterations in the normal

postnatal development of the gut microbiota may trigger marked

impairments in brain development and lead to persistent disor-

ders of cognition.

Support for a causal role for the gut microbiota in SAM comes

from studies of gnotobiotic mice. In recent years, methods have

been developed for transplanting previously frozen fecal sam-

ples from human donors into groups of germ-free mice at a

selected stage of their lives (e.g., young, rapidly growing animals

that have been recently weaned or older animals) and with a



Figure 2. Integration of Existing Clinical

Observational and Interventional Studies

into Gnotobiotic Mouse Models to Identify

Interactions between the Gut Microbiota,

Food, and Host Biology
The discovery process depicted by the left circle
illustrates how gnotobiotic animal models colo-
nized with human donor microbiota and fed
human diets can lead to a greater understanding
of how diet-by-microbiota interactions are caus-
ally related to healthy growth and to phenotypes
associated with undernutrition: e.g., immune
system development, brain development, and
host and microbial community metabolism. New
surrogate- or mechanism-based biomarkers of
nutritional state emanating from these gnotobiotic
models can be validated using biospecimens
collected from the donors used to construct
these gnotobiotic models, as well as from
other members of the study population. The
discovery/development process depicted on the
right illustrates how dietary and microbial
‘‘leads’’ can be tested in the context of hu-
manized gnotobiotic animals to assess how
they modulate biological processes already
known, discovered, or postulated to be involved
in healthy growth and/or the pathogenesis of

undernutrition. The downward-pointing arrow in the middle of the figure points to next steps in clinical translation. See the main text for a discussion of the
regulatory, ethical, societal, and commercial implications of these efforts. Abbreviation: IND, investigational new drug.
designated genetic background. If the humanmicrobiota sample

is frozen shortly after it is produced andmaintained at�80�C, the
bacterial strains represented in the donor’s community can be

transmitted efficiently and reproducibly to recipient mice (e.g.,

Turnbaugh et al., 2009a; Smith et al., 2013; Ridaura et al.,

2013; Palm et al., 2014; Kau et al., 2015). The recipient mice

can be fed diets that contain ingredients used in foods consumed

by themicrobiota donor. Moreover, the ingredients andmethods

for preparing (cooking) such diets can be varied systematically.

This approach allows myriad types of models to be constructed

for studying the interaction of foods and the human gut micro-

biota in vivo. For example, diets can be given that are represen-

tative of those consumed by populations other than those of the

donor to anticipate the effects of changes in food consumption

patterns associatedwithWesternization or composed of ingredi-

ents that represent new potential sources of affordable, nutri-

tious foods such as landraces and waste streams from current

food manufacturing processes. Critically, these preclinical

gnotobiotic animal models allow proof-of-concept tests of

whether a donor phenotype is transmissible via his/her gut mi-

crobiota, the extent to which phenotypic transmission general-

izes across different donor microbiota, and the sensitivity or

robustness of phenotypic transmission to diet type. These

preclinical models also permit simulations of existing or antici-

pated therapeutic interventions, including the opportunity to

‘‘randomize’’ a given individual’s microbiota to not just one but

multiple treatment arms in order to directly compare the effect

(and effect size) of the treatments on both the microbiota and

host, to characterize underlyingmechanisms, and to identify sur-

rogate- or mechanism-based biomarkers that could be translat-

able to the microbiota donor or donor population (Figure 2).

Transplanting fecal microbiota from same-gender Malawian

twins discordant for kwashiorkor, a form of SAM, into separate

groups of adult germ-freemice and feeding the recipient animals
a representative micro- and macronutrient-deficient Malawian

diet disclosed that the healthy and kwashiorkor co-twins’ micro-

biota transmitted discordant weight loss and metabolic pheno-

types (as well as an enteropathy characterized by disruption of

the small intestinal and colonic epithelial barrier in animals

harboring kwashiorkor but not healthy microbiota) (Smith et al.,

2013; Kau et al., 2015). Unlike the transplanted healthy co-twins’

microbiota, the kwashiorkor microbiota was structurally and

metabolically labile, reconfiguring itself upon exposure to a

peanut-based RUTF, but not in a sustained way when animals

were returned to the Malawian diet. The combination of a

nutrient-deficient Malawian diet and a kwashiorkor microbiota

was required to produce pathology in the recipient ‘‘humanized’’

mice, including inhibition of steps within the tricarboxylic acid

cycle in host cells (Smith et al., 2013). These findings not only

provided evidence for a causal relationship between the gut

microbiota and SAM but also highlighted the importance of

diet-by-microbiota interactions in disease pathogenesis.

