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Adipokines are secreted by adipose tissue and
control various physiological systems. Low leptin
levels during fasting stimulate feeding, reduce en-
ergy expenditure, and modulate neuroendocrine
and immune function to conserve energy stores.
On the other hand, rising leptin levels in the overfed
state prevent weight gain by inhibiting food intake
and increasing energy expenditure. These actions
are mediated by neuronal circuits in the hypothal-
amus and brainstem. Leptin also controls glucose
and lipid metabolism by targeting enzymes such as

AMP-activated protein kinase and stearoyl-coen-
zyme A desaturase-1 in liver and muscle. Likewise,
adiponectin and resistin control energy balance
and insulin sensitivity via central and peripheral
targets. As highlighted in this review, there are
distinct as well as common signaling pathways for
adipokines. Understanding adipokine signaling in
the brain and other organs will provide insights into
the pathogenesis and treatment of obesity, diabe-
tes and various metabolic disorders. (Molecular
Endocrinology 22: 1023–1031, 2008)

ADIPOKINES

THE WORLDWIDE INCREASE in obesity, diabetes,
and related diseases has focused attention on the

biology of adipose tissue. Adipose tissue secretes
polypeptide hormones, e.g. leptin, adiponectin, and
resistin (in rodents), proinflammatory cytokines, com-
plement and coagulation factors, and vasoactive pep-
tides (Table 1) (1, 2). Adipose tissue also produces
enzymes that control the biosynthesis and activities of
steroid hormones. Adipose tissue-derived aromatase
and 17�-hydroxysteroid dehydrogenase catalyze the
interconversion of sex steroids, whereas 11�-hydrox-
ysteroid dehydrogenase type 1 mediates the conver-
sion of cortisone to cortisol in humans and 11-dehy-
drocorticosterone to corticosterone in mice (3, 4).
Collectively, adipose tissue-secreted factors called

“adipokines” are involved in energy homeostasis and
regulation of glucose and lipid metabolism, immunity,
and neuroendocrine systems (Table 1). This review will
focus on how leptin, adiponectin, and resistin affect
energy homeostasis and glucose and lipid metabo-
lism, and how dysregulation of the central and periph-
eral actions of these adipokines may underlie the
pathogenesis of obesity, diabetes, and lipid disorders.

LEPTIN

Leptin is mainly expressed by adipocytes but low lev-
els are produced in the stomach, intestine, mammary
epithelium, placenta, skeletal muscle, and possibly the
brain (5). The concentrations of leptin in adipose tissue
and plasma closely parallel the mass of adipose tissue
and adipocyte size and triglyceride content. Thus, lep-
tin increases in obesity and falls with weight loss (5).
These changes are dependent on insulin and glucose.
Leptin is also higher in women, partly due to higher
production by sc adipose tissue, stimulation by estro-
gens, and inhibition by androgens. Moreover, leptin is
increased by chronic glucocorticoid exposure and in-
flammatory cytokines. In contrast, cold exposure and
adrenergic stimulation decrease leptin (1, 5).

Leptin reaches neuronal targets via the circumven-
tricular organs and a saturable transport mechanism
across the blood-brain barrier (1). Five leptin receptor
isoforms, LRa–LRe, derived from alternate splicing of
lepr mRNA have been identified (1, 5, 6). The most
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abundant short leptin receptor, LRa, lacks the cyto-
plasmic domain necessary for Janus family of tyrosine
kinases (JAK)-signal transducer and activator of tran-
scription (STAT) signaling. LRa is abundantly ex-
pressed in brain capillary endothelium and peripheral

organs and proposed to mediate leptin transport (1).
The long leptin receptor, LRb, is restricted to the hy-
pothalamus, brainstem, and key regions of the brain
that control feeding, metabolism, and neuroendocrine
systems (1, 5, 6). Binding of leptin to LRb leads to

Table 1. Actions of Adipokines

Adipokine Source and Nutritional Regulation Energy, Glucose, and Lipid Metabolism

