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SUMMARY

Many of the immune and metabolic changes occur-
ring during normal pregnancy also describe meta-
bolic syndrome.Gutmicrobiota cancause symptoms
of metabolic syndrome in nonpregnant hosts. Here,
to explore their role in pregnancy, we characterized
fecal bacteria of 91 pregnant women of varying pre-
pregnancy BMIs and gestational diabetes status
and their infants. Similarities between infant-mother
microbiotas increased with children’s age, and the
infant microbiota was unaffected by mother’s health
status. Gut microbiota changed dramatically from
first (T1) to third (T3) trimesters, with vast expansion
of diversity between mothers, an overall increase in
Proteobacteria and Actinobacteria, and reduced
richness. T3 stool showed strongest signs of inflam-
mation and energy loss; however, microbiome gene
repertoires were constant between trimesters.
When transferred to germ-free mice, T3 microbiota
induced greater adiposity and insulin insensitivity
compared to T1. Our findings indicate that host-
microbial interactions that impact host metabolism
can occur and may be beneficial in pregnancy.

INTRODUCTION

Over the course of a normal, healthy pregnancy, the body

undergoes substantial hormonal, immunological, and metabolic
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changes (Mor and Cardenas, 2010; Newbern and Freemark,

2011). Body fat increases early in pregnancy, followed by

reduced insulin sensitivity later in gestation (Barbour et al.,

2007). Reduced insulin sensitivity has been correlated with

changes in immune status in pregnancy, including elevated

levels of circulating cytokines (e.g., TNF-a and IL-6; Kirwan

et al., 2002) that are thought to drive obesity-associated meta-

bolic inflammation (Gregor and Hotamisligil, 2011). In contrast

to the obese state where they are detrimental to long-term

health, excess adiposity and loss of insulin sensitivity are bene-

ficial in the context of a normal pregnancy, as they support

growth of the fetus and prepare the body for the energetic

demands of lactation (Di Cianni et al., 2003; Lain and Catalano,

2007; Nelson et al., 2010).

The cause of reduced insulin sensitivity in pregnancy remains

unclear. In the context of nonpregnant obesity, recent work

suggests a role for gut microbiota in driving metabolic disease,

including inflammation, weight gain, and reduced insulin sensi-

tivity (Cani et al., 2007; Vijay-Kumar et al., 2010). The gut micro-

biota is shaped by environmental factors, such as diet (Wu et al.,

2011), host genetics (Spor et al., 2011), and the immune system,

which, in particular, can have profound effects on the composi-

tion of the gutmicrobiota (Salzman et al., 2010; Slack et al., 2009;

Vijay-Kumar et al., 2010). In pregnancy, immunological changes

occur at the placental interface to inhibit rejection of the fetus,

while at the mother’s mucosal surfaces, elevated inflammatory

responses often result in exacerbated bacterially mediated

diseases, such as vaginosis and gingivitis (Beigi et al., 2007;

Straka, 2011). In the gut, bacterial load is reported to increase

over the course of gestation (Collado et al., 2008), but a compre-

hensive view of how microbial diversity changes over the course



of normal pregnancy is lacking. The contribution of intestinal

host-microbial interactions in promoting weight gain and other

metabolic changes in the context of pregnancy remains to be

evaluated.

In the present study, we have characterized the changes in the

gut microbiota that occur from the first (T1) to the third (T3)

trimester of pregnancy and have assessed the potential of T1

and T3 microbiota to induce metabolic changes using germ-

free (GF) mouse transfers. We provide evidence that the gut

microbial community composition and structure are profoundly

altered over the course of pregnancy. Furthermore, the T3micro-

biota induces metabolic changes in GF recipient mice that are

similar to aspects of metabolic syndrome. These changes are

associated with metabolic disease in nonpregnant women and

men but may be beneficial in the context of a normal pregnancy.

RESULTS

The Gut Microbiota Is Profoundly Altered
during Pregnancy
To address how pregnancy alters the gut microbiome, we ob-

tained stool samples, diet information, and clinical data for 91

pregnant women who were previously recruited for a prospec-

tive, randomized mother-infant nutrition study in Finland (see

Supplemental Information available online for details; Collado

et al., 2008, 2010; Laitinen et al., 2009). Each pregnant woman

donated stool during T1 (13.84 ± 0.16 weeks) and T3 (33.72 ±

0.12 weeks) of pregnancy, and a subset donated stool 1 month

postpartum. Additionally, a stool sample was obtained from the

women’s infants at 1 month of age, and a subset was resampled

at 6 months and 4 years of age. Prior to pregnancy, the majority

of the women in the study had normal body weights, although

a subset was either overweight or obese (Table S1), and 15

women were diagnosed with gestational diabetes mellitus

(GDM; Table S1). The women’s diets at T1 and T3 were evalu-

ated by nutritionists by using 3 day food records; 16 of the

women took probiotic supplements over the course of preg-

nancy, and 7 used antibiotics at either T1 or T2 (see Supple-

mental Information; Laitinen et al., 2009). Health markers (i.e.,

HOMA, GHbA1C1, insulin, and four others) and anthropometric

measurement indicators of adiposity gains were obtained during

clinical visits (Table 1). Overall, the diets of the women, including

total energy intake, were unchanged between sampling times.

From T1 to T3, the women gained adiposity and had higher inte-

grated levels of circulating glucose (i.e., higher GHbA1c1),

greater circulating levels of leptin, insulin, and cholesterol, and

increased insulin resistance (i.e., significant changes in HOMA

and QUICKI values; Table 1).