If we consider children with persistent microbiota immaturity

from the perspective of developmental biology, we can pose a

number of basic and applied scientific questions. One question

is whether the developmental program defined in Bangladeshi

infants and children is generalizable to other populations repre-

senting different geographic and cultural settings. If so, it would

reveal a fundamental shared aspect of postnatal human devel-

opment and raise mechanistic questions about the factors that

specify a healthy microbial community ‘‘fate.’’ Initial support for

generalizability comes from an analysis of concordant healthy

Malawian twin pairs, which showed that a number of the age-

discriminatory bacterial strains with the highest feature impor-

tance scores in the Bangladeshi Random Forests model are

also represented in the Malawian population (Subramanian

et al., 2014; Yatsunenko et al., 2012). The designation ‘‘same

strain’’ was based on the same 16S rRNA sequence;
Cell 161, March 26, 2015 ª2015 Elsevier Inc. 39



whole-genome sequencing of a given age-discriminatory strain

identified by its 16S rRNA sequence will be needed to determine

its degree of gene conservation across different Bangladeshi

and Malawian hosts. Bacterial 16S rRNA analyses of fecal sam-

ples obtained at monthly intervals from infants and children with

healthy growth phenotypes enrolled in birth cohorts living at

multiple low-income countries allow country/community site-

specific, Random-Forests-based models of microbiota matura-

tion to be constructed, as well as an aggregate model represent-

ing data pooled from all sites. ‘‘Generalizability’’ can be

established through reciprocal tests of the accuracy of the

site-specific models (and aggregate model) for healthy individ-

uals living at the different sites and whether these models reveal

similar relationships between anthropometry and relative micro-

biota maturity/MAZ scores for undernourished children living at

each of these sites.

A second question has to do with the relationship betweenmi-

crobiota development, enteropathogen load, and environmental

enteric dysfunction (EED, also known as environmental enterop-

athy), an enigmatic and as-yet-incompletely defined disorder of

gut barrier function (Keusch et al., 2014; Kosek et al., 2014).

Does a primary failure to execute normalmaturation of themicro-

biota directly influence risk for enteropathogen invasion, pertur-

bations in development of mucosal immune system, and

abnormalities in nutrient processing and absorption that ulti-

mately results in growth faltering? Alternatively, is a holistic

view required that considers each of these features of enteric

biology as intimately and integrally related to one another? Large

birth cohort studies such as MAL-ED and GEMS have provided

an opportunity to measure the contributions of enteropathogen

load/carriage and diarrheal incidence to growth faltering (MAL-

ED Network Investigators, 2014; Platts-Mills et al., 2014; Kotloff

et al., 2013). Evidence is emerging that some of the age-discrim-

inatory taxa that define normal microbiota maturation also pro-

tect the host from enteropathogen infection. Intriguingly, studies

of Bangladeshi adults with acute cholera have shown that recov-

ery from the diarrheal phase involves recapitulation of the

sequence of appearance of the same age-discriminatory bacte-

rial strains that define the normal pattern of assembly of the mi-

crobiota in healthy Bangladeshi infants/children, suggesting that

an essential set of rules governs this assembly (successional)

process (Hsiao et al., 2014). For example, Ruminococcus

obeum, a bacterium that directly correlates with recovery from

Vibrio cholerae infection in adult Bangladeshi subjects and de-

fines later stages of normal gut microbiota maturation in healthy

Bangladeshi children, restricts V. cholerae colonization of gnoto-

biotic mice harboring a representative human gut microbiota. Its

mechanism involves production of an autoinducer-2 (AI-2) that

causes quorum-sensing mediated repression of V. cholerae

colonization and virulence factor expression (Hsiao et al., 2014).

A third related question is themanner in which themucosal im-

mune system and the microbiota co-develop. How do these

complex organs talk to and educate each other? The answers

could help identify factors that legislate a normal developmental

trajectory for a gut community and how developmental arrest of

the microbiota could be become fixed and difficult to overcome/

advance. Immaturity of the microbiota may be associated with

relative immaturity of mucosal immunity in ways that impede
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responsiveness to vaccines or enteropathogens. If so, can we

use members of the microbiota as next-generation adjuvants

to prime the immune system in the context of a defined antigen

(Yilmaz et al., 2014)? One way to characterize maturation of the

mucosal immune system is to use fluorescence-activated cell

sorting (FACS) to identify microbial taxa targeted by its IgA re-

sponses as a function of chronologic age in hosts with healthy

growth phenotypes and in those with undernutrition (critically,

IgA targeting is not simply a reflection of the abundances of

organisms in the gut community; Kau et al., 2015). This method,

named BugFACS, has identified bacterial targets of gut mucosal

IgA responses using fecal samples from children with healthy

growth phenotypes or those with varying degrees of undernutri-

tion, as well as fecal samples harvested from gnotobiotic mice

harboring transplanted microbiota from healthy and undernour-

ished donors fed diets representative of those that these children

consume. BugFACS-purified viable IgA-targeted bacterial taxa

were subsequently introduced into germ-free animals fed

nutrient-deficient or -sufficient diets to characterize their func-

tional properties. The results disclosed that IgA responses to

members of themicrobiota can be used as biomarkers of growth

faltering, that they are influenced by enteropathogen load, and

that they mediate a diet-dependent enteropathy characterized

by small intestinal and colonic epithelial barrier disruption. More-

over, treatment with IgA-targeted bacterial strains purified from

healthy donor microbiota can prevent development of the enter-

opathy (Kau et al., 2015), indicating that this approach may have

utility that extends beyond diagnostics to therapeutic lead dis-

covery and defining mechanisms underlying EED pathogenesis.