Leptin Mainly adipose tissue; low levels in
gastric fundus, intestine, and
muscle. Obesity: adipose mRNA
and protein 11; plasma 11.
Fasting: adipose mRNA and
protein 2; plasma 2. Refeeding:
adipose mRNA and protein 1;
plasma 2

Inhibits feeding and increases energy
expenditure; insulin sensitizer;
stimulates fatty acid oxidation

Adiponectin Adipose tissue. Obesity: adipose
mRNA and protein 2; plasma
2. Fasting: adipose mRNA and
protein 1; plasma 1. Refeeding:
adipose mRNA and protein 2;
plasma 2

Insulin sensitizer; stimulates fatty
acid oxidation; may increase or
decrease adiposity

Resistin Adipose tissue in rodents and
macrophages in human. Obesity:
rodent adipose mRNA 2 and
protein 1; plasma 1. Fasting:
rodent adipose mRNA and
protein 2; plasma 2. Refeeding:
rodent adipose mRNA and
protein 1; plasma 1

Induces insulin resistance in rodents

TNF� Adipose tissue and immune cells.
Obesity: adipose and plasma
protein 1

Inhibits feeding, induces cachexia,
and inhibits insulin sensitivity

IL-6 Adipose tissue, immune cells and
muscle. Obesity: adipose and
plasma protein 1

Inhibits feeding, increases energy
expenditure, and induces insulin
resistance

Adipsin; complement factor D Adipose tissue. Obesity: adipose
mRNA and protein 2 in rodents;
1 in humans; adipsin levels are
linked to acylation stimulating
protein (ASP)

ASP promotes fatty acid and glucose
uptake by adipocytes and
stimulates insulin secretion

Plasminogen-activator
inhibitor-1

Adipose tissue and liver. Obesity:
adipose and plasma protein 1;
suppressed by thiazolidinediones

Increases adiposity and insulin
resistance in rodents

Renin-angiotensin system Adipose tissue, kidney, and
vasculature

Angiotensin II increases
adipogenesis and reduces insulin
sensitivity

Retinol binding protein-4 Adipose tissue and liver. Obesity:
adipose and plasma protein 1 in
rodents; not consistently
elevated in humans

Enhances insulin action in rodents

Fasting-induced adipose factor;
angiopoeitin-like protein 4

Expressed in adipose tissue, liver,
and intestinal epithelium. mRNA
and protein 1 by calorie
restriction, PPAR-� ,and
fenofibrate

Increases triglycerides by inhibiting
lipoprotein lipase; stimulates
cholesterol synthesis; implicated in
obesity and insulin resistance
induced by gut bacteria

Visfatin; pre-B cell colony-
enhancing factor 1;
extracellular nicotinamide
phosphoribosyltransferase

Adipose tissue, liver, and various
tissues. Obesity: adipose and
plasma protein 1

Not an insulin mimetic as originally
proposed

Vaspin Adipose tissue and liver. Obesity:
adipose and plasma protein 1

Insulin sensitizer in rodents

1, Increased; 2, decreased.
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association with JAK2, autophosphorylation of JAK2,
phosphorylation of tyrosine residues 985 and 1138 on
LRb, and activation of STAT3 (6) (Fig. 1). This cascade
of events culminates in translocation of STAT3 to the
nucleus and transcription of neuropeptides (6) (Fig. 1).
Phosphorylated Tyr985 of LRb binds Src homology 2
(SH2)-containing tyrosine phosphatase-2, which acti-
vates ERK. Additionally, Tyr985 binds the suppressor
of cytokine signaling (SOCS)3, leading to the termina-
tion of LRb signaling (6). Studies have also demon-
strated that leptin stimulates the phosphorylation of
Tyr1077 on LRb and activates STAT5 (Fig. 1) and ribo-
somal protein S6 kinase (7). Tyr1138 has a secondary
role in the acute phosphorylation of STAT5. Moreover,
Tyr1138 and STAT3 attenuate STAT5-dependent tran-
scription (7). Protein-tyrosine phosphatase 1B activity
is also stimulated by leptin and inactivates JAK2 and
leptin signaling (6, 8). Studies have also demonstrated
an interaction between the signaling pathways for lep-
tin and insulin signaling in the hypothalamus (9). Both
hormones inhibit food intake through activation of in-
sulin receptor substrate-2, MAPK, ERK, Akt, and
phosphatidylinositol 3-kinase (9).