We employed a culture-independent approach to compare

the gut microbial communities of women during pregnancy

(T1 and T3) and postpartum and of their children at the different

ages. PCR was used to amplify the V1V2 variable region of

the 16S ribosomal RNA (rRNA) gene, and samples were multi-

plexed and pyrosequenced, followed by quality filtering and

chimera checking (see Experimental Procedures), which yielded

925,048 high-quality 16S rRNA gene sequences (average per

sample: 2,873 ± 156). We then clustered sequences into opera-

tional taxonomic units (OTUs; clustered at 97% pairwise
sequence identity) and assigned taxonomies. We applied the

UniFrac distance metric (Lozupone and Knight, 2005), which

provides a measure of the evolutionary distance between micro-

biotas (b-diversity), to assess pregnancy effects on between-

individual variation in community composition. The weighted

UniFrac analysis (sensitive to abundances of taxa) revealed

a dramatic expansion of b-diversity with gestational age (Fig-

ure 1A), and the unweighted UniFrac analysis (sensitive to rarer

taxa) showed a global shift in microbial community composition

from T1 to T3 (Figure S1A). The magnitude of the change in

b-diversity (weighted and unweighted UniFrac) from T1 to T3

was unrelated to prepregnancy body mass index (BMI), GDM

development, or previous number of births (Figures 1B–1D,

S1B, and S1C). Within individual women, we could not relate

changes in b-diversity to their health status before or during

pregnancy nor to their use of probiotics or antibiotics during

pregnancy (Table 1; Supplemental Information for additional

analyses). Additionally, although we used the same techniques

that have previously shown relationships between OTU abun-

dances and components of the diet (Wu et al., 2011), we did

not detect any significant relationships between aspects of

the microbiota and our diet records either within or between

trimesters (see Supplemental Information for details), which

may reflect other methodological differences between these

two studies. The lack of any correlations between covariates

studied here and changes in b-diversity between trimesters

raises the possibility that they may be related to immune or

hormonal changes.

From T1 to T3, the relative abundances of Proteobacteria

increased on average (T1, 0.73% ± 0.08%; T3, 3.2% ± 0.68%;

p = 0.0004), as did Actinobacteria (T1, 5.1% ± 0.47%; T3,

9.3% ± 1.32%; p = 0.003; paired t tests; Figure 2A; see Data

S1 for full taxonomic information by sample), and although these

changes did not occur in all subjects, they occurred in 69.5%

and 57% of women, respectively. Figure 1 indicates that the

greatest component of the variation between samples (PC1,

33%) relates to the gradient of Bacteroidetes and Firmicutes

abundances across samples (Figures 1E and 1F) and that the

separation of T3 samples from T1 along PC2 reflects enrichment

of Proteobacteria in many of the T3 samples (Figure 1G).

The number of OTUs was significantly reduced as individual

women progressed from T1 to T3 (T1, 219 ± 4.1; T3, 161 ± 5.8;

paired t test p% 0.0001; note that enterotypes were not present

within trimesters; see Supplemental Information). Similarly, T1

microbial communities had greater within-sample (a) phyloge-

netic diversity than T3 microbiota, regardless of prepregnancy

BMI and health state (Figure 1H and Table S2). T1 samples

also had significantly more even taxonomic distributions than

T3 samples (Gini coefficients; Table S2). Together with b-diver-

sity patterns, these findings indicate that, by T3, microbiotas

were depleted of bacterial phylogenetic diversity in ways that

differed between individuals.

We used machine learning techniques to identify 29 OTUs

whose relative abundance reliably discriminated T1 and T3

samples (clustering confidence >80%; Figure 2B). Eighteen of

these discriminatory OTUs were overrepresented in T1 and

belonged mostly to the Clostridiales order of the Firmicutes

(e.g., butyrate producers, such as Faecalibacterium and
Cell 150, 470–480, August 3, 2012 ª2012 Elsevier Inc. 471



Table 1. Diets and Health Characteristics of Pregnant Women in T1 and T3

T1 T3 p valuea

Diet Energy intake (kcal/day) 1961.45 (±44.77) 2060.40 (±54.63) 0.1411

Fat intake (g/day) 68.73 (±2.08) 71.59 (±2.79) 0.3807

Carbohydrates intake (g/day) 248.00 (±6.71) 261.76 (±6.95) 0.1217

Protein intake (g/day) 80.80 (±2.00) 84.99 (±2.16) 0.1523

Total fiber intake (g/day) 19.84 (±0.75) 21.30 (±0.77) 0.1311

Soluble fiber intake (g/day) 5.22 (±0.22) 5.59 (±0.26) 0.3306

Nonsoluble fiber intake (g/day) 7.98 (±0.34) 8.24 (±0.32) 0.5855

Saturated fatty acids (g/day) 28.42 (±0.93) 28.60 (±1.33) 0.9878

Monounsaturated fatty acids (g/day) 22.99 (±0.78) 24.15 (±0.98) 0.2965

Polyunsaturated fatty acids (g/day) 11.16 (±0.50) 12.24 (±0.55) 0.1198

Starch (g/day) 102.12 (±3.05) 107.13 (±2.92) 0.1615

Vegetable use (g/day) 288.88 (±13.45) 276.95 (±11.89) 0.4171

Fruits and berries use (g/day) 339.80 (±26.92) 330.05 (±19.98) 0.4754

Cereal (g/day) 206.94 (±7.92) 217.45 (±7.94) 0.3762

Milk products (g/day) 576.23 (±28.84) 640.01 (±30.72) 0.1322

Sour milk products (g/day) 175.57 (±15.64) 164.59 (±14.91) 0.4218

Meat (g/day) 98.35 (±5.46) 99.05 (±5.80) 0.8630

Sucrose (g/day) 44.57 (±2.15) 47.41 (±2.76) 0.3927

Anthropometric measurements Bicepsb (cm) 10.28 (±0.56) 10.61 (±0.59) 0.4303

Tricepsb (cm)f 21.24 (±0.59) 22.15 (±0.63) 0.0125

Subscab (cm)f 16.58 (±0.64) 19.03 (±0.68) 5.14 3 10�10

Hipc (cm)f 103.84 (±0.82) 106.80 (±0.82) 6.95 3 10�16

Mid. upper arm musclec (cm) 23.86 (±0.30) 24.37 (±0.40) 0.1054

Plasma measurements Leptin (ng/ml)f 30.72 (±1.83) 37.58 (±2.47) 0.0008

Cholesterol (mmol/l)f 4.76 (±0.09) 6.37 (±0.12) 1.72 3 10�33

Insulin (mU/l)f 6.48 (±0.59) 10.92 (±0.88) 1.01 3 10�8

Homeostatic model assessment (HOMA)f 1.35 (±0.12) 2.28 (±0.19) 1.93 3 10�7

Quantitative insulin sensitivity check index

(QUICKI)f
0.39 (±0.01) 0.35 (±0.00) 2.39 3 10�9

Glucose (mmol/l) 4.65 (±0.03) 4.61 (±0.05) 0.5799

GHbA1c1 (%)f 5.01 (±0.03) 5.23 (±0.03) 9.92 3 10�10

Cytokinesd,e IL-2 (pg/g)g 15.31 (±0.36) 19.80 (±0.74)

