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ABSTRACT

Obesity is a worldwide epidemic, threatening both industrial-
ized and developing countries, and is accompanied by a
dramatic increase in obesity-related disorders, including type
2 diabetes mellitus, hypertension, cardiovascular diseases, and
nonalcoholic fatty liver disease. Recent studies have shown that
the gut microbial community (microbiota) is an environmental
factor that regulates obesity by increasing energy harvest from
the diet and by regulating peripheral metabolism. However,
there are no data on how obesogenic microbiotas are established
and whether this process is determined during infancy. The
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microflora. This initial microbiota develops into a complex

ecosystem in a predictable fashion determined by internal

(eg, oxygen depletion) and external (eg, mode of birth, impact

of environment, diet, hospitalization, application of antibiotics)

factors. We discuss how the gut microbiota regulates obesity

and how environmental factors that affect the establishment of

the gut microbiota during infancy may contribute to obesity

later in life. JPGN 48:249–256, 2009. Key Words: Obesity—

Gut microbiota—Infancy. # 2009 by European Society for

sterile fetus is born into a microbial world and is immediately
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colonized by numerous species originating from the surround-
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The adult human intestine contains an order of mag-
nitude more bacteria than we have human cells in our
bodies (1,2). There is sparse colonization in the proximal
intestine, but the number of bacteria increases along the
length of the gut to approximately 108 bacteria per gram
content in the distal ileum and 1011 per gram in the colon
(3). The microbial ecosystem has coevolved with the host
and provides us with metabolic features that we have not
had to evolve ourselves, such as vitamin K production,
metabolism of otherwise indigestible carbohydrates, and
xenobiotic metabolism (4). However, not all microbial
functions are beneficial: it has recently been proposed
factors both during infancy and later in life, the properties
of the flora should be viewed as dynamic. Similarly to
invertebrates, adult humans have a relatively stable core
microbiota and a proportion that varies within individuals
in response to environmental factors (8–10). In this review,
we discuss some potential mechanisms that underlie
microbially induced obesity and how different selective
pressures during the development of a gut microbiota may
lead to an obesogenous microbiota later in life.

MICROBIALLY INDUCED OBESITY: ENERGY
HARVEST

The incidence of obesity has increased exponentially
during the past 3 decades and thus cannot be explained
solely by genetic factors. Could the gut microbial com-
munity contribute to the obesity epidemic? Although
most mouse gut species are unique, the mouse and human
microbiotas are similar at the division level, with Firmi-
cutes and Bacteroidetes dominating (8,11,12). Thus,
mouse models may be useful to study the role of the
nauthorized reproduction of this article is prohibited.

gut microbiota in obesity. Recent studies have shown that
obese (Lepob/ob) mice have dramatically higher levels of
Firmicutes and lower levels of Bacteroidetes than do their
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FIG. 1. The gut microbiota regulates obesity through several
metabolic pathways. Short-chain fatty acids (SCFAs), which are
produced during bacterial fermentation of complex polysac-
charides in the gut, are rapidly absorbed by the epithelium and
transported to the liver via the portal circulation, where they are
converted to triglycerides through lipogenesis. Colonization of the
mammalian gut reduces expression of intestinal Angptl4/Fiaf,
which regulates adipose lipoprotein lipase (LPL) activity and fatty
acid oxidation in skeletal muscle. Bacterial endotoxin (lipopoly-
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lean littermates (12). Moreover, metagenomic studies
indicate that the distal gut microbiome in these obese
mice is enriched with genes involved in energy harvest
(6). It is important to note that the obese phenotype seems
to be a transmissible trait: transplantation of an obese
microbiota to germ-free mice results in increased adi-
posity compared with transplantation of a lean micro-
biota (6). In a recent study, Ley et al (8) found that obese
humans exhibit a shift in the microbial composition
similar to that found in obese mice. Furthermore, the
microbial composition is normalized after weight
reduction, independently of weight reduction method
(ie, carbohydrate- or fat-restricted diet) (8). Duncan
et al (13) recently confirmed that obese humans have
reduced numbers of specific Firmicute groups after con-
suming a low-carbohydrate diet.

Feeding mice a high-calorie Western diet is a common
model of diet-induced obesity. Mice fed the Western diet
for 8 weeks display increased levels of Firmicutes and a
reciprocal decrease in Bacteroidetes (14). In contrast to
genetically obese mice (12), the increase in Firmicutes is
not divisionwide but restricted to the Mollicute class (14).
Shifting these mice to a fat- or carbohydrate-restricted
diet with fewer calories reduces the number of Mollicutes
(14).