LRb and downstream leptin signaling molecules
have been localized in the hypothalamus and brain
regions that control energy balance, hormone levels,
and glucose metabolism (5). Leptin directly inhibits
neurons in the arcuate nucleus of the hypothalamus
expressing neuropeptide Y (NPY) and agouti-related

protein (AGRP) (5) (Fig. 2). Conversely, leptin induces
proopiomelanocortin (POMC), precursor of MSH, and
cocaine- and amphetamine-regulated transcript in the
arcuate nucleus (Fig. 2). These neurons project to the
paraventricular nucleus and perifornical, dorsomedial,
and lateral hypothalamic areas to suppress feeding,
stimulate thermogenesis, and enhance lipid oxidation
and insulin sensitivity in peripheral organs. Neurons in
the paraventricular nucleus expressing melanocortin-4
receptor, CRH, TRH, and vasopressin, have been im-
plicated as critical mediators of central leptin action (1,
5) (Fig. 2). Leptin also indirectly controls expression of
melanin-concentrating hormone and orexins in the lat-
eral hypothalamus as well as mesolimbic dopaminer-
gic circuits (10, 11). Deficiency of leptin, LRb, and
STAT3 specifically in POMC neurons induces hy-
perphagia and impairs thermogenesis leading to mor-
bid obesity (5, 12–15). In contrast, the loss of orexi-
genic peptides, e.g. NPY and melanin-concentrating
hormone, attenuates obesity in leptin-deficient
Lepob/ob mice (16, 17). SOCS3 and PTP1B deficiency
ameliorates obesity by enhancing leptin sensitivity
(18–21).

Apart from activating JAK-STAT signaling, leptin has
rapid effects on neurotransmission and neuropeptide
secretion and also modulates neuronal plasticity. Lep-
tin inhibits NPY secretion by the hypothalamus, depo-
larizes POMC neurons by decreasing the inhibitory
tone of �-aminobutyric acid released from NPY termi-
nals in the arcuate nucleus, and hyperpolarizes NPY
neurons (22–24). Congenital leptin deficiency has been
associated with a decrease in brain size, impaired
myelination, and reduction in expression of neuronal
and glial proteins in mice (25). Moreover, gray matter

Fig. 1. Intracellular Signaling Pathways Regulated by LRb
Binding of leptin to the extracellular domain of LRb acti-

vates JAK2 tyrosine kinase leading to autophosphorylation of
tyrosine residues on JAK2 and phosphorylation of Tyr 985,
Tyr1077, and Tyr1138 on LRb. Phosphorylation of Tyr1138 me-
diates the activation and nuclear translocation of STAT3,
which induces the transcription neuropeptides in the hypo-
thalamus as well as SOCS3, which terminates leptin signal-
ing. Tyr985 also promotes interaction of SOCS3 with LRb-
JAK2, thereby attenuating leptin signaling. Tyr1077 plays a
dominant role in the transcriptional activation of STAT5, and
this action is inhibited by Tyr1138-STAT3. SHP2, Src homol-
ogy 2-containing tyrosine phosphatase-2.

Fig. 2. Leptin Signaling in the Hypothalamus
Leptin binds to LRb on NPY/AGRP and POMC/cocaine-

and amphetamine-regulated transcript (CART) neurons in the
arcuate nucleus, leading to inhibition of feeding, and stimu-
lation of thermogenesis, fatty acid oxidation, and enhance-
ment of peripheral insulin sensitivity. Leptin-sensitive neu-
rons in the arcuate nucleus project to the paraventricular
nucleus to increase CRH and TRH, and lateral hypothalamic
area to suppress melanin-concentrating hormone (MCH) and
orexins (ORX). Leptin also inhibits AMPK phosphorylation.
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defects have been demonstrated in the anterior cin-
gulate gyrus, inferior parietal lobule, and cerebellum in
patients with congenital leptin deficiency (26). These
abnormalities are partially reversed by leptin treatment
(25, 26). Leptin stimulates the development of axonal
projections from the arcuate nucleus to paraventricu-
lar nucleus and has been shown to increase inhibitory
synapses and reduce excitatory synapses in the hy-
pothalamus (27, 28).