IL-4 (pg/g) 15.96 (±0.58) 18.42 (±0.79)

IL-6 (pg/g)g 12.48 (±0.43) 17.85 (±0.93)

IL-8 (pg/g)g 14.83 (±0.58) 11.79 (±0.57)

IL-10 (pg/g) 15.03 (±0.32) 13.56 (±0.48)

GM-CSF (pg/g) 32.40 (±1.34) 37.30 (±1.96)

IFNg (pg/g)g 61.87(±4.55) 71.33 (±4.00)

TNFa (pg/g)g 19.52 (±1.23) 24.95 (±1.18)
aFDRwas calculated for each category (diet, anthropometric measurements, and plasmameasurements) by using the Benjamini Hochberg correction.
bSkinfold thickness; subsca, subscapular skinfold thickness.
cCircumference.
dn = 67 mothers.
eUnits are pg/g dry stool.
fSignificantly different between trimesters, two-tailed paired t test, p < 0.05 with FDR correction.
gANOVA p < 0.05.
Eubacterium; Figure 2B). OTUs that were overrepresented in the

T3 samples included members of the Enterobacteriaceae family

and Streptococcus genus (Figure S2). No correlations were
472 Cell 150, 470–480, August 3, 2012 ª2012 Elsevier Inc.
found between the abundances of specific OTUs (at any level

of taxonomy) and the use of probiotics, antibiotics, number

of previous births, health markers, or the diet data (see
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Figure 1. 16S rRNA Gene Surveys Reveal

Changes toMicrobial Diversity during Preg-

nancy

(A–G) Microbial communities clustered using

PCoA of the weighted UniFrac matrix. The

percentage of variation explained by the principal

coordinates is indicated on the axes. The same

plots are shown for (A)–(G), except 1 month

postpartum samples are additionally included in

(A). Each point corresponds to a community

colored by T1, T3, or 1 month postpartum (A);

prepregnancy BMI (B); gestational diabetes

(GDM; C); trimester and birth order of expected

child (D); abundance gradient of Bacteroidetes (E);

abundance gradient of Firmicutes (F); and abun-

dance gradient of Proteobacteria (G). Arrows in (D)

point to samples from women who received anti-

biotics in T1 (orange arrows) and T2 (not T3, gray

arrows). (E–G) Gradients are colored from low

abundance (blue) to high abundance (red).

(H) Boxplots for community richness (a-diversity)

for T1 and T3 samples. For both T1 and T3, data

shown are Faith’s phylogenetic diversity (PD)

for 100 iterations of 790 randomly selected

sequences/sample. ***p < 0.0001.

See Figure S1.
Supplemental Information for details on the statistical tests em-

ployed to search for associations; Table 1). These results indi-

cate changes in immunity and/or hormonal levels may also

induce changes in phylogenetic content of the microbiota.

T1 Microbial Diversity Is Normal, and T3 Diversity
Is Aberrant
The large differences in b-diversity for T1 and T3 samples raised

the question of which of these two sets of pregnancy samples

was most similar to the nonpregnant state. To answer this

question, we placed our data in the context of the HumanMicro-

biome Project’s (HMP) recently generated healthy reference

data set of microbial diversity across the human body (Human

Microbiome Project Consortium, 2012), which includes 16S

rRNA gene sequences for 191 stool samples obtained from 98

men and 93 nonpregnant women. The HMP 16S rRNA gene

sequence data consisted of two different regions of the 16S

rRNA gene (both V1V2 and V3V5); therefore, we compared

these sets to our data by picking OTUs against a common full-
Cell 150, 470–48
length reference set (Greengenes; see

Experimental Procedures). A combined

weighted UniFrac analysis showed

clearly that the b-diversity of T1 is similar

to HMP normal controls (Figures 3 and

S3A). In contrast, the T3 b-diversity is

far higher than for T1 and HMP samples

(Figure 3). The combined Principal Coor-

dinates Analysis (PCoA) of the UniFrac

matrix shows a separation of T1 samples

from HMP controls along PC1, reflecting

differences in Bacteroidetes and Firmi-

cutes content (Figures 1E and 1F). This
indicates that the between-individual variation is similar for T1

and HMP samples, even though the community structure for

these samples differs somewhat. Various factors may account

for the compositional differences between the sample sets, but

the difference between the pregnancy samples and the HMP

samples is much larger than the difference between the HMP

stool assayed with two different primer regions (Figure S3A),

such that primer region is not an explanatory factor for this shift.

However, in contrast to the HMP protocol, we lyophilized our

samples prior to homogenization and DNA extraction, and our

comparison of handling methods on a small subset of samples

indicates that handling may also account for part of the shift

(Figures S3B and S3C). It is also highly likely that either the onset

of pregnancy (i.e., hormonal or behavioral changes) induces

a shift in composition reflected in PC1 and/or the provenance

of the samples (Finland versus USA) may be important, as

geographical/cultural factors have been shown to impact gut

microbial diversity (De Filippo et al., 2010; Yatsunenko et al.,

2012).
0, August 3, 2012 ª2012 Elsevier Inc. 473
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Figure 2. Abundances of Phyla and Enrich-

ment of Bacterial Genera in T1 versus T3

(A) Relative abundances of the phyla present in

samples for T1 (left, orange bar) and T3 (right,

gray bar). Colors correspond to phyla (see legend).

(B) Heatmap of OTU abundances found to

discriminate between T1 and T3 by machine

learning. Counts were standardized (Z score,

shown in legend) prior to unsupervised hierar-

chical clustering of samples (columns). The color

bar indicates the origin of the samples (T1, orange;

T3, gray). The taxonomic assignment of each OTU

is indicated to the right of the rows (OTUs; note

several OTUs may share the same taxonomic

assignment).