Collectively, these data suggest that obesity and the
caloric content of the diet may alter the structure of the
gut microbial community. However, large epidemiologi-
cal studies are required to verify that obesity is associated
with an altered microbiota in humans. New techniques
such as bar-coded pyrosequencing are likely to facilitate
these studies (15,16).

Thus, obesity may alter the gut microbial structure, but
can the gut microbiota directly affect the development of
obesity? In support of this hypothesis, we demonstrated
that conventionally raised mice have significantly more
body fat than do their germ-free counterparts and colo-
nization of germ-free mice with a normal gut microbiota
induces hepatic lipogenesis and increases lipid storage
in adipocytes (5). Thus, differences in the metabolic
capacity of an individual’s gut microbiota may be import-
ant in the pathogenesis of obesity. Pathways illustrating
how the gut microbiota can affect obesity are summarized
in Figure 1. The concept that obesity has a microbial
component may have important therapeutic implications.
Moreover, is it possible that human physiology is sig-
nificantly influenced by minor components of the micro-
biota or low-level colonizers established early in life?

MICROBIALLY INDUCED OBESITY:
PERIPHERAL METABOLISM

In addition to its effects on energy harvest, the gut
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microbiota modifies metabolism in peripheral organs.
Colonization of germ-free mice increases serum levels
of glucose and short-chain fatty acids, which induce

J Pediatr Gastroenterol Nutr, Vol. 48, No. 3, March 2009
hepatic lipogenesis (5). The elevated triglyceride pro-
duction is associated with increased adiposity and
decreased glucose tolerance (5). The relative energy
surplus in colonized mice leads to decreases in adenosine
monophosphate–activated protein kinase (AMPK)
activity in both skeletal muscle and liver (7). AMPK is
a heterotrimeric enzyme that has been conserved
throughout evolution (17). It functions as a ‘‘fuel gauge’’
to monitor cellular energy status and is activated in
response to an increased intracellular ratio of AMP to
adenosine triphosphate (ATP) (17). AMPK is activated
by phosphorylation of the a-subunit, leading to suppres-
sion of ATP-consuming anabolic pathways and induction
of ATP-generating catabolic pathways (eg, fatty acid
oxidation) (17). Accordingly, increased AMPK activity
in germ-free mice translates into increased fatty acid
oxidation in skeletal muscle and liver (7). Thus, the
presence of a gut microbiota will shift the preferred
energy substrate toward dietary carbohydrates, whereas
the absence of gut microbes will make the individual
more dependent on dietary lipids.

We have identified gut-derived angiopoietin-like
protein 4, also known as fasting-induced adipocyte factor
(Angptl4/Fiaf), as an important regulator of host lipid

saccharide [LPS]) induces metabolic inflammation in adipose
tissue.
authorized reproduction of this article is prohibited.

metabolism. Angptl4/Fiaf is primarily expressed in liver,
placenta, and adipose tissue (18–20), but the intestinal
epithelium is another significant source (5). In mice,
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intestinal expression of Angptl4/Fiaf increases dramatic-
ally at birth, and its expression peaks 2 days after birth
(21). This may indicate that the fetus receives Angptl4/
Fiaf from the placenta and that endogenous production
must be induced immediately after birth. Furthermore,
the microbiota directly regulates Angptl4/Fiaf: coloniza-
tion of germ-free mice leads to significant diminution of
Angptl4/Fiaf expression (5). Angptl4/Fiaf is an important
regulator of lipid metabolism in both mice and humans
(5,7,22). Nonsynonymous variants in ANGPTL4/FIAF are
more prevalent in humans with triglyceride levels in the
lowest quartile than in individuals with levels in the highest
quartile, indicating that Angptl4/Fiaf also functions as an
important regulator of lipid metabolism in humans (22).
One variant (E40K), present in approximately 3% of
Americans of European descent, is associated with sig-
nificantly lower plasma levels of triglyceride and higher
levels of high-density lipoprotein cholesterol (22).

