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Abstract
Purpose of Review Obesity is a global health crisis with detrimental effects on all organ systems leading to worsening disease
state and rising costs of care. Persons with obesity failing lifestyle therapies need to be escalated to appropriate pharmacological
treatment modalities, medical devices, and/or bariatric surgery if criteria are met and more aggressive intervention is needed. The
progression of severe obesity in the patient population coupled with related co-morbidities necessitates the development of novel
therapies for the treatment of obesity. This development is preceded by increased understanding of the underpinnings of energy
regulation and neurohormonal pathways involved in energy homeostasis.
Recent Findings Though there are approved anti-obesity drugs available in the USA, newer drugs are now in the pipeline for
development given the urgent need. This review focuses on anti-obesity drugs in the pipeline including centrally acting agents
(setmelanotide, neuropeptide Yantagonist [velneperit], zonisamide-bupropion [Empatic], cannabinoid type-1 receptor blockers),
gut hormones and incretin targets (new glucagon-like-peptide-1 [GLP-1] analogues [semaglutide and oral equivalents], amylin
mimetics [davalintide, dual amylin and calcitonin receptor agonists], dual action GLP-1/glucagon receptor agonists
[oxyntomodulin], triple agonists [tri-agonist 1706], peptide YY, leptin analogues [combination pramlintide-metreleptin]), and
other novel targets (methionine aminopeptidase 2 inhibitor [beloranib], lipase inhibitor [cetilistat], triple monoamine reuptake
inhibitor [tesofensine], fibroblast growth factor 21), including anti-obesity vaccines (ghrelin, somatostatin, adenovirus36).
Summary With these new drugs in development, anti-obesity therapeutics have potential to vastly expand allowing better
treatment options and personalized approach to obesity care.

Keywords Anti-obesity drugs . Weight loss medications . Novel targets . Phase 1 and phase 2 trials . Obesity pharmacotherapy .

Weight management

Introduction

Obesity causes or exacerbates over 200 medical disorders
leading to worsening disease morbidity and mortality [1].
Over one-third of US adults are affected with obesity [2].
Patients with a body mass index (BMI) ≥ 27 with at least
one obesity-related comorbidity such as diabetes or hyperten-
sion or a BMI ≥ 30 who have failed lifestyle therapies are

further recommended for adjuvant anti-obesity pharmacother-
apy [3]. There are currently six major Food and Drug
Administration (FDA)-approved medications in the USA
(Table 1): orlistat [4, 5], phentermine [3, 6], phentermine/
topiramate extended-release [7], lorcaserin [8, 9], naltrexone/
bupropion sustained-release10, and liraglutide 3.0 mg [10,
11]. Although, in clinical trials, these drugs have a statistically
average mean weight loss of 3–7% from baseline [12], the
individual weight loss response to these drugs can be variable
with some patients losing ≥ 5% initial body weight over
12 weeks and others losing quite less [5, 9, 10, 13–15].
Some patients may also experience adverse effects precipitat-
ing the need to abort therapy and try another anti-obesity drug
that might have equal efficacy in the individual patient [16].
As a result, it becomes more paramount to explore novel treat-
ment modalities and therapeutics for the treatment of obesity
given the urgent need. Thus, this review is timely and
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highlights current pharmacotherapeutics for obesity in the
pipeline (Table 2) with regard to mechanism of action, safety,
and potential clinical utility.

Energy homeostasis involves regulation of caloric intake
and energy expenditure [101]. An imbalance or improper reg-
ulation or control of homeostasis can cause obesity [101].
Understanding these mechanisms had led to progress in novel
pharmacotherapeutics for the treatment of obesity. In the ar-
cuate nucleus of the hypothalamus, two populations of prima-
ry neurons respond through afferent and efferent neurohor-
monal signals derived peripherally and neuronally. Neurons
expressing the anorexigenic proopiomelanocortin (Pomc)
gene release α-, β-, and γ-melanocyte-stimulating hormones
(MSHs). MSHs are melanocortin receptor agonists, and cen-
tral administration of α- or β-MSH (but not γ-MSH), which
acts selectively at the MC3R and MC4R, reduces food intake
and increases energy expenditure [102, 103]. The second set
of primary arcuate neurons expresses the orexigenic gene
encoding agouti-related peptide (AgRP) [104]. AgRP inhibits
POMC activity and functions to increase appetite, reduce sa-
tiety, and increase food intake [105]. Targets that either inhibit

AgRP activity or stimulate POMC and α-MSH activity either
centrally or through peripheral activation via secondary path-
ways have future potential in the treatment of obesity.