Leptin is a critical signal for alterations in energy
stores in adipose tissue. An extreme manifestation of
leptin’s role as a starvation hormone is seen in patients
and mice with congenital leptin deficiency, which de-
velop voracious appetite, morbid obesity, immuno-
suppression, and hypothalamic hypogonadism (1, 5,
11). Acquired leptin deficiency due to fasting or lipo-
dystrophy also stimulates feeding and suppresses im-
munity, sympathetic nervous activity, and sex and thy-
roid hormones (29–35). In contrast, the ability of leptin
to signal excess energy storage is less robust (1, 5, 6).
A majority of obese individuals have high levels of
leptin but do not respond to rising endogenous leptin
levels suggesting leptin resistance (1, 6). Studies have
shown that leptin resistance in obese rodents is asso-
ciated with impairment of leptin transport across the
blood-brain barrier, reduction of leptin-mediated JAK-
STAT signaling, and induction of SOCS3 (6, 36). At-
tenuation of leptin sensitivity in the brain leads to ex-
cess triglyceride accumulation in adipose tissue as
well as muscle, liver, and pancreas (37).

Leptin plays an important role in preventing triglyc-
eride storage outside adipose tissue (37). In lean
healthy individuals, leptin is proposed to act indirectly
on muscle and liver to stimulate the phosphorylation
and activity of a critical energy sensor, AMP-activated
protein kinase (AMPK) (38). Activated AMPK phos-
phorylates acetyl-coenzyme A (CoA) carboxylase
(ACC) and malonyl-CoA decarboxylase, resulting in
inhibition of ACC and activation of malonyl-CoA de-
carboxylase. ACC catalyzes the formation of malonyl-
CoA, the first step in fatty acid synthesis, and malonyl-
CoA inhibits carnitine palmityl transferase 1 (CPT-1),
which controls fatty acid transport into mitochondria.
Leptin limits accumulation of triglyceride in liver and
muscle by activating AMPK, inhibiting ACC, reducing
malonyl-CoA, increasing CPT-1 activity, and stimulat-
ing fatty acid oxidation (38). Leptin also acts via the
brain to inhibit the activity of stearoyl-CoA desatu-
rase-1, an enzyme that catalyzes the synthesis of
monounsaturated fatty acids (mainly oleate and palmi-
toleate) (39). Leptin resistance in obesity promotes
extraadipose lipid storage (steatosis) by diminishing
AMPK activity, increasing activities of ACC, fatty acid
synthase and stearoyl-CoA desaturase 1, and reduc-
ing CPT-1 activity in liver and muscle. Steatosis leads
to formation of ceramide and various lipid metabolites
that impair insulin sensitivity in liver and muscle as well
as insulin secretion (37).

Leptin directly regulates insulin sensitivity and pan-
creatic �-cell function. Deletion of lepr in the brain

induces insulin resistance and diabetes, whereas res-
toration of leptin signaling in the arcuate nucleus de-
creases insulin and normalizes glucose levels (40).
Administration of leptin in the hypothalamus attenu-
ates hepatic insulin resistance and glucose production
in rodents on a high-fat diet, partly through activation
of melanocortin signaling (41, 42). Importantly, dele-
tion of lepr in the pancreas limits islet growth and
insulin secretion in diet-induced obese mice, thus pro-
viding a link between leptin signaling in islets and
obesity-associated diabetes (43).