A fourth and critical question is whether age-discriminatory

taxa are not only just biomarkers but also effectors of growth. If

so, they become potential therapeutic agents and targets for

manipulation, including food-based manipulations that allow for

their establishment in an individual or population at the time of

presentation with manifest disease or prior to that time.

One way we are currently determining whether age-indicative

taxa are also growth indicative is by transplantingmicrobial com-

munities from children exhibiting varying degrees of growth

faltering (defined by anthropometry), representing a particular

geographic region, into young, actively growing germ-free ani-

mals fed diets representative of the donor population and then

defining the effects of the different transplanted communities on

the growth, metabolic and immunologic phenotypes of recipient

gnotobiotic mice (Figure 2). 16S rRNA data sets generated from

the animals’ fecal samples can be used to correlate strain abun-

dances to these phenotypes. These strains can then be cultured

from the microbiota of different donor populations. Determining

the effects of subsequently introducing these strains—singly or

as components of defined consortia—into young gnotobiotic

mice harboring microbiota from different undernourished donors

represents a way to address several challenges that would be

faced when designing and interpreting a clinical study. For

example, these preclinical studies could help to (1) define criteria

used to select strains beyond their feature importance scores in

the Random Forests models and cultivability (e.g., the extent of

representation of virulence determinants in their genomes);

(2) assess how to encapsulate these organisms, including anaer-

obes, in ways that permit their long-term storage and viability;



Figure 3. Co-variation in Gut Microbiota

Assembly/Maturation, Dietary Patterns,

and Other Facets of Human Postnatal

Development
(A) Illustration of the rate of change occurring in gut
microbiota structure of both mother and child.
Note that infant variation curves are known from
both longitudinal and cross-sectional study de-
signs (Yatsunenko et al., 2012; Subramanian et al.,
2014). In the case of mothers, the curve is inter-
polated based on studies of pregnant Finnish
mothers prior to delivery (Koren et al., 2012) and
Bangladeshi mothers following parturition (Sub-
ramanian et al., 2014). Note that the shape of the
curve describing the evolution of the maternal
microbiota during pregnancy has not been well
defined and needs further clarification in multiple
populations.
(B) The food consumption pattern shown is at a
population level and does not depict the great deal
of temporal variation observed in food consump-
tion patterns within a given child. Depicting the
fractional contribution of each food to the con-
sumption patterns of children in Bangladesh
underscores how dietary changes occur simulta-
neously (lowering of breast milk and increase in
legumes and cow’s milk) and not in an orderly
fashion (small fluctuations from month to month;
re-entry and dropout of certain foods). It also un-
derscores the challenge encountered in ascer-
taining how food and the microbiota interact to
effect maturation of the microbial community.
(C) Major processes related to growth and how
they vary in rate and magnitude over time. Curves
are adapted from Bogin (1999). Note that the
newborn brain represents 12% of body weight
(a value 6 times greater than in adults). By the end
of the first decade, the brain represents 6% of
body weight and consumes twice the amount of
glucose and 1.5 times the amount of oxygen as the
adult brain. Approximately 30% of the glucose

consumed by the infant brain is accounted for by aerobic glycolysis (versus 12% in adults) (Goyal et al., 2014). The dramatic changes in brain metabolism that
occur over the first two decades of life coincide with the initial proliferation and then pruning of synapses. Central questions that need to be addressed in this area
include the biological effects of the gut microbial community on neurogenesis, synaptic connectivity, gliogenesis and glial-neuron interactions, neural circuit
function and higher cognitive processes in the context of healthy growth versus undernutrition, and whether/how the gut-brain axis operates to influence/regulate
other aspects of host physiology, metabolism, and immunity in the infant/child. Moreover, if persistent immaturity of the gut microbiota is causally related to
undernutrition and its long-term sequelae, including neurodevelopmental abnormalities, does durable repair of this immaturity require that nutritional in-
terventions be administered earlier before disease becomes fully manifest (and the microbial ecosystem is so perturbed that restoration becomes very difficult)?
Do nutritional interventions need to be applied for more sustained periods of time? Do new types of therapeutic foods need to be developed, or is a microbial
intervention also needed?
(3) determine the extent towhich consortia can invade and estab-

lish themselves in different microbiota representing individuals

fromagivenpopulationordifferentpopulations; (4) assess thena-

tureof their effects ongrowth (e.g., gain of leanbodymass),meta-

bolism, and gut barrier function as a function of the degree of

donor undernutrition andmicrobiota immaturity; and (5) ascertain

thedegree towhich invasion and establishment of these strains in

the targeted microbiota and their host effects are impacted by

diet. Determining whether these strains are interchangeable be-

tween countries will influence the generalizability of microbial in-

terventions or whether there would have to be local sourcing of

these biological resources by or for the communities who are

themselves afflicted by undernutrition.