Centrally Acting Agents

Setmelanotide (RM-493, Formerly BIM-22493,
IRC-022493)

Our understanding of melanocortin receptor agonists acting in
the brain to regulate food intake and satiety and independently
affecting insulin sensitivity [106] was advanced by the discovery
of POMC mRNA, melanocortin peptides [107], and cloning of
the melanocortin receptors in 1992 [108]. It is now well known
that mutations in the MC4R gene leading to energy dysregula-
tion cause monogenic obesity [17] as exemplified in the Pima
Indian population [109] noted to have a high prevalence of
MC4R loss-of-function variants, associated with obesity, type 2
diabetes mellitus, and lower resting energy expenditure.

Table 1 Current major FDA-approved anti-obesity medications

Medication Approval
date in the
USA

Contraindications Warnings and precautions Side effects

Phentermine 1959 History of cardiovascular disease,
concurrent use with monoamine
oxidase inhibitors within 14 days,
hyperthyroidism, glaucoma,
history of drug use, agitated states

Rare cases of primary pulmonary
hypertension, increases in heart
rate, blood pressure

Insomnia, dry mouth, constipation,
agitation

Orlistat 1999 Chronic malabsorption syndrome,
cholestasis

Decrease in vitamin absorption;
recommend multi-vitamin
supplementation with orlistat

Oily spotting, flatus with discharge,
diarrhea, fecal urgency

Phentermine/topiramate 2012 Glaucoma, hyperthyroidism,
concurrent use with monoamine
oxidase inhibitors within 14 days

Fetal toxicity, metabolic acidosis,
cognitive impairment

Paraesthesia, dizziness, dysgeusia,
insomnia, constipation, and dry
mouth

Lorcaserin 2012 Pregnancy Risk of serotonin syndrome or
neuroleptic malignant
syndrome-like reactions;
discontinue if signs of valvular
heart disease develop

In non-diabetic patients: headache,
dizziness, fatigue, nausea, dry
mouth, and constipation, and in
diabetic patients: hypoglycemia,
headache, back pain, cough, and
fatigue

Naltrexone/bupropion
sustained-release

2014 Uncontrolled hypertension, seizures,
anorexia nervosa or bulimia,
chronic opioid use, concurrent use
with monoamine oxidase
inhibitors within 14 days

Suicidal behavior and ideation,
increase in heart rate and blood
pressure, hepatotoxicity,
angle-closure glaucoma

Nausea, constipation, headache,
vomiting, dizziness, insomnia,
dry mouth, and diarrhea

Liraglutide 3.0 mg 2014 Personal or family history of
medullary thyroid carcinoma or
multiple endocrine neoplasia type
2

Thyroid c-cell tumors seen in rats
and mice; rarely acute
pancreatitis, acute gallbladder
disease, renal impairment,
increase in heart rate, suicidal
ideation and behavior, serious
hypoglycemia when used with
insulin

Nausea, hypoglycemia, diarrhea,
constipation, vomiting, headache,
decreased appetite, dyspepsia,
fatigue, dizziness, abdominal
pain, and increased lipase

All anti-obesity medications are contraindicated in pregnancy
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In comparison, the MC3R gene has a more crucial role in
foraging behaviors and maintenance of energy homeostasis
during nutrient scarcity [110].

SetmelanotideisanovelsyntheticMC4R-agonist targetshown
to decrease bodyweight and increase energy expenditure in non-
humanprimates [18,19]. Ina randomized, double-blind,placebo-
controlled, crossover study [17], the effects of setmelanotide
(1mg/24 h by continuous subcutaneous infusion over 72 h)were
examined on resting energy expenditure (REE) in patients with
obesity (six men and six women with BMI 35.7 ± 2.9 kg/m2

[mean ± SD]) studied in an inpatient setting in conjunction with
a weight-maintenance diet and 30 min of daily exercise. Patients
had increased REE compared to placebo by 6.4% (95% confi-
dence interval, 0.68–13.02%),withhigher total dailyEEand low-
er respiratoryquotient (0.833 ± 0.021vs0.848 ± 0.022;p = 0.02).
No adverse effect on heart rate or blood pressure was observed.

Setmelanotide treatment was associated with small increases
in plasma fasting glucose, insulin, C-peptide, triglyceride, FFA,
and total GLP-1 and PYY levels in a crossover study [17].
Though MC4R agonists have been previously reported to in-
crease BP and heart rate [111], no adverse effects on heart rate or
blood pressure were noted. Other mild, transient side effects
included headache, arthralgia, nausea, spontaneous penile erec-
tions, and female genital sensitivity [17]. Setmelanotide is cur-
rently being evaluated for the following rare genetic disorders of
obesity: POMC deficiency obesity, LepR deficiency obesity,
Prader-Willi syndrome, Bardet-Biedl syndrome, Alström syn-
drome, POMC heterozygous deficiency obesity, and POMC
epigenetic disorders [112–114]. Setmelanotide has the potential
for replacement therapies forMC4R pathway deficiencies found
in rare genetic disorders of obesity.