METABOLIC FUNCTION OF ANGPTL4/FIAF

Angptl4/Fiaf was originally identified as a regulator of
lipoprotein lipase (LPL) (5,23), a key enzyme involved in
fatty acid release from triglyceride-rich lipoproteins (24).
Increased adipocyte LPL activity leads to increased
cellular uptake of fatty acids and triglyceride accumu-
lation (24). Interestingly, an absence of gut microbes
correlates with decreased LPL activity (5). By using
genetic proof-of-principle experiments, we found that
germ-free Angptl4/Fiaf-deficient mice exhibit increased
LPL activity, which correlates with increased body fat
accumulation (5,7). Although LPL is the rate-limiting
enzyme for the import and subsequent storage of trigly-
ceride-derived fatty acids in adipocytes, genetically
engineered mice that express LPL only in their myocytes
gain weight normally and have a normal body mass
composition. Instead of importing triglycerides from
the circulation, they increase de novo fatty acid synthesis
in adipose tissue (25). These findings indicate that
Angptl4/Fiaf may have additional functions in mediating
the lean phenotype seen in germ-free animals. We and
others recently demonstrated that Angptl4/Fiaf also
regulates fatty acid oxidation in both muscle and adipose
tissue, probably by acting on an as yet unidentified
receptor (7,26). Combined, these findings indicate that
Angptl4/Fiaf may be a suitable drug target to regulate
host lipid metabolism and that alterations in the microbial
flora may regulate peripheral metabolism in an individual
by altering intestinal Angptl4/Fiaf expression.

MICROBIALLY INDUCED OBESITY:
ENTEROENDOCRINE CELLS

INTESTINAL MICROBIOTA DURING INFA
yright © 2009 by Lippincott Williams & Wilkins.U

The gut communicates with controllers of energy
balance in the brain by means of neural and endocrine
pathways. Signals reflecting energy stores, recent nutri-
tional state, and other parameters are integrated in the
central nervous system, particularly in the hypothalamus,
to coordinate energy intake and expenditure (27). Gut
hormones are produced by specialized enteroendocrine
cells that are scattered along the gastrointestinal tract
from the stomach to the colon. There are at least 15
different types of enteroendocrine cells. Although they
account for only 1% of the cells in the intestinal mucosa,
they constitute the largest population of hormone-produ-
cing cells in the body (28,29). Unlike many other endo-
crine cell types, enteroendocrine cells actively self-renew
throughout the life of an animal and turn over every 3 or
4 days (30,31). The gut microbiota seems to regulate
enteroendocrine cells and to influence the release of
several gut hormones (32). Germ-free rats exhibit
increased amounts of gastrin- and serotonin-immuno-
reactive cells in the gastric mucosa (32). In addition,
germ-free rats have a higher concentration of somato-
statin in the distal small intestine and a higher level of
glucagon in the plasma (32).

The incretin hormones, which include glucagon-like
peptide-1 (GLP-1) and glucose-dependent insulinotropic
polypeptide, are secreted from enteroendocrine cells in
response to nutrient intake (33). They stimulate insulin
release from the pancreas, and they account for approxi-
mately half of the total insulin response after a meal (33).
In addition, GLP-1 slows gastric emptying, promotes
satiety and weight loss, and enhances b cell efficiency
and neogenesis (34–38). In rodents, oligofructose (OFS)
treatment increases the proportion of bifidobacteria in the
distal intestine, leading to increased fermentation and
decreased food intake, fat mass, and hepatic steatosis
(39,40). In addition, OFS exerts antidiabetic effects in
streptozotocin-treated rats and high-fat-fed mice (41,42).
Interestingly, OFS feeding in rats results in double the
number of L cells in the proximal colon (43), suggesting a
role for the gut microbes in the regulation of enteroendo-
crine cell proliferation. In humans, OFS administration
is reported to increase both colonic fermentation and
GLP-1 levels after a mixed meal (44). Furthermore, OFS
has been shown to promote satiety in healthy humans
(45). Thus, OFS treatment may constitute a novel thera-
peutic strategy in humans by altering the gut flora.

Bariatric surgery remains the most effective treatment
for obesity (46), and gut hormones are implicated in the
reduction of appetite and weight after a Roux-en-Y
gastric bypass (RYGP) (47,48). Levels of GLP-1 and
peptide YY increase as early as 2 days after gastric
bypass, and the levels correlate with increased satiety
(47,48). In contrast to RYGP, gastric banding does not
lead to altered gut hormone production or appetite (47).
The mechanism by which RYGP causes increased gut
hormone production is not clear, but it is associated with
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increased bacterial colonization of the stomach (49). It is
possible that RYGP leads to an altered microbial com-
position that regulates enteroendocrine function.