See Figure S2.
Shift in Bacterial Diversity Is Unrelated to Health State
We tested whether the change in b-diversity from T1 to T3 was

driven by samples obtained fromwomen who had above-normal

prepregnancy BMIs or who developed GDM. Results showed

that women who were overweight or obese prior to pregnancy

and women who developed GDM also had a significant shift in

b-diversity from T1 to T3 (weighted and unweighted UniFrac,

Figures S3D and S3E). Removal of these subjects from the whole

data set showed that the shift from T1 to T3 also occurred in the

healthy women alone (Figures S3D and S3E). These results

strongly suggest that the expansion of b-diversity between

women is a widely shared phenomenon driven by pregnancy,

regardless of health status.

We further observed that women who were obese prior to

pregnancy had the lowest within-subject (a) diversity at both

T1 and T3, although this was not significantly different from

normal-weight women. In addition, GDM+ women tended to
474 Cell 150, 470–480, August 3, 2012 ª2012 Elsevier Inc.
have the most depleted microbial rich-

ness at T1 (Table S2), although their mi-

crobiotas did not differ in composition

from those of matched controls (Figures

1C and S1C; no significant differences

for OTU abundances; false discovery

rate [FDR] of 0.05). Importantly, GDM

did not negatively impact the micro-

biotas of the children. Children of GDM+

mothers did not differ from children of

GDM� mothers in terms of their micro-

biotas’ a-diversity, Gini coefficients, or

OTU abundances (FDR of 0.05). These

results suggest that, although a low

phylogenetic diversity may be a bio-

marker for GDM, this condition does not

appear to negatively impact themicrobio-

tas of infants born to GDM+ mothers.

High b-Diversity Persists
Postpartum and Occurs in Infants
The high levels of between-individual

variation in community composition ob-

served in T3 persisted for women 1month
postpartum (Figures 1A and 4). We found that the relative

abundance of the genus Streptococcus, which is significantly

enriched in T3 and 1-month-postpartum samples compared

to T1, is in highest abundance in the 1 month olds (analysis of

variance [ANOVA] for children’s data, p% 0.05; Figure S2). Addi-

tionally, infants age 1 month and 6 months also had elevated

levels of b-diversity, but by 4 years of age, children had levels

of b-diversity similar to mothers at T1 (Figure 4). These results

indicate that differences in gut microbiota between infants are

higher than what is observed in nonpregnant adults, as previ-

ously reported (Koenig et al., 2011; Palmer et al., 2007). (It is

important to note that the V1V2 region primers used in this study

are biased against Bifidobacteria [Kuczynski et al., 2012], an

important component of the developing infant microbiota

[Koenig et al., 2011], although this bias has been shown not to

impact the diversity of other taxa [Sim et al., 2012].) Using Uni-

Frac to measure microbiota distances between mother-infant



Figure 3. Microbial Diversity of T1 Samples Is More Similar to

Nonpregnant HMP Controls Than T3 Samples

PCoA of the weighted UniFrac distances between T1 (orange), T3 (gray),

normal healthy HMP male (black), and female (pink) controls. Each symbol

represents a sample. The percent of variation explained by the PCs is indi-

cated in parentheses on the axes.

See Figure S3.
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Figure 4. High Between-Individual Microbial Diversity in T3 Persists

in the Women Postpartum and Is Observed in Their Neonates

(A) Mean weighted (±SEM) UniFrac distances between bacterial communities

of women (sampled at T1, T3, and 1 month postpartum) and their children

(1 month, 6 months, and 4 years old). Different letters on bars indicate that

means are significantly different at p % 0.05.

(B) PCoA plot of weighted UniFrac distancematrix, percent variation explained

by PCs is indicated on the axes. Each symbol represents a child’s microbiota,

colored by age.

See Figure S4.
pairs, we found that the T1 microbiota was more similar to the

children’smicrobiota at all ages than the T3 (Figure S4). Although

infant/childmicrobiotas (at all ages) were notmore similar to their

own mothers’ microbiotas compared to unrelated mothers’

microbiotas (at T1), the similarity to their own mother was great-

est for the 4 year olds (weighted UniFrac p value = 0.003, paired

t test). These patterns are consistent with observations that

within-family similarities in microbiomes are observed for older

children, but not for infants (Turnbaugh et al., 2009a; Yatsunenko

et al., 2012).

Stool Energy Content and Metagenomic Analysis
Gut microbial community composition has been linked to how

efficiently energy can be extracted from components of the

diet reaching the colon and undergoing bacterial fermentation

(Jumpertz et al., 2011; Turnbaugh et al., 2006, 2009a, 2009b).

Thus, we asked whether changes in community structure could

be related to energy loss in stool. Using bomb calorimetry, we

measured a significant increase in stool energy content between

trimesters within individual women (4.4 ± 0.6 versus 4.7 ±

0.6 Kcal/gram dry weight [gdw]; p = 0.002; paired t test). This

difference in stool energy content (i.e., �10%) has been

considered relevant to host adiposity in studies of obese and

lean mice (Turnbaugh et al., 2006) and for altered microbiomes

associated with excess nutrient load (Jumpertz et al., 2011).

Here, however, these changes in stool energy content may not

be related to diet or levels of food energy intake because these

remained constant from T1 to T3 (Table 1) but may be related

to changes in host energy uptake or gut microbiota.

Previous studies have shown that a microbiome’s energy

extraction efficiency from the diet is correlated with an enrich-

ment of specific metabolic pathways, particularly those for
carbohydrate transport and utilization (Turnbaugh et al., 2006,

2009a). To assess whether this was the case for the T1 versus

T3 microbiomes, we performed a shotgun metagenomic

analysis of T1 and T3 samples obtained from ten mothers

selected at random (Figure S5A) by using the Illumina HiSeq

2000 (4.1 3 107 ± 5.9 3106 sequences/sample; Table S3). The

metagenome-based community composition matched the 16S

rRNA-based phylogenetic profile (Figure S5B). Unlike patterns

observed in obesity-associated microbiomes, this analysis did

not reveal differences in the mean relative abundance of gene

categories (clusters of orthologous groups, COGs) or metabolic

pathways (Kyoto Encyclopedia of Genes and Genomes, KEGG)

between trimesters (Figure 5A). This finding may reflect the

similar abundances of the major phyla across trimesters. Levels

of Bacteroidetes and Firmicutes, which can impact microbiome

gene content (Turnbaugh et al., 2006), were not significantly

different between trimesters (Figure 5B). It was interesting to

note, however, that a network analysis of correlations between

COG abundances across samples (using the maximal informa-

tion-based nonparametric exploration [MINE] statistics; Reshef

et al., 2011) indicated that the T1 functional network had a lower

degree of random connectivity between functionally unrelated
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Figure 5. Comparison of Functional Variation and Taxonomic

Abundances in T1 and T3 Microbiomes

(A) Relative abundances of gene categories across 20 microbiomes (10

women, each sampled at T1 and T3), based on MG-RAST functional cate-

gories (numbers in legend correlate to gene categories in the KEGG pathway

database; see Supplemental Information).