Neuropeptide Y Antagonists (Velneperit [S-2367])

Velneperit (S-2367) is an Y5 receptor antagonist that prevents
binding of NPY to Y5 receptors, thus decreasing hunger and
increasing satiety. It was originally developed by Shionogi as a
possible obesity drug due to its anorectic effects, but was
discontinued from further development after disappointing re-
sults showing modest weight loss in phase II clinical trials [20,
21]. The trials [22] enrolled 1566 patients with obesity and eval-
uated efficacy and safety of two doses (800 and 1600 mg) vs
placebo, in combinationwith either a reduced-calorie diet (RCD)
or a low-calorie diet (LCD). Patients receiving 800 mg lost an
average of 3.8 kg compared to placebo (0.8 kg; p < 0.0001) with
35% of patients losing > 5% of their initial body weight (placebo
12%). The 54-week LCD study with 1600-mg dose showed a
weight loss of 7.1 vs 4.3 kg in placebo with 52% of the patients
in the treatment group losing > 5% of initial body weight (pla-
cebo 35%). Preliminary data from the study showed that
velneperit met primary end points of weight reduction and sec-
ondary end points of improvements in lipid profile and reduction
of weight circumference. However, it was still considered aT
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successful proof-of-concept of the potential of Y5 receptor an-
tagonists as possible anti-obesity agents in the future.
Combination of velneperit and orlistat is also being explored in
clinical trials by Shionogi [115].

Zonisamide-Bupropion Slow-Release [Empatic]

The combination drug zonisamide-bupropion (Empatic) has
been shown to induce weight loss in clinical trials [23, 24].
Zonisamide is an antiepileptic agent with properties of sodium
channel modulation, carbonic anhydrase inhibition, and dopa-
mine and serotonin transmission, used to treat partial seizures
with known weight loss as a side effect. Bupropion, a dopami-
nergic agent, approved for the treatment of depression and
smoking cessation, also decreases appetite and has been linked
to weight loss as monotherapy. The zonisamide-induced depres-
sion and sedation effects coupled with its anti-seizure properties
complement well to the seizure-inducing anti-depressive effects
of bupropion [22, 116]. The combination was found to be supe-
rior to monotherapy in a small pilot study involving 18 women
with obesity [23]. The combination zonisamide (initially given at
a dose of 100 mg and then titrated to 400 mg by 4 weeks) plus
bupropion (100-mg immediate release, titrated to 200 mg after
2 weeks) had an average weight loss of − 7.2 kg (7.5%) at
12 weeks compared to placebo (2.9 kg, 3.1%). The zonisamide
monotherapy group had a 44% dropout rate due to poor toler-
ance and side effects, compared to 22% in the combination treat-
ment group. In a 24-week phase IIb double-blind, placebo-
controlled trial [24] of Empatic in 729 patients with obesity
(BMI 27–45 kg/m2), patients in the treatment arm had greater
weight loss (bupropion 360 mg + 120 mg zonisamide dosage −
6.1%; bupropion 360 mg + 360 mg zonisamide − 7.5%) com-
pared to placebo (1.4%) and monotherapy with zonisamide
(3.2% on 120 mg and 5.3% 360 mg) and bupropion 360 mg
(2.3%). In the buproprion 360 mg + 120 mg zonisamide group,
46.9% of patients lost > 5% of initial bodyweight and 60.4% in
the buproprion 360 mg + zonisamide 360 mg group. Nausea,
headache, and insomnia were the most common reported ad-
verse events. Cognitive impairment, depression, anxiety, and
suicidal ideation were not statistically different between placebo
and Empatic groups. Empatic has completed phase II trials [116].

Cannabinoid Type-1 Receptor Blockers (SR141716,
AM251, AM6545)

Activation of cannabinoid type-1 (CB1) receptors) [25] by can-
nabinoids stimulates orexigenic signaling while antagonism of
CB1 receptors stimulates anorexigenic signaling leading to inhi-
bition of food intake [26, 27]. Previous older targets including
CB1 receptor antagonist/inverse agonist SR141716 rimonabant
[28, 29] and AM251 [30] were shown to promote weight loss in
animal studies. However, these older CB1 therapeutic antagonist
targets had potential for centrally mediating effects. More