J Pediatr Gastroenterol Nutr, Vol. 48, No. 3, March 2009
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MICROBIALLY INDUCED OBESITY: THE
INNATE IMMUNE SYSTEM

Obesity is associated with a low-grade chronic inflam-
mation (also known as metabolic inflammation), which
has been implicated in the development of the metabolic
syndrome and insulin resistance (50). In addition,
obese individuals have elevated levels of serum free fatty
acids (FFAs), which activate proinflammatory pathways
(51–54). However, until recently it was unknown how
FFAs activate intracellular inflammatory signaling path-
ways in different target tissues. Recently, Shi et al (55)
found that FFAs activate Toll-like receptor 4 (TLR4)
signaling in adipocytes and macrophages. These findings
suggest that obesity leads to increased levels of FFAs,
which activate the innate immune system via TLRs and
induce metabolic inflammation. Moreover, direct adipo-
cyte-specific activation of NF-kB in transgenic mice
results in increased inflammatory cytokine production
and diabetes, which further demonstrates the detrimental
effects of metabolic inflammation (56). Thus, the gut
microbiota may regulate metabolic inflammation both
directly by producing proinflammatory mediators (eg,
endotoxin), and indirectly by regulating host lipid
metabolism.

Obese mice have significantly increased paracellular
permeability within the gastrointestinal tract, which is
accompanied by a dramatic redistribution of tight junc-
tion proteins (57). The obese phenotype is associated
with elevated circulating endotoxin levels, most likely
originating from the gut microbial community, in both
mice and humans (57–59). A recent publication provided
further support of a link between elevated endotoxin
levels and metabolic disease: Creely et al (58) demon-
strated that fasting insulin levels significantly correlate
with serum endotoxin levels. It should be noted that these
endotoxin levels are in the physiological range and are 10
to 50 times lower than values seen in septicemia or other
infections (60). Furthermore, treatment of patients with
type 2 diabetes mellitus with rosiglitazone significantly
decreases serum glucose, insulin, and endotoxin levels
(58). To directly test whether metabolic endotoxemia
affects metabolic parameters, Cani et al (59) implanted
osmotic pumps releasing endotoxin subcutaneously, and
observed increased whole-body, liver, and adipose tissue
weight gain in addition to fasting glycemia and insuli-
nemia. Moreover, metabolic endotoxemia is associated
with increased macrophage infiltration into the adipose
tissue and increased levels of circulating proinflamma-
tory cytokines and triglycerides (59). The increase in
inflammatory tone results in liver, but not whole-body,
insulin resistance. Interestingly, CD14-deficient mice are
protected from metabolic disease after both endotoxin
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infusion and high-fat feeding (59). These findings
demonstrate that signaling through the endotoxin recep-
tor complex (CD14/TLR4) regulates insulin sensitivity
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and the onset of diabetes and obesity, and they further
suggest that factors that alter intestinal barrier function
may be important in regulating the development of the
metabolic syndrome.

High-fat feeding significantly alters the gut microbial
composition, in part by reducing the numbers of bifido-
bacteria, which have many physiologically positive
effects, including improved mucosal barrier function
(61). Mice fed a high-fat diet supplemented with oligo-
fructose have restored quantities of bifidobacteria and
decreased endotoxemia (61). These observations suggest
that increased levels of bifidobacteria may decrease
intestinal permeability and lower the circulating levels
of endotoxin. Furthermore, the increase in bifidobacteria
correlates with improved glucose tolerance, glucose-
induced insulin secretion, lower body weight gain, and
decreased production of inflammatory mediators (61).

In addition to regulating anxiety and depression, child-
hood psychosocial factors and long-term stress also
increase the risk for intestinal disorders (62). In rodents,
neonatal maternal separation is a well-characterized
model of stress that has been used in a wide range of
studies. Recently, it was shown that daily separation of
the pups from their mothers during the neonatal period
results in increased intestinal permeability at adulthood
(63). It is possible that stress during the neonatal
period may result in higher levels of serum endotoxin
during adulthood and increased risk for the development
of the metabolic syndrome. The administration of pro-
biotic Lactobacillus to pups that have been subjected
to maternal separation dramatically improves gut dys-
function (64). Collectively, these findings indicate that
intentional manipulation of the intestinal flora, even in
neonates, may improve gut function and lower per-
meability, which may translate into lower serum endo-
toxin levels and protection against the development of
metabolic disease.