ADIPONECTIN

Adiponectin is produced exclusively by adipocytes
and circulates at high concentrations (�g/ml) in
plasma (44). Native adiponectin exists as homotrimers
that form low-molecular weight hexamers and high-
molecular weight (HMW) complexes. Plasma concen-
trations of total and HMW adiponectin are higher in
women than men, partly due to suppression of adi-
ponectin by testosterone. Unlike leptin, adiponectin is
reduced in obesity, increased in response to fasting,
and decreased by refeeding (44). Adiponectin defi-
ciency induces insulin resistance, glucose intolerance,
and hyperlipidemia and increases susceptibility to
vascular injury and atherosclerosis (44–46). Adiponec-
tin reverses these abnormalities by stimulating fatty
acid oxidation, suppressing gluconeogenesis, and in-
hibiting inflammation (44–46). The levels of HMW adi-
ponectin are highly predictive of insulin sensitivity (47).
Insulin-sensitizing thiazolidinediones increase HMW
adiponectin in humans and rodents, and mice lacking
adiponectin do not respond to thiazolidinedione treat-
ment (48). Thus, adiponectin plays an essential role in
mediating the antidiabetic effect of thiazolidinediones.

The actions of adiponectin in suppressing glucone-
ogenesis and enhancing lipid oxidation are related to
activation of AMPK and inhibition of ACC in liver and
muscle, whereas the antiinflammatory effect of adi-
ponectin is associated with suppression of nuclear
factor-�B and vascular adhesion molecules (44). Adi-
ponectin is proposed to signal through two seven-
transmembrane domain-containing proteins, AdipoR1
and AdipoR2, which are widely expressed and induce
AMPK phosphorylation and activity (44) (Fig. 3).
APPL1 (adaptor protein containing pleckstrin homol-
ogy domain phosphotyrosine binding domain and
leucine zipper motif) binds to adiponectin receptors
and has been linked to the insulin-sensitizing action of
adiponectin in vitro (49). The expression of AdipoR1
and AdipoR2 was found to be diminished in livers of
obese mice, and this was related to attenuation of
AMPK activity and insulin resistance (50). These de-
fects were reversed by adenovirus-mediated expres-
sion of AdipoR1 and -R2. Ablation of AdipoR1 pre-
vented the ability of adiponectin to activate AMPK,
whereas AdipoR2 deficiency decreased peroxisome
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proliferator-activated receptor-� (PPAR�) signaling.
Deficiency of AdipoR1 and R2 prevented adiponectin
binding and induced steatosis, inflammation, oxidative
stress, and insulin resistance, demonstrating impor-
tant roles in glucose and lipid metabolism and immune
function (50). AdipoR2 deletion in another study de-
creased lipid levels and improved insulin sensitivity in
diet-induced obese mice, yet diabetes ensued be-
cause of pancreatic �-cell failure (51). Furthermore,
AdipoR1 and AdipoR2 appeared to have opposing
metabolic roles (52). AdipoR1 deficiency increased de-
creased energy expenditure, increased body fat, and
induced insulin resistance. On the other hand, Adi-
poR2 deficiency led to higher energy expenditure, a
leaner phenotype, reduced plasma cholesterol, and
improved glucose levels (52).

Adiponectin receptors are widely distributed in the
brain, but questions have been raised about a central
action because adiponectin did not cross the blood-
brain barrier in mice (53, 54). Nonetheless, several
lines of evidence support the notion that adiponectin
affects energy and glucose metabolism by targeting
the brain (55). Trimeric and low molecular weight adi-
ponectin are present in cerebrospinal fluid (CSF) in
humans and rodents (56–58). The concentration of
adiponectin in CSF increases after iv injection of adi-
ponectin, suggesting blood-to-brain transport of adi-
ponectin (55, 58). We have reported that intracerebro-
ventricular administration of adiponectin potently
increased energy expenditure and fatty acid oxidation
and reduced body weight (55). Adiponectin and leptin
both acted in the brain to stimulate energy expenditure
and decrease glucose and lipids, showed similar pat-
terns of signaling by increasing CRH expression and

inducing Fos immunoreactivity in the paraventricular
nucleus, and were inactive in agouti (Ay/a) mice lacking
melanocortin signaling (55).