specifically, rimonabant caused depressive disorders or mood
alterations in up to 10% of patients and approximately 1% sui-
cidal ideation rates. Furthermore, nausea and upper respiratory
infections were quite common in > 10% of patients with other
reported adverse effects ranging from gastroenteritis, anxiety,
irritability, insomnia, sleep disorders, hot flushes, diarrhea,
vomiting, dry or itchy skin, tendonitis, muscle cramps and
spasms, fatigue, to flu-like symptoms, and increased risk of fall-
ing [31]. Clinical trials and postmarketing surveillance data
showed that the risk of psychiatric disorders including depressed
mood disorders, anxiety, and suicidal ideation in people taking
rimonabant was doubled, and thus, it was withdrawn from the
market in 2009 [32, 33]. Regardless, these earlier studies served
as proof-of-concept that cannabinoid antagonists may be useful
targets with anti-obesity effects. A novel peripheral cannabinoid
antagonist (AM6545) with limited CNS penetration is under
exploration. In animal studies, it inhibited food intake and body
weight gain without aversive side effects [117, 118].

Gut Hormones and Incretin Effects

Semaglutide (NN9536) and Oral GLP-1 Agonists
(Semaglutide, TTP054/TTP-054 and ZYOG1)

Glucagon-like-peptite-1 [GLP-1] receptors are also found direct-
ly on the brain and act through adiverse neural circuitry involving
peripheral GLP-1 signaling to control food intake and body
weight regulation [119]. Liraglutide 3.0 mg once-daily subcuta-
neous injection, a GLP-1 analogue, is available and currently
approved for the treatment of obesity. It has shown efficacy in
patientswith obesity and type 2 diabetes [10, 11]. However, there
are no present extended-release formulations of GLP-1 approved
for the treatment of obesity. Semaglutide is a long-acting GLP-1
analogue in the pipeline for both obesity (phase 2) and type 2
diabetes mellitus (phase 3) that shows promise. In a randomized,
double-blind, placebo-controlled, two-period crossover trial in-
vestigating the effects of 12weeks of treatmentwith once-weekly
subcutaneous semaglutide, dose-escalated to 1.0 mg in 30 pa-
tients with obesity compared to placebo, semaglutide resulted in
24% reduction in total energy intake across all ad libitum meals
per day (p< 0.0001) and a− 5.0-kg reduction frombaseline body
weight with improved cravings and better control of eating [34].

The safety and efficacy of once-weekly semaglutide for the
treatment of type 2 diabetes has been evaluated in several trials
[35–37]. Semaglutide has resulted in greater reductions in
HbA1c and weight, with fewer hypoglycemic events.
Semaglutide has been well tolerated, with a safety profile similar
to that of other GLP-1 receptor agonists. Though most common
side effects on GLP-1 receptor agonists include nausea and
bloating, data from randomized controlled trials indicate that
the incidence of pancreatitis and pancreatic cancer with GLP-1
is not significantly different from that observed in placebo/non-
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GLP-1 drugs (HR< 1, p > 0.05), whereas a statistically increased
risk of cholelithiasis (OR [95% CI] 1.30 [1.01–1.68], p = 0.041)
warrants attention [120]. The GLP-1 agonist-induced thyroid C-
cell hyperplasia seen in rodents may not be applicable to humans
[121]. Semaglutide will most likely be beneficial in patients with
type 2 diabetes mellitus, prediabetes, or insulin resistance and in
those patients who would prefer not to take daily injections. The
safety profile is similar to other GLP-1 agonists currently avail-
able and being prescribed such as liraglutide 3.0 mg subcutane-
ously for the treatment of obesity.

Furthermore, investigational oral semaglutide for type 2 dia-
betes mellitus is currently in phase 3 trials [52]. In the phase 2
dose-finding study, HbA1c andweight reduction were of similar
magnitude to those seen with the injectable GLP-1 receptor
agonist formulations, and there were no red flags in terms of
safety. Because food can interfere with oral semaglutide absorp-
tion, the drug was given fasting at least 30 min before meals in
the morning [122]. Other oral small-molecule GLP-1 agonists,
such as TTP054/TTP-054 and ZYOG1 with attractive alterna-
tive to injectable agents while retaining efficacy of GLP-1 ago-
nist and minimizing adverse effects, are being studied [123].

Amylin Mimetics (Davalintide [AC2307] and KBP-088,
KP-042 [Dual Amylin and Calcitonin Receptor
Agonists [DACRA])

Amylin, a pancreatic B-cell hormone, acts as a centrally acting
satiety signal, reducing food intake, slowing gastric emptying,
and reducing postprandial glucagon secretion by exerting an
effect through the area postrema where peripheral peptide sig-
naling can have direct connection to the brain neurons and the
central nervous system from the blood-brain barrier [38]. The
area postrema also connects to the nucleus of the solitary tract
and other autonomic control centers in the brain [39].
Subsequently, the amylin signal exerts a control over energy
pathways by decreasing the expression of orexigenic neuropep-
tides [38]. The human amylin receptor subtypes are complexes
of the calcitonin receptor with receptor activity-modifying pro-
teins [40]. Because of their mechanism of action, amylin mi-
metics coupled with calcitonin receptor agonists known as dual
action amylin and calcitonin receptor agonists (DACRA) are
novel anti-obesity drug discovery targets of study.