ESTABLISHMENT AND DEVELOPMENT OF
NORMAL MICROFLORA IN EARLY INFANCY

The human fetus is sterile in utero and is colonized by
microbes during its passage through the birth canal.
Immediately after birth, the baby is exposed to numerous
bacteria from the environment (eg, skin, mouth, mother’s
milk). This initial microbiota is relatively unstable and
changes dramatically during the initial period of life
(65–67). Culture-based studies show that infants are
initially colonized by facultative anaerobes such as enter-
obacteria and Gram-positive cocci, which are thought to
create a reduced environment favorable for the establish-
ment of obligate anaerobes, including Bacteroides,
Bifidobacterium, and Clostridium (Fig. 2) (65,68).

T ET AL.
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By using culture-independent microarray studies
during the first year of life, Palmer et al (69) recently
confirmed the general developing pattern of the human
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FIG. 2. Colonization pattern of the developing human gut. The
initial microbiota after birth is dominated by facultative anaerobes.

INTESTINAL MICROBIOTA DURING INFANCY
infant intestinal microbiota. The major discrepancy
between their study and those of others was an under-
representation of bifidobacteria, which could have been
due to their small sample size (n¼ 14) or to geographic
and/or demographic differences. As expected, they
demonstrated a large variation in microbial composition
between individuals during the first months of life, which
can be explained by the fact that the infants are continu-
ously exposed to, and recolonized by, bacteria from the
environment (69). Moreover, similar microbial signa-
tures could be seen in the early infant and in swabs from
breast milk and the vagina, suggesting that the gut
microbiota is inherited maternally (8,69a). Studies have
reported that an ‘‘adult’’ microbiota begins to develop in
babies at 1 to 2 years of age (68–72). The transition to the
‘‘adult’’ flora seems to follow the transition to solid foods
(69) and is in good agreement with studies in mice
showing that gut microbial ecology is dramatically
affected during weaning (65). Weaning also coincides
with a dramatic shift in the metabolic capacity of the
small intestine as the high-fat milk-based diet is replaced
by a carbohydrate-rich diet. This shift also affects the
metabolism of gut bacteria as determined by global gene
expression profiling in gnotobiotic mice: Bacteroides
thetaiotaomicron begins to use plant-derived instead of
host-derived polysaccharides (66). Below we review how
some extrinsic factors may shape the gut microbiota
during infancy and how they influence the onset of
obesity later in life.

DELIVERY METHOD AFFECTS THE GUT
MICROBIAL COMPOSITION

After weaning, the microbiota develops into a stable community
dominated by bacteria belonging to the Firmicutes, Bacteroidetes,
and Actinobacteria divisions (65,68).
yright © 2009 by Lippincott Williams & Wilkins.U

Numerous factors determine the microbial composition
during early infancy (mode of delivery, infant feeding,
hospitalization, prematurity, and antibiotic use) (73). The
fecal microbiota of infants born by cesarean section differs
significantly from the microbiota of those born vaginally
(73,74). During a natural birth, microbes from the mother’s
birth canal and feces rapidly colonize infants (75), and the
same Escherichia coli serotypes have been found in
babies’ mouths immediately after birth as in their mothers’
feces (76,77). By contrast, babies who are delivered by
cesarean section are colonized by microbes from environ-
mental isolates from the mother, the air, and other infants,
transferred by the nursing staff (76,78,79).

It has been suggested that early colonizers of the
gastrointestinal tract ‘‘train’’ the immune system, mediat-
ing beneficial relations between bacteria and mammalian
hosts during mutualism (67). Thus, in addition to different
inocula, differential activation of the immune system as a
result of birth mode may also shape the microbiota. A
recent study showed that vaginally delivered mice exhibit
an immediate mucosal activation of TLR4 and the innate
immune system, which is absent in pups delivered by
cesarean section (80). These findings indicate that the
epithelial lining of the gut rapidly develops tolerance to
the intestinal microbial community, which is a prerequisite
for the lifelong host–microbial symbiosis.