An antiobesity action of adiponectin is also sup-
ported by the ability of systemic administration of adi-
ponectin to decrease body weight and fat via fatty acid
oxidation (59, 60). However, other studies suggest an
opposite effect of adiponectin on energy metabolism
(61, 62). Transgenic overexpression of adiponectin in
wild-type and Lepob/ob mice resulted in obesity (61,
62). In Lepob/ob mice, elevation of adiponectin de-
creased food intake and energy expenditure (62). Re-
markably, insulin resistance and inflammation of adi-
pose tissue were attenuated in these extremely obese
mice (62). Kubota et al. (58) have reported that periph-
eral injection of adiponectin increased AMPK activity
in the arcuate nucleus via AdipoR1, and this resulted in
stimulation of food intake, reduction in energy expen-
diture, and weight gain. Conversely, hypothalamic
AMPK activation was attenuated in adiponectin-defi-
cient mice and was related to reduction of food intake,
increased energy expenditure, and lean phenotype.
Furthermore, adiponectin concentration in CSF in-
creased after fasting and decreased after refeeding
(58). Together, these data suggest that adiponectin
acts as a starvation signal (58).

Electrophysiology of adiponectin has been studied
in rat brainstem and hypothalamus (63, 64). Adiponec-
tin depolarized area postrema (AP) neurons express-
ing both AdipoR1 and -R2, whereas AP neurons ex-
pressing only one subtype of receptor were insensitive
(63). In the paraventricular nucleus, adiponectin hyper-
polarized oxytocin neurons in contrast to induction of
mixed depolarization-hyperpolarization responses in
vasopressin neurons (64). Further analysis revealed
that adiponectin-responsive oxytocin neurons ex-
pressed both AdipoR1 and R2, whereas vasopressin
neurons expressed both receptors or one receptor.
These results indicate different roles of adiponectin in
controlling excitability of neurons in circumventricular
areas such as AP that allow free access of large mol-
ecules into the brain vs. the paraventricular nucleus,
which is protected by a blood-brain barrier (63, 64).
Further work is needed to elucidate what molecular
forms of adiponectin produce specific actions, how
adiponectin-mediated electrical activity is coupled to
energy balance, and whether AMPK and various cel-
lular mediators are linked to electrical activity of
adiponectin.

RESISTIN

Resistin belongs to a family of cystine-rich peptides
called resistin-like molecules (65). Resistin is ex-
pressed and secreted by adipocytes in rodents and
was named for its ability to induce insulin resistance
(65). Resistin serum levels increase in diet-induced
and genetic models of obesity (65, 67), although adi-

Fig. 3. Adiponectin and Resistin Signaling in the Liver
High adiponectin levels in lean individuals bind to AdipoR1

and -R2 in the liver, leading to phosphorylation and activation
of AMPK and increased PPAR� activity. Adiponectin stimu-
lates fatty acid oxidation, prevents steatosis, enhances insu-
lin signaling, and suppresses hepatic glucose production.
Resistin is increased in obesity, inhibits AMPK activity, in-
creases SOCS3, and induces insulin resistance.
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pose tissue mRNA levels are reduced (67, 68). Multi-
meric complexes of resistin and resistin-like mole-
cule-� have been identified (66). Each promoter
consists of a COOH-terminal disulfide-rich �-sand-
wich head and an NH2-terminal �-helical tail, and the
latter associates to form three-stranded coils, linked
by interchain disulfide linkages to form tail-to-tail hex-
amers. As with leptin, resistin levels are higher in
women, fall during fasting, and increase after refeed-
ing (67). These changes are controlled partly by insulin
and glucose (68). Very recently, resistin has been linked
to incretin hormones and lipoprotein lipase (LPL) activity
(69, 70). Resistin failed to increase when mice lacking
receptors for glucagon-like peptide 1 and gastric inhib-
itory polypeptide (GIP) were fed a high-fat diet (69). This
was associated with resistance to diet-induced obesity
and preservation of pancreatic islet function (69). Chronic
elevation of GIP levels increased plasma resistin levels in
Zucker rats (70). Furthermore, treatment of 3T3-L1 adi-
pocytes with resistin or GIP inhibited activities of AMPK
and LPL (70). RNA interference-mediated suppression of
resistin attenuated the effect of GIP on AMPK and LPL
pathways in 3T3-L1 adipocytes, suggesting resistin
acted downstream of GIP (70).