Davalintide (AC2307), an amylin-mimetic peptide, has dem-
onstrated in animal studies to reduce food intake and body
weight with enhanced metabolic activity over amylin [41, 42].
In more recent studies, DACRA KBP-088 has shown superior-
ity over davalintide with regard to in vitro receptor pharmacol-
ogy and in vivo efficacy of food intake and body weight [43].
Moreover, DACRAKBP-088 and KBP-042 improved oral glu-
cose tolerance and alleviated hyperinsulinemia with sustained
weight loss effects and reduction in adipocyte hypertrophy in
high-fat diet-fed rats [43–46]. A long-acting amylin analogue

intended as a once-daily treatment is also in phase 1 of investi-
gation product development [52].

Glucose-Dependent Insulinotropic Polypeptide (GIP)
Analogue (ZP4165)

GIP,originallynamed“gastric inhibitorypeptide,” is a42-amino-
acid polypeptide hormone isolated fromporcine intestineK-cells
that inhibited gastric secretion in dogs but subsequent human
studies could not confirm inhibition of gastric secretion [124].
Later research demonstrated a glucose-dependent insulinotropic
effect, suggesting an incretin role. GIP acts to stabilize blood
glucose levelswith inverse glucose-dependent effects on pancre-
atic insulin and glucagon secretion, respectively [125]. Extra-
pancreatic effects also include anabolic bone properties where
GIP inhibits bone resorption of osteoclasts and stimulates bone
formationof osteoblasts [126].GIPhas a role in lipidmetabolism
(receptorsfoundonadipocytes)with lipidsfurtherpromotingGIP
secretion [127–129]. Increased GIP signaling in adipose tissue
induces insulin resistance, lipid storage, and hepatic steatosis
and has been implicated in visceral fat accumulation [130].
Thus, high GIP levels can cause the development of obesity and
insulin resistancewith the inverse effect through inhibition [131].
In animal studies [47], though theGIP analogueZP4165demon-
strated insulinotropic action in rats and also reduced hemoglobin
A1clevels indiabeticmice,similar to theGLP-1agonist, itdidnot
alterbodyweightofobesemice. It did,however, enhanceGLP-1-
inducedweight loss, suggesting thatcombinationGIPandGLP-1
agonistwarrants furtherexplorationforobesityanddiabetes treat-
ment, rather thanmonotherapywith GIP.

Dual Action GLP-1/Glucagon Receptor Agonists
(Oxyntomodulin, MEDI0382, G530S [Glucagon
Analogue + Semaglutide], GC-Co-agonist 1177)
and Triple Agonist Glucagon-GIP-GLP-1 Agonist
(Tri-agonist 1706)

Glucagon is a peptide hormone secreted by the α-cells of the
pancreas. It is a catabolic hormone involved in raising blood
glucose through glycogen breakdown and glucose release by
hepatocytes [132, 133]. It was first noted to reduce food intake
in humans over 50 years ago, likely related to its effects on
decreasing meal size and increasing satiety [134]. Subsequent
research exploring co-administration of GLP-1 agonist and glu-
cagon noted an anorectic effect with neuronal activation in the
area postrema and central nucleus of the amygdala in contrast to
the hyperglycemic effect of glucagon monotherapy [48].

Oxyntomodulin is an endogenous 37-amino-acid peptide that
contains the 29-amino-acid sequence of glucagon followed by
an 8-amino-acid carboxyterminal extension. It is a natural GLP-
1/glucagon dual receptor agonist peptide produced by the endo-
crine enteral L-cell cells, and is known to suppress appetite,
decrease food intake, and increase energy expenditure [49, 50].
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It has shown to reduce bodyweight by 2.3 ± 0.4 kg in the treat-
ment group over the study period compared with 0.5 ± 0.5 kg in
the control group (p = 0.0106) following 4 weeks of treatment in
persons with overweight and obesity [51]. However,
oxyntomodulin’s effects are short-lived, limiting its clinical ap-
plication and thus synthetic novel dual action analogues with
longer half-lives, such as MEDI0382 [135], G530S [glucagon
analogue + semaglutide] [52], and GC-co-agonist 1177 [52], are
being evaluated in animal models. A triple glucogon-GIP-GLP-
1 agonist (tri-agonist 1706) [52] is also being developed.