(B) Relative taxonomic abundances based on MG-RAST taxonomic classifi-

cation of shotgun reads. Colors relate to taxa in legend. Numbers at the bottom

of the figures refer to mother ID.

See Figure S5.
genes and a greater degree of modularity than the T3 network

(modularity of 0.69 versus 0.64; Figures S5C–S5H). Disease-

associated microbiomes have recently been shown to consist

of less modular metabolic networks compared to health-associ-

ated microbiomes (Greenblum et al., 2012). The loss of network

modularity in T3 is likely related to reduced phylogenetic

diversity and the more uneven distribution of taxa. Overall, the

metagenomic analysis indicated that the shifts in microbiome

during pregnancy are not associated with the functional changes

previously observed in the context of obesity (Ley et al., 2005;

Turnbaugh et al., 2006) and may not be linked directly to the

energy content of the stool.

Transfer of T3 Microbiota Induces Greater Adiposity
and Inflammation in Germ-free Recipient Mice
Than T1 Microbiota
The higher average proportion of Proteobacteria in T3 micro-

biota (Figure 2A), including elevated levels of Enterobacteria-
476 Cell 150, 470–480, August 3, 2012 ª2012 Elsevier Inc.
ceae, raised the question of whether the T3 microbiota can

induce a greater inflammatory response in the host compared

to T1 microbiota, as Proteobacteria are often associated with

inflammatory conditions (Mukhopadhya et al., 2012). To address

this question, we first measured levels of cytokines in T1 and T3

stool (stool cytokine levels can be biomarkers for inflammation in

the gut [Saiki et al., 1998]). Levels of the proinflammatory cyto-

kines IFN-g, IL-2, IL-6, and TNF-a were significantly higher in

T3 than in T1 (Tukey’s Honestly Significant Difference [HSD]

test; p % 0.05, p % 0.001, p % 0.001, and p % 0.005, respec-

tively; Tables 1 and S4). Although pregnancy is associated with

anti-inflammatory conditions at the placental interface (Mor and

Cardenas, 2010), our data suggest that the T3 mucosal surfaces

of the gastrointestinal tract present low-grade inflammation.

A powerful approach to investigate whether changes in the

microbiota are a cause or a consequence of greater levels of

inflammation is to transfer microbiotas to GF wild-type recipient

mice, which can be colonized with human microbiotas in

amanner that maintains the complex communities of the original

donor samples (Turnbaugh et al., 2009b). To investigate the

potential of the pregnancy-associated microbiota to promote

inflammation, we transferred T1 and T3 microbiotas into female

GF wild-type Swiss-Webster mice. T1 and T3 inocula were

created from pooled samples derived from T1 and T3 samples

of five healthy-weight women chosen at random without a priori

knowledge of their microbial diversity profiles (these five were

also used in the metagenomic analysis; Figure S5A). Posthoc

16S rRNA gene sequence analysis of the donor samples and

pooled inocula revealed that the donors all exhibited a consistent

shift in diversity that was also captured by the pooled inocula

(Figure S5A). To verify that differences in T1 and T3 microbiotas

observed in the donors weremaintained in the recipient mice, we

also sequenced 16S rRNA genes derived from mouse stool

obtained 7 and 14 days posttransfer and from cecal samples

obtained day 15. This analysis showed that the shift between

T1 and T3 microbiotas observed in the donors (Figure S5A)

was maintained in mice over the 2 week course of the experi-

ment (Figures 6A, S6A, and S6B).

The transfer of specific gut microbiotas to otherwise healthy

germ-free wild-type mice is sufficient to induce symptoms of

metabolic syndrome, which, in addition to inflammation, include

reduced insulin sensitivity and excess weight gain (Vijay-Kumar

et al., 2010). Likewise, after 2 weeks, levels of inflammation

markers were significantly higher overall in the stool and cecal

samples from the T3 sample recipients compared to those of

T1 recipients (ANOVA p % 0.001; Figures 6B and S6C–S6K

and Table S5). Levels of lipocalin, which has recently been

described as a sensitive marker of inflammation in mice

(Carvalho et al., 2012), were also significantly higher in the T3

than T1 recipients (Table S5). Furthermore, we found that

mouse recipients of the women’s T1 microbiotas gained less

adiposity compared to T3 recipients (37.9% ± 5.9% and

49.9% ± 4.4% for T1 and T3, respectively; p = 0.06, one-tailed

t test; Figure 6C), despite similar food consumption. Levels of

insulin were slightly lower in T1 than in T3 recipients after 2weeks

(0.266 ± 0.017 versus 0.281 ± 0.066 ng/ml, not significant [n.s.],

respectively). Levels of blood glucose were slightly but signifi-

cantly higher in T3 recipients after 30 min in an oral glucose
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Figure 6. Transfer of T3 Microbiota to Germ-free Mice Causes Greater Metabolic Changes Than T1 Microbiota

Germ-free mice (11- to 13-weeks old) were intragastrically administered inoculum from T1 and T3 human donors (five mothers; fecal samples were pooled by

trimester) and monitored for 2 weeks.

(A) Mouse cecal communities clustered based on PCoA of unweighted UniFrac matrix. Each sample corresponds to a mouse cecal microbiota harvested at

15 days and colored by trimester input. Variation explained by the principal coordinates is indicated on the axes.

(B) Cecal cytokine levels in recipient mice.