Establishing Microbiota and the Maternal Influence
The origins of the microbes that colonize an infant’s gastrointes-

tinal tract are complex, given that infants are exposed to different

environmental sources. A major source is the mother and in-
cludesmicrobes from her vagina, skin, gut, and as some have re-

ported, breast milk and possibly the placenta (Dominguez-Bello

et al., 2010; Hunt et al., 2011; Grönlund et al., 2011; Cabrera-

Rubio et al., 2012; Aagaard et al., 2014).

A key knowledge gap relates to the ‘‘anthropology of mi-

crobes’’: knowing how practices associated with pregnancy,

including micronutrient supplementation, as well as traditional

(and changing) societal ‘‘prescriptions’’ for dietary practices,

impact amother’s microbial ecology prior to and following partu-

rition and how this may impact transmission of her microbes to

her infant. A study of 91 pregnant Finnish women showed that

the maternal microbiota changes between the first and third

trimester (Koren et al., 2012) (Figure 3). Another analysis of Ban-

gladeshi mothers revealed marked changes in their gut micro-

biota in the first month post-partum, followed by less substantial

changes in the ensuing 9months (Subramanian et al., 2014). One

testable hypothesis is that thematernal microbiota, much like the

infant microbiota, undergoes stereotypical alterations during
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normal pregnancy designed to enhance maternal health and to

promote transfer of strains to the infant. Testing this hypothesis

will require detailed time series sampling of maternal microbiota

throughout pregnancy and of the maternal-infant dyad, plus

other environmental sources, including other family members

and caregivers. If a program of pregnancy-associated changes

in the maternal gut microbiota can be identified using ap-

proaches analogous to those described above to characterize

maturation of the infant microbiota, it could provide an opportu-

nity to use the most indicative or transmissible taxa as bio-

markers of nutritional status and as reporters of the effects of

different dietary practices or the efficacy of prescribed prenatal

nutritional interventions.

Pregnancy is also a time of increased susceptibility to infec-

tion. Rowe et al. (2011) demonstrated that pregnant mice show

increased bacterial burden in models of Listeria monocytogenes

and Salmonella typhimurium infection, mediated via active im-

mune suppression by a population of FoxP3+ regulatory T cells

(Tregs). Moreover, ablation of the Treg compartment resulted

in near-complete resorption of fetuses, indicating a delicate bal-

ance between immunological tolerance of the fetus and defense

against enteropathogens (Rowe et al., 2011). It is not known how

this period of deliberate immune suppression impacts the

maternal microbiota and, in turn, transfer of pathogens (and

other microbial community members) to the infant.

The Impact of First Foods
Breast Milk

The association between healthy postnatal growth and exclusive

breastfeeding has led to the WHO’s recommendation for a min-

imum of 6 months of exclusive breastfeeding (Kramer and Ka-

kuma, 2002). Human milk is composed of lipids (tri-, di-, and

monoglycerides, phospholipids, glycolipids, and free fatty

acids), protein components (including immunoglobulins, lacto-

ferrin, lysozyme, and cytokines), and a large repertoire of human

milk oligosaccharides (HMOs). Over time, this composition

changes from colostrum, which is HMO rich, to mature milk,

which contains fewer HMOs and protein while the fat content re-

mains relatively stable (Coppa et al., 1993; Lemons et al., 1982).

HMOs and other milk glycoconjugates pass undigested

through the proximal gut (Engfer et al., 2000) and serve as

nutrient substrates for saccharolytic microbiota in the colon.

The microbiota of healthy exclusively breastfed infants is domi-

nated by members of the genus Bifidobacterium (Figure 1;

Yatsunenko et al., 2012; Subramanian et al., 2014). These in-

fant-associated bifidobacteria, notably Bifidobacterium longum

subsp. infantis, possess a suite of genes involved in importing

complex fucosylated and sialylated milk glycans, their further

degradation, and subsequent utilization (Sela et al., 2008). The

functions encoded by this suite of genes allow them to outcom-

pete other saccharolytic taxa (Marcobal et al., 2010). Bifidobac-

teria also actively reshape milk composition. For example, they

release N-linked glycans conjugated to milk glycoproteins for

use as a growth substrate. However, the effect of deglycosyla-

tion on milk protein digestibility and function is as-yet unknown

(Garrido et al., 2012, 2013).