Peptide YY (PYY)

PYYis a 36-amino-acid anorexigenic peptide with a hairpin-like
U-shaped fold secreted from the entero-endocrine L cells of the
ileum and colon in response to feeding [53, 54]. Although PYY
exists in two major forms, PYY1-36 and PYY3-36, the most
common form of circulating biologically active PYY is PYY3-
36, which binds to the Y2 receptor (Y2R) of the Y family of
receptors and shares a structural homology to NPYand pancre-
atic polypeptide [54]. PYY functions to reduce appetite and de-
crease food intake [55] by decreasing gastric motility, increasing
satiety, and inhibiting NPY receptors [56]. Persons with obesity
not only have lower PYY levels but the rise in PYY is blunted
postprandially though both lean and obesity subjects experience
reduced hunger and caloric intake [55]. PYY infusion has also
been shown to reduce the orexigenic hormone ghrelin levels [55].
High protein intake has been shown to increase both GLP-1 and
PYY release [57]. Failure to sustain elevated PYY levels has also
been implicated in weight regain post-bariatric surgery [58].
Though PYY is an attractive therapeutic anti-obesity drug to
study, there have been several limitations, primarily its short
half-life affecting clinical utility and stability [59]. Various ap-
proaches are being trialed in phase 1 and II investigations includ-
ing developing long-acting subcutaneously administered ana-
logues, oral and intravenous formulations, and nasal sprays [60].

Leptin Analogues (Metreleptin [MYALEPT],
Combination Pramlintide-Metreleptin)

Leptin, a hormone produced by adipocytes, was initially thought
to be a successful treatment for obesity as early animal studies
linked leptin deficiency to severe obesity. However, on the con-
trary, persons with obesity are leptin-resistant and have higher
levels of leptin [136]. Thus, mechanisms to overcome leptin re-
sistance using combination therapy are currently being explored.

Metreleptin(Myalept),aninjectablehumanrecombinant leptin
analogue which improves hyperglycemia and hypertriglyc-
eridemia and decreases hepatic fatty steatosis, has demonstrated
a role in lipodstrophic disorders characterized by congenital or
acquired loss of adipose tissue, in both children and adults
[61–64]. It is approved in Japan formetabolic disorders including
lipodystrophy and in the USA in 2014 as the first and only

treatment of patients with non-HIV-related forms of generalized
lipodystrophysuchas leptindeficiencyandcongenitalor acquired
lipodystrophy[65].Previous indicationforhypothalamicamenor-
rhea has been discontinued [66]. Development of antimetreleptin
antibody immunogenicitymight occur andhasbeen implicated in
possible weight regain or loss of efficacy associated with
metreleptin treatment [67]. The drug is thus contraindicated in
patientswith general obesity not associatedwith congenital leptin
deficiency due to lack of efficacy in this target population and
immunogenicity with neutralizing activity reported in patients
with obesity treated with metreleptin. T-cell lymphoma has been
reported in patients with acquired generalized lipodystrophy re-
gardless of treatment with metreleptin. Most common adverse
reported side effects in clinical trials (≥ 10%) were headaches,
hypoglycemia, decreasedweight, and abdominal pain [68].

Pramlintide, a synthetic analogue of amylin peptide hormone
with glucose regulatory and anorexigenic actions secreted in re-
sponse to food intake, has been shown to reduce food intake and
body weight [69]. It is currently approved for the treatment of
type 1 or 2 diabetes, though it reduces food intake and body
weight in persons with obesity regardless of diabetes status
[70]. Pramlintide is a short-term satiety signal whereas leptin is
a long-term adiposity signal. Animal models pre-treated with
pramlintide showed improvement of leptin signaling, suggesting
a synergistic or additive effect of the neurohormonal combination
[71]. In a 24-week, randomized, double-blind, active-drug-con-
trolled, proof-of-concept study in 177 persons with overweight
and obesity, combination treatment with pramlintide/metreleptin
led to greater weight loss from enrollment to week 20 (− 12.7 ±
0.9%) than treatment with pramlintide (− 8.4 ± 0.9%; p < 0.001)
or metreleptin (− 8.2 ± 1.3%; p < 0.01) alone, with weight loss
continuing without evidence of a plateau [72]. Most common
side effects were mild to moderate nausea which decreased over
time. Based on these significant findings, a phase 2b trial of
pramlintide + metreleptin was completed in late 2009 with an
extension of the study up to 52 weeks [22]. The phase 2b 28-
week, double-blind, placebo-controlled study enrolled 608 sub-
jects with overweight or obesity randomized to various dosages
of pramlintide, pramlintide + metreleptin, or placebo. At the
completion of the study, subjects with baseline BMI < 35 kg/
m2 on the highest dosage of pramlintide + metreleptin had an
average weight loss of 11% (p< 0.01; placebo 1.8%; monother-
apy groups ~ 5%). Furthermore, in the 52-week extension of the
study, subjects in the treatment group showed sustained weight
loss,whereas the placebo arm regained almost all theweight [22].