(C) Changes in adiposity (measured by DEXA) for mouse recipients of T1 (n = 6) and T3 (n = 5, one outlier removed) human gut microbiota.

(D) Blood glucose levels in recipient mice during oral glucose tolerance testing.

Data are mean ±SEM; o denotes p < 0.1; * denotes p % 0.05. See Figure S6.
tolerance test (Figure 6D). The observations that T3 recipients

have reduced oral glucose tolerance, as well as greater inflam-

mation and adiposity gains, than T1 recipients, together indicate

that the T3 microbiota in particular has the capacity to induce

metabolic changes in the host that resemble those occurring in

both metabolic syndrome and pregnancy.

DISCUSSION

We describe a dramatic remodeling of the gut microbiota over

the course of pregnancy. The first trimester gut microbiotas

are similar to one another and comparable to those of normal

healthy controls but shift substantially in phylogenetic composi-

tion and structure over the course of pregnancy. By the third

trimester, the between-subject diversity has greatly expanded,

even though within-subject diversity is reduced, and an enrich-

ment of Proteobacteria and Actinobacteria is observed in

a majority of T3 samples. Furthermore, the abundances of

health-related bacteria are impacted. For instance, Faecalibac-

terium, which is a butyrate producer with anti-inflammatory

effects that is depleted in inflammatory bowel disease (Sokol
et al., 2008), is less abundant on average in T3. By the third

trimester, each woman’s microbiota has diverged in ways that

could not be predicted from the T1 composition and that were

not associated with health status or our diet records. Nonethe-

less, in the majority of women, the shift from T1 to T3 includes

an increase in the abundance of Proteobacteria, which has

been observed repeatedly for inflammation-associated dysbio-

ses (Mukhopadhya et al., 2012).

One of the questions raised by the observation of greater inter-

individual bacterial diversity and the decrease in bacterial

richness in T3 and 1month postpartum is that an aberrant micro-

biota might colonize the baby and contribute negatively to the

shaping of the immune system from birth, with long-term conse-

quences for health problems, such as allergy development

(van Nimwegen et al., 2011). Nevertheless, we found that,

regardless of their age, the children’s microbiotas were most

similar to their mothers’ microbiotas at T1, which may indicate

that the taxa prevalent in T3 are at a selective disadvantage in

the developing infant gut. Furthermore, we did not detect any

differences between the microbiotas of GDM+ and GDM�
mothers. We did observe an enrichment of Streptococcus in
Cell 150, 470–480, August 3, 2012 ª2012 Elsevier Inc. 477



T3 and in postpartum samples on average, and highest

levels for children were in the gut microbiomes of the 1 month

olds (although it should be noted that many members of the

Streptococcus are commensal). Such enrichments may serve

to educate thedeveloping immunesystem to importantmembers

of the microbiota. As was recently reported for children on three

continents (Yatsunenko et al., 2012), similarities between the

child and mother microbiota increased with the age of the

children, which underscores the importance of shared diet and

environment on shaping the microbiota (Koenig et al., 2011).

Metabolic syndrome is a range of phenotypes that increase an

individual’s risk of developing type 2 diabetes, including hyper-

glycemia, insulin resistance, excess adiposity, and low-grade

inflammation (Tilg and Moschen, 2006; Vijay-Kumar et al.,

2010). Similarly, the latter stages of pregnancy have been

described as a diabetogenic state that maintains hyperglycemia

in the mother and a continuous supply of nutrients to the fetus.

Gains in adiposity also prepare the female body for the energetic

demands of lactation. Elevated levels of circulating proinflamma-

tory cytokines have been reported for late pregnancy and have

been correlated with levels of insulin resistance, suggesting

a possible mechanistic link (Mor and Cardenas, 2010). The

women in our study had reduced insulin sensitivity and increased

circulating blood glucose levels and adiposity during gestation,

and, in addition, we observed an increase in levels of inflamma-

tion markers in stool from T1 to T3. We suggest that a low-grade

inflammation develops during pregnancy at the intestinal

mucosal epithelium, and this inflammation may drive the micro-

bial dysbiosis into a positive feedback loop with the altered host

response (Lupp et al., 2007).

Two principal mechanisms have been proposed for how the

gut microbiota can contribute to host adiposity: (1) increased

energy extraction efficiency from the diet and (2) altered host-

microbial interactions that promote metabolic inflammation.

The results of our microbiota transfer experiments suggest that

pregnancy is most similar to the second mechanism in which

a dysbiosis drives changes in metabolism. Our results are very

similar to the recently described mouse model for metabolic

syndrome in which the microbiotas are sufficient and required

to transfer aspects of metabolic syndrome to otherwise healthy

germ-free wild-type recipient mice, including inflammation,

excessive weight gain, hyperglycemia, and reduced insulin

sensitivity (Vijay-Kumar et al., 2010).

The dysbiosis observed in T3 and the dysbiosis reported for

the mouse model of metabolic syndrome (Carvalho et al.,

2012; Vijay-Kumar et al., 2010) are also strikingly similar; both

scenarios are characterized by elevated levels of Proteobacteria,

greater between-individual variation, and excess bacterial load

(described by Collado et al., 2008). Proteobacteria are active

participants in inflammatory bowel disease (Mukhopadhya

et al., 2012), and indeed, colonization with just one member of

this group (Escherichia coli) is sufficient to induce macrophage

infiltration into white adipose tissue and impaired glucose and

insulin tolerance in GF mice (Caesar et al., 2012). Not all women

showed elevated levels of Proteobacteria in T3, however, indi-

cating that other factors, such as other members of the micro-

biota and potentially gene expression profiles, are also likely to

be important for promoting inflammation. Although in the present
478 Cell 150, 470–480, August 3, 2012 ª2012 Elsevier Inc.
study we pooled randomly selected donor microbiomes,

comparison of individual donor effects on mouse phenotype

will help identify the specific components of the microbiota

driving metabolic inflammation. If the microbiotas are not only

sufficient but also required for metabolic changes in pregnancy,

these components should be widely shared among women with

normal pregnancies and might share features with microbiomes

of nonpregnant individuals of both sexes with metabolic

syndrome.

It is interesting to note that some of the features of the T3

microbiota are similar to those of the obesity-associated micro-

biome shown to have enhanced energy extraction efficiency.