Colonization by Bifidobacterium species during nursing is

associated with a range of benefits, including improved vaccine
42 Cell 161, March 26, 2015 ª2015 Elsevier Inc.
responses (Huda et al., 2014) and enhanced gut barrier function

(Ewaschuk et al., 2008; Weng et al., 2014), including stabilized

epithelial tight junctions noted in both animal models (Bergmann

et al., 2013) and human cell lines (Chichlowski et al., 2012).

Recent work has shown that infants with high Bifidobacterium

population densities exhibit a corresponding decrease in fecal

milk glycans (De Leoz et al., 2015; Wang et al., 2015), a relation-

ship that could serve as the basis for developing inexpensive di-

agnostics to monitor development of a healthy gut microbiota in

nursing infants.

Development of a healthy infant gut microbiota can be threat-

ened by maternal undernutrition and premature birth. Maternal

undernutrition during pregnancy increases risk for underweight

and preterm births (Kramer et al., 1992). Children of undernour-

ished mothers receive substantially less than the recommended

intake of priority micronutrients during lactation (Allen, 2005).

Fortified milk obtained from donors who have had a full-term

pregnancy likely does not provide sufficient protein to preterm

infants (Arslanoglu et al., 2009). Even when mothers of preterm

infants can produce sufficient milk, alterations inmilk fat, protein,

oligosaccharide content (Weber et al., 2001; De Leoz et al.,

2012), and the repertoire of immunoactive components (Castel-

lote et al., 2011) are observed, leading to a call for identifying

additional elements for nutritional support of these infants (Ga-

brielli et al., 2011; De Leoz et al., 2012).

A vicious cycle of maternal undernutrition and poor infant

nutritional status can reflect alterations in the immune, HMO,

and/or other components ofmother’smilk. This has critical impli-

cations for infant health. Poor maternal health is associated with

variations in breast milk immunoglobulins and glycoprotein

structures during lactation (Smilowitz et al., 2013) and with

decreased lactoferrin, a protein with antimicrobial activities

(Hennart et al., 1991). Parasite-specific breast milk IgA titers to

Entamoeba histolytica and Cryptosporidium spp. correlate with

nutritional status in a Bangladeshi infant population in which

the burden of infection with these enteropathogens is very high

(Korpe et al., 2013). Preterm delivery is associated with atypical

variations in milk glycan structures (De Leoz et al., 2012),

which poses additional risks. As HMOs have structural similar-

ities to epithelial cell surface and mucus glycans, they can

have anti-adhesive effects on enteropathogens. Sialic acid or

fucose moieties are key determinants of this activity. Thus, var-

iations in fucosylated HMOs associated with preterm birth may

reduce the efficacy of milk oligosaccharides as anti-adhesive

decoy molecules for pathogens (Ruiz-Palacios et al., 2003;

Jantscher-Krenn et al., 2012).

Understanding how breast milk glycan repertoires correlate

with normal microbiota assembly and with impaired microbiota

maturation and undernutrition provides an opportunity to identify

new glycan streams that could be used to treat undernourished

infants. Commercial prebiotics are commonly added to infant

formula, where they increase bifidobacteria titers in infant feces

(Haarman and Knol, 2005; Knol et al., 2005; Boehm et al., 2002)

and lower the incidence of pathogens (Knol et al., 2005). How-

ever, current prebiotics, namely fructooligosaccharides and

galactooligosaccharides, do not represent the constellation of

complex glycan structures delivered in human milk. Moreover,

their consumption is not restricted to the population of microbes



that define normal gut microbiota maturation (Everard et al.,

2014; Dewulf et al., 2013). Numerous efforts to recreate the

glycan landscape present in human milk are underway. The

technology for chemical and chemoenzymatic construction of

complex ‘‘milk’’ oligosaccharides has advanced tremendously,

enabling wholesale construction of a limited number of HMO-like

structures present in milk (Muthana et al., 2009). Alternatively,

purification from animal milks presents another opportunity for

rapid and large-scale acquisition of milk oligosaccharides and

glycoconjugates. At present, a number of enriched or purified

bovine milk glycoproteins, including immunoglobins, lactoferrin,

and glycomacropeptide, and glycolipids are commercially avail-

able or could be readily produced at scale for use in preclinical

and clinical studies. Bovine milk contains a relatively low

concentration of free oligosaccharides, but the distribution of

structures observed roughly matches the most abundant spe-

cies present in HMOs (Aldredge et al., 2013). Importantly, bovine

milk oligosaccharides (BMOs) can be sourced from numerous

points in dairy processing, including cheese whey, suggesting

an opportunity for large-scale production of fractions enriched

for given (or similar) structures (Zivkovic and Barile, 2011).