Other Novel Targets

Beloranib

Beloranib is an analogue of the natural chemical compound
fumagillin and is a methionine aminopeptidase 2 (MetAP2)
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inhibitor acting to reduce production of new fatty acid molecules
by the liver and converting stored fats into useful energy [73].
Originally designed as an angiogenesis inhibitor for the treat-
ment of cancer, clinical focus shifted to anti-obesity therapeutics
once potential effects of MetAP2 were realized [74, 75]. In an
ascending dose-trial of beloranib in 31 women with obesity ran-
domized to intravenous 0.1, 0.3, or 0.9 mg/m2 beloranib or
placebo twice weekly for 4 weeks, median weight loss with
0.9 mg/m2 beloranib was − 3.8 kg (95% CI − 5.1, − 0.9; N = 8)
versus − 0.6 kg with placebo (− 4.5, − 0.1;N = 6) [76]. The drug
was also noted to show improvements in lipids, C-reactive pro-
tein, and adiponectin. The efficacy, safety, and tolerability of the
drug was assessed in a phase 2, double-blinded, randomized
study investigating the effects of beloranib suspension (0.6,
1.2, 2.4 mg) or placebo, administered subcutaneously for
12 weeks in 147 participants with obesity [77]. At week 12,
beloranib resulted in dose-dependent progressive weight loss
of − 5.5 ± 0.5, − 6.9 ± 0.6, and − 10.9 ± 1.1 kg for the 0.6-,
1.2-, and 2.4-mg beloranib doses, respectively, compared with
− 0.4 ± 0.4 kg with placebo (all p < 0.0001 vs placebo) with
corresponding improvements in cardiometabolic risk factors.
The drug appeared safe andwell tolerated with sleep disturbance
and gastrointestinal adverse effects most commonly reported.
Beloranib has also been implicated to cause robust weight loss
and hypophagia in rat models of hypothalamic and genetic obe-
sity [78]. InDecember 2015, phase III beloranib clinical trials for
Prader-Willi were discontinued after a second patient death and
obstacles to getting FDA approval for the drug [79].

Lipase Inhibitor (Cetilistat [ATL-962])

Cetilistat [ATL-962] is similar to the older drug orlistat
(xenical) and acts as a pancreatic and gastric lipase inhibitor.
In diet-induced obesity rats, the drug ameliorated body weight
gain and caused improvements in lipid profiles [80]. In a
phase 2, multicenter, randomized, placebo-controlled, parallel
group study, patients (n = 371 who met entry criteria) were
randomized to either placebo or one of three different doses
of cetilistat (60 mg three times daily, 120 mg three times daily,
or 240 mg three times daily) for 12 weeks, followed by a 4-
week post-treatment follow-up [81]. Cetilistat group had sta-
tistically significant mean body weight reductions compared
to placebo (60 mg—3.3 kg, p < 0.03; 120 mg—3.5 kg, p =
0.02; 240 mg—4.1 kg, p < 0.001) with improvements in lipid
profile at all the dosages. Treatment-emergent adverse events
were similar between the groups, with the cetilistat group hav-
ing greater gastrointestinal adverse events (1.8–2.8% of sub-
jects in the treatment group). In another phase 2 trial compar-
ing cetilistat to orlistat vs placebo, cetilistat was found to be
well tolerated and showed fewer discontinuations due to ad-
verse effects than in the placebo and orlistat groups [82]. The
significant reductions in body weight with improvement of
glycemic control in patients with type 2 diabetes and obesity

compared to placebo were similar for both orlistat and
cetilistat. Thus, the drug shows promise over orlistat while
alleviating potential negative gastrointestinal side effects such
as diarrhea, flatulence, and oily spotting [82].

Triple Monoamine Reuptake Inhibitors (Tesofensine
[TE])

Tesofensine (TE) is a novel triple monoamine potent reuptake
inhibitor of neurotransmitters dopamine, norepinephrine, and
serotonin. In animal studies, TE produced weight loss with
increases in forebrain dopamine levels in diet-induced obesity
rats, suggesting that its effects could be interrelated to central
dopaminergic activity [83]. In phase 2 trial of 203 persons
with obesity randomized to treatment with TE 0.25, 0.5, or
1.0 mg, or placebo daily for 24 weeks, TE treatment resulted
in a mean weight reduction of 4.5, 9.2, and 10.6% higher than
that of placebo for 0.25, 0.5, and 1.0 mg, respectively
(p < 0.0001) [84]. Though TE showed robust anti-obesity ef-
fects in clinical trials, further studies to assess safety and effi-
cacy of TE are needed. TE shares pharmacological properties
with sibutramine and has potential to increase heart rate, blood
pressure, and psychiatric disorders [85].