For instance, both the low taxonomic richness and reduced

metabolic networkmodularity that we observed in T3 have previ-

ously been reported for obese microbiomes (Greenblum et al.,

2012; Qin et al., 2010; Turnbaugh et al., 2009a). In the T3 micro-

biome, the drivers of these traits are quite different from aspects

of the obesity-associated microbiome. In the studies of obesity

mentioned above, the microbiome is depleted in Bacteroidetes,

such that gene categories related to simple sugar uptake, for

instance, are overrepresented in obese compared to lean micro-

biomes. Furthermore, excess energy intake has been shown to

favor Firmicutes over Bacteroidetes (Jumpertz et al., 2011),

and in obesity, the microbiotas have been exposed long term

to excess energy intake. In T3 versus T1, the relative abun-

dances of Bacteroidetes and Firmicutes are largely unchanged,

andwe see no shift in the abundances of specific gene functional

categories or metabolic pathways. Additionally, in stark contrast

to the obese microbiome, the T3 microbiome is associated with

a greater amount of energy lost in stool compared to T1. Thus,

although some of the features of the microbiome are shared

between the obese and T3 microbiotas, the underlying mecha-

nisms by which they impact host adiposity can differ.

Conclusions
In summary, we have shown pregnancy to be associated with

a profound alteration of the gut microbiota. The first trimester

gut microbiota is similar in many aspects to that of healthy

nonpregnantmale and female controls, but by the third trimester,

the structure and composition of the community resembles

a disease-associated dysbiosis that differs among women. The

underlying mechanisms resulting in the alteration of the micro-

biota remain to be clarified, but we speculate that the changes

in the immune system at the mucosal surfaces in particular

precipitate changes in the microbiota, although hormonal

changes may also be important.

Dysbiosis, inflammation, andweight gain are features of meta-

bolic syndrome, which increases the risk of type 2 diabetes in

nonpregnant individuals. These same changes are central to

normal pregnancy, where they may be highly beneficial, as

they promote energy storage in fat tissue and provide for the

growth of the fetus. Our work supports the emerging view that

the gut microbiota affect host metabolism; however, the context

(pregnant or not) defines how the outcome is interpreted (healthy

or not). Metabolic changes are necessary to support a healthy

pregnancy, which in itself is central to the fitness of a mammalian

species. We hypothesize that, in mammalian reproductive

biology, the host can manipulate the gut microbiota to promote



metabolic changes. Thus, the origins of host-microbial interac-

tions that skew host metabolism toward greater insulin resis-

tance, and which underlie much of the present-day obesity

epidemic, may lie in reproductive biology.

EXPERIMENTAL PROCEDURES

Human Subjects and Data Collection

Enrollment of human subjects, collection of samples, and clinical and

biometric data were described previously (Laitinen et al., 2009). Samples

were collected as previously described (Collado et al., 2008, 2010).

Diversity and Phylogenetic Analyses

Bacterial 16S rRNA gene sequences (V1V2 region) were generated from PCR

amplicons that were multiplexed and pyrosequenced, and data were analyzed

by using the QIIME software package (Caporaso et al., 2010a) as described in

Supplemental Information.

Comparison to the Human Microbiome Project Data

We combined our data with the recently released HMP 16S rRNA gene

sequence data (Human Microbiome Project Consortium, 2012) and used

a reference-based approach to pick OTUs at 97% ID by using the Greengenes

latest release (McDonald et al., 2012). We compared b-diversity by using

weighted UniFrac distances (Lozupone and Knight, 2005) calculated from

the phylogenetic tree (Greengenes) after applying a rarefaction of 500

sequences/sample to standardize sequence counts.

Stool Energy Content

Gross energy content of paired T1 and T3 samples (20 mothers chosen at

random) was determined by bomb calorimetry using an IKA C2000 basic

calorimeter system (Dairy One, Ithaca, NY).

Shotgun Metagenomic Analysis of T1 and T3 Stool Samples

Samples from five mothers chosen randomly and the samples used as donors

in the mouse transfer experiments were selected for shotgun metagenomic

sequencing by using the Illumina HiSeq 2000. Sequence data were quality

filtered and uploaded to MG-RAST. Taxonomy assignments (LCA), COG,

andKEGG relative abundance data for protein-coding readswere summarized

by using MG-RAST. Maximal information coefficient (MIC; Reshef et al., 2011)

values were used to mine for between-COG ecological relationships within the

two groups T1 and T3, accounting for linear as well as nonlinear relationships.

A conservative cutoff of MIC = 1 was used to define between-COG edges in

a network analysis of both T1 and T3 samples (MIC scores of 1 were well below

p = 0.05 based on a Bonferroni correction). See Extended Experimental Proce-

dures for details.

Microbiota Transfer Experiments

T1 and T3 stool samples from five women (age 24–30 years, normal prepreg-

nancy BMIs) were used to colonize GF mice (n = 6 for T1 and n = 6 for T3).

Adiposity was determined by DEXA as previously described (Bäckhed et al.,

2004). Body weight and chow consumption were monitored weekly. Fecal

pellets were collected at days 7 and 14. Oral glucose tolerance tests were per-

formed by gavage with glucose (2 g/kg body weight) after a 4 hr fast. At day 15,

mice were sacrificed after measurements of total body fat content by DEXA,

plasma insulin wasmeasured, and cecal content was removed. Body, gonadal

white adipose tissue, and cecum weights were recorded for each mouse.

Statistical Analysis

Data are expressed asmean ±SEM. For complete statistical analysis methods,

see Supplemental Information.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, one

data file, six figures, and five tables and can be found with this article online

at http://dx.doi.org/10.1016/j.cell.2012.07.008.
ACKNOWLEDGMENTS

We thankMary-Claire King, Andrew Clark, and Andrew Gewirtz for their contri-

butions to the manuscript, and we thank Daniel McDonlad and Nick Scalfone

for technical assistance. This research was supported by The Hartwell Foun-

dation, the NIH Human Microbiome Project DACC, the David and Lucile Pack-

ard Foundation, the Arnold and Mabel Beckman Foundation, the Cornell

Center for Comparative Population Genomics, the Ragnar Söderberg Founda-
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ren Lundén, G., Cani, P.D., and Bäckhed, F. (2012). Gut-derived lipopolysac-

charide augments adipose macrophage accumulation but is not essential for

impaired glucose or insulin tolerance in mice. Gut. Published online April 25,

2012. http://dx.doi.org/10.1136/gutjnl-2011-301689.