Fecal samples from the KOALA Birth Cohort Study in
the Netherlands demonstrated that infants born through
cesarean section have lower numbers of bifidobacteria
and Bacteroides spp and are more often colonized by
C difficile in comparison with vaginally born infants
(73,81). Because bifidobacteria and Bacteroides spp
seem to be protective against the development of obesity
(8,12,61), the mode of birth could affect the development
of obesity later in life. Furthermore, it is possible
that probiotic treatment of infants may have favorable
effects later in life. Studies are required to confirm these
hypotheses.

ENVIRONMENTAL FACTORS THAT SHAPE
THE MICROBIOTA

A recent study in Rhesus macaques showed that
moderate disturbance (daily exposure to an acoustic
startle paradigm for 6 weeks either early or late in the
24-week gestation) during pregnancy leading to elevation
of mean plasma cortisol levels was sufficient to alter the
intestinal microflora in the newborn infant (82). During
the first 24 weeks of life, monkeys from stressed preg-
nancies had slightly lower numbers of Lactobacillus
spp than did infants from undisturbed pregnancies.
Bifidobacteria counts were not significantly affected
by early gestational stress but were lower in infants from
late stress pregnancies than in control infants.

Both adults and neonates are regularly exposed to
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microorganisms via their diet, but neonates are affected
differently because they lack stable climax communities.
Breast milk from healthy mothers may contain up to

J Pediatr Gastroenterol Nutr, Vol. 48, No. 3, March 2009
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109 microbes per liter (83), dominated by Staphylococcus
spp, Streptococcus spp, Corynebacterium spp, Lacoba-
cilllus spp, Micrococcus spp, Propionibacterium spp, and
Bifidobacterium spp. These commensal bacteria can be
found on the skin and in the milk ducts of the breast
(84,85). The microbiota of infants fed only breast milk
becomes dominated by bifidobacteria during the first
week, and there is a concomitant decrease in members
of the Enterobacteriaceae family (86,87). By contrast, the
microbiota of formula-fed infants becomes more diverse,
with a longer presence and higher counts of members
of the Enterobacteriaceae and Enterococcus families
(71,86,88). Compared with breast-fed infants, formula-
fed infants at 1 month of age were found to be more often
colonized with E coli, C difficile, Bacteroides spp, and
Streptococcus spp (75,89,90). Inasmuch as breast-
feeding has a major influence on the composition of
the infantile intestinal microflora, by providing both
beneficial bacteria and prebiotic growth factors (91), it
may also affect the propensity toward the development of
obesity during adolescence or later in life (92–95).
However, new studies that carefully monitor infant feed-
ing and correlate it with changes in the gut flora are
required to support this hypothesis.

Excessive use of antibiotics will rapidly alter the gut
microbial structure, and the use of antibiotics in infants is
associated with decreased numbers of obligate anaerobes
(eg, members of bifidobacteria and Bacteroides) (73).
After antibiotic treatment, there is a slow regrowth of
bifidobacteria, whereas Bacteroides spp are not usually
reestablished. Because both of these microbes may be
antiobesogenic, these findings suggest that antibiotic
reduction of Bifidobacterium and Bacteroides may lead
to an increased risk for the development of obesity.

OUTLOOK

The composition and temporal pattern of the gut
microbial community varies widely during the first year
of life, supporting a broader definition of healthy colo-
nization than has been previously recognized (69).
Environmental exposure plays a major role in determin-
ing the distinctive characteristics of the microbial com-
munity in each baby. Thus, it is of utmost importance that
prospective studies are performed to determine how
different environmental factors (eg, mode of delivery,
food, antibiotic treatment) affect microbial colonization
of the gut during early infancy and the subsequent
formation of stable communities, and whether these
factors affect the onset of obesity.

An altered microbiota could be just one of many
factors that influence the development of obesity. Thus,
several questions need to be addressed: Is the gut micro-
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biota altered in obese individuals in large population-
based studies and in twins discordant for obesity? Does
the gut microbiota regulate visceral obesity or obesity in

J Pediatr Gastroenterol Nutr, Vol. 48, No. 3, March 2009
general? Can gut bacteria or their products directly
influence appetite and satiety? How does antibiotic treat-
ment during childhood affect microbial composition in
relation to obesity later in life? Genetically modified
mouse models in combination with well-designed
clinical studies are required to further define how differ-
ent microbially induced mechanisms interact to promote
obesity. Increased knowledge of the mechanisms
involved may identify new therapeutic targets to treat
obesity and its related diseases.
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