Serial Introduction of Complementary Foods in Ways

that Promote Maturation of the Gut Microbiota

A recent study compared the microbiota and immune system in

bottle-fed versus breastfed macaques. The results showed that

breastfed infant macaques developmore robust TH17 cells in the

memory pool, suggesting that the timing and trajectory of dietary

exposures during early life may have lasting functional conse-

quences beyond that period (Ardeshir et al., 2014). In breastfed

humans, the transition to formula feeding and family foods (com-

plementary feeding practices) varies considerably in terms of

which food types are consumed, the order of their presentation,

and the duration of their consumption. Documenting which

foods growing infants consume and in what quantities has

required innovative approaches, particularly in low-income

countries where undernutrition is prevalent (Caulfield et al.,

2014) (Figure 3). For example, data collection protocols across

eight different countries have been harmonized to enable quan-

tification of variations in child feeding practices in the MAL-ED

consortium (Caulfield et al., 2014).

The co-linearity between the introduction of various types of

solid foods, reduction in breast milk consumption, and matura-

tion of the gut microbiota makes it challenging to identify causal

relationships between specific ingredients and the representa-

tion of specific microbes through human studies. However,

studies in gnotobiotic mice colonized with defined collections

of cultured (and sequenced) human gut-derived bacteria have

been successful in interrogating specific food-microbe associa-

tions (Faith et. al., 2011). These relationships were identified

using an experimental design in which a given gnotobiotic animal

harboring a defined microbial consortium received a sequence

of diets, composed of several different combinations of foods,

whose concentrations are intentionally varied between diets.

The order of presentation of the different diets was also varied

between different mice in order to limit confounding from hyster-

esis effects. This approach has identified associations between

various commercially available foods given in the USA during the

complementary feeding period and specific microbes indepen-
dent of their order of presentation, which would be virtually

impossible to identify in clinical studies of developing human in-

fants (Faith et al., 2011). This approach can be applied to young

mice colonized with the age- and healthy growth-associated

bacterial strains identified using the methods described above

to determine which complementary foods promote their repre-

sentation and expressed functional features. The results could

lead to a recommended sequence of complementary feeding

that reflects local food availability, affordability, and cultural

practices and that sponsors healthy microbiota maturation.

This information would advance current recommendations,

which are not microbiota based and quite general (Kleinman,

2000).

Additional Considerations Regarding the
Developmental Biology of the Gut Microbiota
Obesity

Although we have emphasized the global challenge of undernu-

trition in children, another vexing global health problem is the

growing burden of obesity and associated metabolic dysfunc-

tion in children. Increasing attention is being paid to delineating

differences in the gut microbiota of children who become obese

in the hopes that early recognition of perturbedmicrobiota devel-

opment may permit early interventions in at risk populations. For

example, a recent culture-independent study of a Singaporean

birth cohort disclosed that precocious maturation of the micro-

biota during the first 6 months of postnatal life was associated

with significantly increased adiposity at 18 months (Dogra

et al., 2015). Specifically, an unsupervised clustering approach

based on bacterial 16S rRNA sequence data sets revealed three

clusters of fecal microbiota configurations. The number of sam-

ples that binned into one of these clusters (cluster 3), which is

characterized by high levels of Bifidobacteria and Collinsella

and low levels of Streptococcus and Enterobacteriaceae,

increased with age. A faster time to achieving a cluster 3 config-

uration was associated with significantly greater adiposity

measured at age 18 months. Given the rapid rate of change in

eating practices and incidence of childhood obesity, longitudinal

studies of this type are timely. They should be strategically

applied to populations representing different manifestations of

these economic, anthropologic, and epidemiologic transitions

and accompanied by comprehensive, quantitative assessments

of food consumption during the pre-weaning, weaning, and

postweaning periods.

Obesity is associated with reduced organismal and genetic di-

versity in the gut microbiota/microbiome of adults (Turnbaugh

et al., 2009b; Le Chatelier et al., 2013). Transplantation of intact

fecal microbiota samples, or derived culture collections, from

adult twins stably discordant for obesity into germ-free mice

transmitted the donors’ discordant adiposity phenotypes, as

well as obesity-associated metabolic dysfunction (Ridaura

et al., 2013). Co-housing mice just after they received the obese

donor’s (Ob) microbiota with mice just after they received

the lean co-twin’s (Ln) microbiota, before their discordant

adiposity/metabolic phenotypes became evident, prevented

development of obesity and metabolic abnormalities in the Ob

cagemate. This preventionwas associated with unidirectional in-

vasion of bacteria from the Ln cagemate’s gut community to the
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Ob cagemate’s microbiota. Invasion was diet dependent, occur-

ring in mice fed a human diet formulated to reflect the lower third

of saturated fat and upper third of fruit and vegetable consump-

tion in the USA, but not when animals received an unhealthy diet

representing the upper third of saturated fat and lower third of

fruit and vegetable consumption (Ridaura et al., 2013). These re-

sults illustrate how niches can be filled in the Ob microbiota by

Ln-derived bacterial taxa to prevent disease and how important

diet is to the installation of these health-promoting strains. The

results raise important questions about the origins of the

reduced bacterial diversity observed in Ob microbiota.