Cani, P.D., Amar, J., Iglesias, M.A., Poggi, M., Knauf, C., Bastelica, D., Neyr-

inck, A.M., Fava, F., Tuohy, K.M., Chabo, C., et al. (2007). Metabolic endotox-

emia initiates obesity and insulin resistance. Diabetes 56, 1761–1772.

Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D.,

Costello, E.K., Fierer, N., Peña, A.G., Goodrich, J.K., Gordon, J.I., et al.

(2010a). QIIME allows analysis of high-throughput community sequencing

data. Nat. Methods 7, 335–336.

Carvalho, F.A., Koren, O., Johansson, M., Nalbantoglu, I., Aitken, J.D., Su, Y.,
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Teggatz, P., Barman, M., Hayward, M., Eastwood, D., et al. (2010). Enteric

defensins are essential regulators of intestinal microbial ecology. Nat.

Immunol. 11, 76–83.

Sim, K., Cox, M.J., Wopereis, H., Martin, R., Knol, J., Li, M.S., Cookson, W.O.,

Moffatt, M.F., and Kroll, J.S. (2012). Improved detection of bifidobacteria with

optimised 16S rRNA-gene based pyrosequencing. PLoS ONE 7, e32543.

Slack, E., Hapfelmeier, S., Stecher, B., Velykoredko, Y., Stoel, M., Lawson,

M.A., Geuking, M.B., Beutler, B., Tedder, T.F., Hardt, W.D., et al. (2009). Innate

and adaptive immunity cooperate flexibly to maintain host-microbiota mutu-

alism. Science 325, 617–620.

Sokol, H., Pigneur, B., Watterlot, L., Lakhdari, O., Bermudez-Humaran, L.G.,

Gratadoux, J.J., Blugeon, S., Bridonneau, C., Furet, J.P., Corthier, G., et al.

(2008). Faecalibacterium prausnitzii is an anti-inflammatory commensal bacte-

rium identified by gutmicrobiota analysis of Crohn disease patients. Proc. Natl.

Acad. Sci. USA 105, 16731–16736.

Spor, A., Koren, O., and Ley, R. (2011). Unravelling the effects of the environ-

ment and host genotype on the gut microbiome. Nat. Rev. Microbiol. 9,

279–290.

Straka, M. (2011). Pregnancy and periodontal tissues. Neuroendocrinol. Lett.

32, 34–38.

Tilg, H., and Moschen, A.R. (2006). Adipocytokines: mediators linking adipose

tissue, inflammation and immunity. Nat. Rev. Immunol. 6, 772–783.

Turnbaugh, P.J., Ley, R.E., Mahowald, M.A., Magrini, V., Mardis, E.R., and

Gordon, J.I. (2006). An obesity-associated gut microbiome with increased

capacity for energy harvest. Nature 444, 1027–1031.

Turnbaugh, P.J., Hamady, M., Yatsunenko, T., Cantarel, B.L., Duncan, A., Ley,

R.E., Sogin, M.L., Jones, W.J., Roe, B.A., Affourtit, J.P., et al. (2009a). A core

gut microbiome in obese and lean twins. Nature 457, 480–484.

Turnbaugh, P.J., Ridaura, V.K., Faith, J.J., Rey, F.E., Knight, R., and Gordon,

J.I. (2009b). The effect of diet on the human gut microbiome: a metagenomic

analysis in humanized gnotobiotic mice. Sci. Transl. Med. 1, 6ra14.

van Nimwegen, F.A., Penders, J., Stobberingh, E.E., Postma, D.S., Koppel-

man, G.H., Kerkhof, M., Reijmerink, N.E., Dompeling, E., van den Brandt,

P.A., Ferreira, I., et al. (2011). Mode and place of delivery, gastrointestinal

microbiota, and their influence on asthma and atopy. J. Allergy Clin. Immunol.

128, 948, 955.e.3.

Vijay-Kumar, M., Aitken, J.D., Carvalho, F.A., Cullender, T.C., Mwangi, S.,

Srinivasan, S., Sitaraman, S.V., Knight, R., Ley, R.E., and Gewirtz, A.T.

(2010). Metabolic syndrome and altered gut microbiota in mice lacking Toll-

like receptor 5. Science 328, 228–231.

Wu, G.D., Chen, J., Hoffmann, C., Bittinger, K., Chen, Y.Y., Keilbaugh, S.A.,

Bewtra, M., Knights, D., Walters, W.A., Knight, R., et al. (2011). Linking long-

term dietary patterns with gut microbial enterotypes. Science 334, 105–108.

Yatsunenko, T., Rey, F.E., Manary, M.J., Trehan, I., Dominguez-Bello, M.G.,

Contreras, M., Magris, M., Hidalgo, G., Baldassano, R.N., Anokhin, A.P.,

et al. (2012). Human gut microbiome viewed across age and geography.

Nature 486, 222–227.


	Host Remodeling of the Gut Microbiome and Metabolic Changes during Pregnancy
	Introduction
	Results
	The Gut Microbiota Is Profoundly Altered during Pregnancy
	T1 Microbial Diversity Is Normal, and T3 Diversity Is Aberrant
	Shift in Bacterial Diversity Is Unrelated to Health State
	High β-Diversity Persists Postpartum and Occurs in Infants
	Stool Energy Content and Metagenomic Analysis
	Transfer of T3 Microbiota Induces Greater Adiposity and Inflammation in Germ-free Recipient Mice Than T1 Microbiota

	Discussion
	Conclusions

	Experimental Procedures
	Human Subjects and Data Collection
	Diversity and Phylogenetic Analyses
	Comparison to the Human Microbiome Project Data
	Stool Energy Content
	Shotgun Metagenomic Analysis of T1 and T3 Stool Samples
	Microbiota Transfer Experiments
	Statistical Analysis

	Supplemental Information
	Acknowledgments
	References