Fibroblast Growth Factor (FGF21)

Fibroblast growth factor (FGF) 21, expressed primarily in the
liver, but also found in adipose tissue, skeletal muscle, and
pancreas, is a member for the FGF family that functions as a
metabolic regulator with beneficial effects of both weight loss
and improved glycemic control [86]. The molecule functions
on multiple target organs and acts as a tri autocrine, paracrine,
and endocrine factor. In white adipose tissue, FGF21 stimu-
lates glucose uptake and adiponectin secretion with browning
in susceptible white adipose tissue depots. In brown adipose
tissue, FGF21 also stimulates both glucose uptake and ther-
mogenesis. The ability to increase energy expenditure makes
it an exciting target for the study of anti-obesity drugs. In the
liver, FGF21 inhibits growth hormone signaling; regulates
fatty acid oxidation both in fasted state and inmice consuming
high-fat, low-carbohydrate ketogenic diet; and maintains lipid
homeostasis [87–90]. The molecule also possesses anti-
inflammatory anti-oxidative stress properties with its circulat-
ing concentration increasing during periods of muscle-related
or critical stress [91]. Though an attractive novel anti-obesity
and anti-diabetes target of study, FGF21 levels are elevated in
obese ob/ob and db/db mice and correlate positively with BMI
in humans while exogenous dosages of FGF21 in diet-
induced mice show virtually absent beneficial effects on glu-
cose tolerance and lipid metabolism, suggesting that the obe-
sity state is FGF21-resistant [92].
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Anti-obesity Vaccines (Ghrelin, Somatostatin, Ad36)

Thus far, we have focused on anti-obesity drugs in the pipeline
that either directly or indirectly enhance anorexigenic signaling.
Vaccination to prevent or treat obesity might potentially be a
novel therapeutic approach. Vaccination has traditionally been
utilized to eradicate or prevent infectious disease and in some
cases, prophylax against cervical or hepatocellular carcinoma
by soliciting an immune response to foreign weakened or killed
antigens and generating neutralizing antibodies which eliminate
the antigen from the body [93]. Key concept in the development
of anti-obesity vaccines would be to possibly suppress appetite-
stimulating hormones and/or block nutrient absorption.

Ghrelin, the only orexigenic hormone, secreted by the fun-
dus cells of the stomach, has been a target for potential vacci-
nation. Anti-ghrelin vaccine has been shown to decrease food
intake, decrease hypothalamic orexigenic signals, and increase
energy expenditure in rodents and pigs [93]. However, human
studies have been disappointing with no weight loss shown in
clinical trials despite a strong response in ghrelin autoantibodies
after four injections of anti-ghrelin vaccine vs placebo at weeks
0, 4, 8, and 16 [93, 94] though a different study showed that IgG
anti-ghrelin autoantibodies are able to protect ghrelin from deg-
radation, suggesting that an autoimmune response may be in-
volved in ghrelin’s orexigenic effects [95].

Somatostatin, a peptide hormone produced in the hypothala-
mus and other tissues such as the gastrointestinal system inhibits
growth hormone (GH) and insulin-like growth factor 1 (IGF-1)
secretion. Reduced GH basal secretion has been associated with
obesity and increased adiposity, and thus, the principle behind
somatostatin vaccination is to remove inhibitory effects of so-
matostatin and to increase endogenous levels of GH and IGF-1
[96]. In animal mouse studies, however, vaccination did not
affect changes in food intake, though a 10% decrease in body
weight gain was noted under a high-fat diet [97].

Adenovirus 36 (Ad36) influences the risk of obesity in
humans, characterized by increased inflammation and adiposity
[98, 99]. In a proof-of-concept study, mice were injected with
live Ad36 vaccine and compared to the control group
(unvaccinated) after 14 weeks. The control group showed 17%
greater body weight and 20%more epididymal fats compared to
vaccinated group, which also had decreased inflammatory cyto-
kines and macrophages in fat tissue [100]. Prophylactic vacci-
nation against virus-induced obesity might also be an anti-
obesity therapeutic possibility in the near future.

Conclusion

Given the enormous costs and high disease burden of obesity,
current pharmacological therapies are not sufficient to address
the clinical heterogeneity including side effects and

contraindications that can factor into a treatment algorithm for
a patient with obesity. Despite a checkered history of past obe-
sity drug development, current approved anti-obesity medica-
tions along with newer promising therapies are on the horizon.
These therapies provide hope for increasing the medicinal ar-
moire against obesity with more effective treatment strategies,
whether in monotherapy or combination. As our understanding
of the disease process improves and sustained success is
achieved with these drugs, it might be possible to finally easily
approach a very complex disease from a clinical therapeutic
standpoint.
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