Impact of Antibiotics

One active area of investigation is the role of frequent consump-

tion of broad-spectrum antibiotics in determining the diversity

and functional features of the developing microbiota. Studies

in conventionally raised mice treated with low-dose penicillin

from birth to 4, 8, or 28 weeks of age revealed that early and brief

exposure was sufficient to produce durable changes in body

composition (Cox et al., 2014). Practical issues (in many parts

of the world, antibiotic consumption in children is pervasive

and poorly documented), ethical considerations, and the identi-

fication of suitable controls all confound the design of human

studies that would seek to determine the effects of antibiotic

administration on the developmental biology of the human infant

gut microbiota and growth. In principle, pre-clinical tests that

administer various classes of antibiotics in varying doses—

together with representative human diets to gnotobiotic mice

harboring transplanted microbiota from infants and children

living in various parts of the world—followed by transplantation

of their antibiotic-treated microbiota to a next generation of (anti-

biotic-free) gnotobiotic recipients, would provide one way to

explore these questions.

Affordable Nutritious Foods: Societal Implications and
Challenges
An imbalance of carbohydrate, fat, and protein consumption,

food insecurity, and changing diets in low-income countries

brought about by globalization, increases in food prices at the

point of retail, and a global protein supply that needs to double

by 2050 are some of the drivers for developing new types of

affordable nutritious foods that are culturally acceptable, suit-

able for storage, and distributable given current and envisioned

future infrastructure. A sustainable economic model in which

local economies benefit from producing and/or distributing

foods is also required to ensure long-term supplies. Moreover,

there is a paucity of generally accepted metrics for defining

foods that provide optimal nutrition at affordable cost (e.g., see

the ‘‘nutrient-rich foods index’’ developed based on FDA recom-

mendations; Drewnowski, 2010).

We propose that the gut microbiota provides a parameter that

needs to be considered when developing nutrition options and

that the type of preclinical gnotobiotic models described above

will be useful for testing and defining dietary parameters. Studies

with mice and other species provide means for characterizing in-

teractions between food ingredients (at different levels of ingre-

dient resolution and including culturally relevant spices and

sweeteners), their methods of preparation and preservation,

the gut microbiota of various consumer populations, and human
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metabolic, immunologic, and other physiologic features. These

research platforms offer the promise of yielding next-generation

foods designed to be satiating, delicious, nutritious, and able to

manipulate microbiota and host properties in ways that promote

healthy growth and wellness. However, fulfilling this promise

demands a holistic view of the nexus of human gut microbial

ecology research, agricultural practices, food production,

evolving consumer tastes in an era of rapid globalization, envi-

sioned commercialization strategies, current regulatory struc-

tures/practices, ethical issues, and public education. For

example, there is a need to more thoroughly and rapidly charac-

terize, through readily searchable, accessible, well-annotated

databases, emerging food consumption patterns in countries

representing different cultural traditions, stages of economic

development, and land/water resources. At the commercial

level, there is an opportunity to define and differentiate foods

based on their effects on different consumer populations with

distinct biological phenotypes and with different gut microbial

community configurations. There is an accompanying need

to frame intellectual property laws in ways that provide appro-

priate incentives for private investment while protecting the pub-

lic good.

To effectively and responsibly apply this knowledge in ways

that benefit society, there is a need to work with government

agencies to provide efficient and sensible regulatory schemes.

These regulatory frameworks vary between nations and are

evolving. Currently, the US Food and Drug Administration

(FDA) defines ‘‘medical foods’’ as foods that make medical

claims. A ‘‘dietary supplement’’ is a product intended for inges-

tion that contains a dietary ingredient designed to add further

nutritional value to a diet. Dietary supplements can only contain

ingredients that are ‘‘generally regarded as safe’’ (GRAS) or

approved as food additives by the FDA after filing a ‘‘new dietary

ingredient’’ (NDI) notification with full description of the ingre-

dient and product in which it will be marketed, the basis for the

manufacturer’s conclusion that it is an NDI, recommended use

and proposed labeling, plus a history of its use and evidence

of its safety to support the proposed use. Probiotics have been

defined in various ways, including ‘‘live microorganisms that,

when administered in adequate amounts, confer a health benefit

on the host’’ (Joint FAO/WHO Expert Consultation on Evaluation

of Health andNutritional Properties of Probiotics, 2001), whereas

prebiotics have been considered to be ‘‘a selectively fermented

ingredient that allows specific changes both in the composition

and/or activity of the gastrointestinal microbiota that confer ben-

efits upon host well-being and health’’ (Roberfroid, 2007). Synbi-

otics are combinations of prebiotics and probiotics. Regulation

of prebiotics, probiotics, and synbiotics remains a work in prog-

ress, although any health claims they make will likely require a

clinical development pathway that is the same as that employed

for biologics.