Systemic treatment or transgenic overexpression of
resistin in rodents decreases the ability of insulin to
suppress hepatic glucose production (71, 72). Con-
versely, ablation of the retn gene or reduction in resis-
tin protein through antisense oligonucleotide treat-
ment improves insulin sensitivity through AMPK
activation (73, 74). Resistin inhibits adipogenesis,
whereas the loss of resistin function increases body
weight and fat and enhances insulin sensitivity (75, 76).
Thus, resistin has significant roles in energy and glu-
cose homeostasis. In agreement, we found that loss of
resistin in leptin-deficient Lepob/ob mice increased
body weight and fat by decreasing energy expenditure
(77). Insulin sensitivity improved in Lepob/ob lacking
resistin and was reversed by resistin treatment (77).
The resistin receptor is not known but the effect of
resistin to induce insulin resistance is associated with
attenuation of AMPK phosphorylation and increased
SOCS3 expression (72–74, 77) (Fig. 3). Thus, resistin
may act at similar targets as leptin and adiponectin to
affect glucose metabolism (Figs. 1–3).

Muse et al. (78) have reported that infusion of either
resistin or an active cysteine mutant in the mediobasal
hypothalamus stimulated glucose production, whereas
antagonism of resistin action in the hypothalamus pre-
vented the ability of plasma resistin to increase glucose
production. Central resistin induced insulin resistance in
liver, and this was related to induction of TNF-�, IL-6,
and SOCS-3 (78). We have extended these findings by
showing that intracerebroventricular resistin treatment
induces hepatic insulin resistance and inflammatory
markers by increasing expression of NPY and AGRP in
the hypothalamus (79). The ability of resistin to increase
glucose production and TNF-�, IL-6, and SOCS3 was
attenuated in NPY-deficient mice as well as pharmaco-
logical blockade of NPY-Y1 receptor (79). These findings

provide a framework for further investigation into the
connection between resistin and inflammation and glu-
cose metabolism.

Human resistin is made and secreted by macro-
phages (80, 81). Plasma resistin levels and single-
nucleotide polymorphisms have been linked to obesity
and lipid and glucose abnormalities in some studies
(82–85), although others have failed to establish such
a relationship (85, 86). Resistin has been associated
with inflammation and atherosclerosis (88, 89). Resis-
tin is strongly related to the levels of soluble TNF�
receptor-2, IL-6- and lipoprotein-associated phospho-
lipase A2, and severity of coronary artery calcification
(90). The connection between resistin and inflamma-
tion was examined by injecting a low dose of lipopoly-
saccharide in humans (91). Lipopolysaccharide in-
duced fever and increased adipose TNF� and IL-6
levels in parallel with insulin resistance. These effects
were associated with increases in resistin and leptin,
suggesting a link between inflammation, adipokines,
and glucose metabolism (91). We also examined the
link between inflammation and adipokines by treating
patients with etanercept for 4 wk to neutralize TNF�
(92). Etanercept increased the level of total adiponec-
tin but not HMW adiponectin, and increased resistin.
Etanercept decreased muscle fat content but did not
enhance insulin sensitivity (91, 92). Longer studies are
needed to establish whether the changes in proinflam-
matory cytokines and adipokines are indeed linked to
glucose metabolism (91, 92).

CONCLUSION

This review highlights the effects of adipokines on
energy homeostasis. Knowledge of specific signaling
pathways will benefit the diagnosis and treatment of
diabetes, lipid disorders, and various metabolic dis-
eases related to obesity. As the list of adipokines con-
tinues to grow, it has become apparent that factors that
control the production of adipokines vary according to
the species under study. Adipokines may affect energy
homeostasis via hormonal, paracrine, or autocrine
mechanisms in the brain and peripheral organs. Future
research requires systematic approaches in animal mod-
els and especially humans to elucidate the biology of
adipokines and how this impacts diseases.
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