Opening the Public Discussion
For public acceptance and societal benefit, a thoughtful proac-

tive, science-based, educational outreach is needed with an

understandable vocabulary tailored to targeted consumer popu-

lations and respectful of their cultural traditions. The goal would

be to objectively describe the extent to which the nutritional



value of food is related to a consumer’s microbiota and how food

ingredients, food choices, and the microbiota are connected to

health benefits.

We suggest that one way of framing a public discussion

regarding the impact of human gut microbiome research on

the nexus of food, agriculture, and nutrition is to divide it into

three ‘‘sectors’’: science and technology, ethics, and policy

and governance.

Science and Technology

Ongoing and new studies will help to define (1) methods for se-

lection and production of new food sources, (2) design of new

foods/diets, (3) definitions of nutritional value and benefit and

metrics for differentiation of foods, and (4) the role of the gut

microbiota in determining nutritional status in pregnant women,

infants and children, and adults throughout the course of their

lives.

Ethics

The impact of gut microbiota research extends beyond concep-

tions of health to human rights. Key issues include (1) concepts

of self and ownership ofmicrobes and the shaping of these views

by cultural, religious, socio-economic, educational, and political

factors; (2) use of a person’s microbes to improve nutritional

status within and beyond family, community, and country; (3)

strategies for responsible stewardship of our (human) microbial

resources; and (4) personal, familial, and societal impact (and

shared benefit) of methods envisioned to promote intergenera-

tional transmission of beneficial microbes and to effect durable

repair of defective gut microbial community development early

in life or functional restoration later in life.

Policy and Governance

Advances in gut microbiota research will have long-term impact

on regulatory and other governmental policies and agencies as

they relate to agriculture, food, and nutritional health. These

effects include (1) definitions of food safety, including the prod-

ucts of microbial biotransformation of food ingredients; (2) defi-

nitions of nutritional benefit within and outside of the context of

specific human health claims; (3) laws concerning ownership of

microbial strains and their distribution within and across national

borders (for example, in October 2014, the Convention on

Biological Diversity/Nagoya Protocol on Access to Genetic Re-

sources and the Fair and Equitable Sharing of Benefits from their

Utilization entered into international force ‘‘stringent require-

ments for prior informed consent and benefit sharing for

research and commercial activities involving genetic resources

from plants, animals, and microorganisms’’ [http://www.cbd.

int/abs/]); (4) laws concerning intellectual property related to

microbes, microbial consortia, and the products of microbial in-

teractions with food ingredients, including diagnostics and ther-

apeutics; (5) policies related to standards of manufacture, purity,

and composition of probiotics and synbiotics; and (6) incentives

for linking plans for food production and distribution with gut mi-

crobiota health. A key challenge is how to construe (1)–(6) in the

context of a reference set of ‘‘representative’’ countries.

Closing Thoughts
Given the intricate links between first foods and long-term hu-

man health, ensuring availability of appropriate food sources is

of high priority. Because undernutrition is such a widespread
affliction, it is critical to consider how to categorize the targeted

populations, the cost and economic sustainability, the efficacy

(effect size and durability), and the cultural acceptability of

various therapeutic or preventative approaches, as well as the

generalizability of both food-based and microbial interventions

to large populations within and across national/societal bound-

aries. One way of conceptualizing this complex set of challenges

for treatment and prevention is to place, on one end of the spec-

trum of undernutrition, children with already manifest SAM and

significant microbiota immaturity who could be treated with

locally produced, readily and reproduciblymanufactured, afford-

able and safe, culturally acceptable next-generation RUTFs, with

or without microbial interventions of the type described above.

Moving along this continuum, another group would consist of in-

dividuals who manifest growth faltering (stunting) in the first

1,000 days after conception, where the envisioned targets for in-

terventions are pregnant and lactating women and their infants.

At the other end of the continuum is a third group that are the tar-

gets of locally produced, consumer-focused, affordable nutrition

products designed to improve dietary quality and increase the

diversity of food choices.

Looking back over 800million years of metazoan evolution, we

appreciate more now than ever before the splendid innovation of

having a gut that assembles microbial resources that enable effi-

cient utilization of available nutrients (McFall-Ngai et al., 2013).

We, humans, are now in a position to not only understand but

to deliberately influence this process of microbial community

acquisition in order to ensure its optimal execution. The chal-

lenges we face in designing and improving food systems and

nutritional health are great and pressing. Hopefully, our gut in-

stinct will be to honor and harness the intimate interrelationship

between foods and ‘‘our’’ microbes in an attempt to address this

challenge now and throughout the course of this defining century

for our species and planet.
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