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Abstract

Physical activity exerts multiple beneficial effects and the myokine concept provides a framework for understanding the molec-
ular pathways that integrate contracting muscle in the complex network of organ communication. This network includes multiple
distinct and distal organs; however, the autocrine and paracrine effects of myokines within skeletal muscle (in which they are
produced) also need specific attention. In humans, the functional allocation of myokines remains limited and recent findings on
fibre type-specific myokine signatures point to an additional level of complexity. Myokines are involved in the anti-inflammatory
effect of physical activity and, therefore, critically counteract insulin resistance and the metabolic perturbations of obesity and
type 2 diabetes. Future work needs to address the role of myokines in concert with other crosstalk molecules, and to define their

specific impact for metabolic homeostasis.
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Abbreviations

BAT Brown adipose tissue

FGF Fibroblast growth factor
NAFLD Non-alcoholic fatty liver disease

Introduction

The beneficial effects of physical activity have been known
for decades. However, only recently the so-called ‘myokine
concept’ has generated a new understanding of the role that
skeletal muscle plays as an active endocrine organ, which is
involved in the communication and fine tuning between major
metabolic organs [1-3]. The conceptual framework of consid-
ering myokines as critical mediators within the organ commu-
nication network has been instrumental in developing a new
understanding of the molecular basis of physical activity.
Given that physical activity undoubtedly represents a key
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preventive intervention for combating chronic diseases, such
as type 2 diabetes and cardiovascular disease [4], extensive
research has focused on the identification and functional char-
acterisation of myokines, driven by expectations of finding
novel preventative and therapeutic targets [5—7].

Although postulated for a long time, it was only ~20 years
ago that the first exercise factor, IL-6, was identified and the
term ‘myokine’ was introduced [8]. Some key facts about
myokines are summarised in the Text box. The overarching
property of all myokines is secretion or release from skeletal
muscle cells. However, many myokines are not released into
the circulation but act as autocrine or paracrine factors within

Key properties of myokines

o By definition, a myokine is a peptide or protein that
is released from skeletal muscle cells.

e Muscle contraction is a major regulator of myokine
expression and release. However, some myokines
do not respond to muscle contraction.

e The term ‘exercise factor’ includes myokines and,
also, metabolites. An exercise factor is principally
released to the circulation upon muscle contraction.

o Myokines exert multiple autocrine, paracrine and
endocrine biological effects.
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skeletal muscle. In addition to myokines, metabolites released
by contracting skeletal muscle play an important role as exer-
cise factors [7]. For example, molecules released from skeletal
muscle, such as [3-aminoisobutyric acid [9] and lactate [10],
were shown to convey signalling to the liver, adipose tissue
and the brain [11]. This inter-organ metabolic crosstalk [12] is
different from myokine-mediated crosstalk due to: (1) the
protein-related high capacity of signalling information (cova-
lent modification, protein folding); and (2) the involvement of
specific receptors at the target cell. Secretomic studies of mus-
cle cells have shown the presence of hundreds of myokines
with mostly unknown functions [13], demonstrating the com-
plexity of organ crosstalk.

This review aims to: (1) highlight the specific role of
myokines in the network of organ communication, with spe-
cific relevance for humans; (2) consider the different stages of
metabolic dysregulation and the role of myokines in these;
and (3) address the translation of these findings to potential
novel therapeutic strategies.

Exercise-induced myokines and the network
of organ communication

The complexity of higher organisms requires a balanced system
of cell-to-cell and organ-to-organ communication (organ
crosstalk) to adapt and harmonise the physiological functions
of different organs. Currently, the best understood element of
organ crosstalk is represented by the secreted proteome of mus-
cle, adipose tissue, liver and immune cells [14]. Initially, the
adipocyte-myocyte axis was described as a paradigm of negative
crosstalk between two tissues [15]. However, based on the
myokine concept, a bi-directional crosstalk was proposed, lead-
ing to the current view of a network of organ communication.
This is illustrated in Fig. 1, which emphasises known myokine
targets and depicts key players in this interaction. In the sections
below, I focus on the effects of exercise, which leads to metabolic
adaptations in a number of distinct organs.

Muscle-adipose crosstalk With the discovery of brown adipose
tissue (BAT) in adult humans and the beneficial effects of this
specific depot on metabolic homeostasis, an extensive number of
studies addressed the question of whether exercise and certain
myokines may promote BAT activity and the so-called browning
of white fat [16]. In 2012, irisin was reported to be released from
skeletal muscle after physical activity and to induce a white-to-
brown transition in both rodents and humans, potentially medi-
ating the beneficial effects of physical activity [17]. However,
irisin remains one of the most controversial myokines, with its
function still being ill-defined, especially in humans [18, 19]. In
rodents, the transplantation of subcutaneous adipose tissue from
trained to sedentary mice improved metabolic control, supporting
the notion of exercise-induced adipose tissue adaptation [20]. As
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pointed out by Wright and co-workers [21], this is a complex
process potentially involving a rise in catecholamines, activation
of lipolysis, activation of AMP-activated protein kinase
(AMPK), induction of mitochondrial biogenesis and browning.
Interestingly, myokines such as IL-6 and the recently discovered
meteorin-like protein, appear to be involved in this process [21].
In humans, the browning of white fat in response to exercise has
remained controversial [22], thus requiring future studies on the
functional impact of myokines on human adipose cells. Since
only 5% of the myokinome is currently linked to a specific
function, bioinformatic approaches will be needed to integrate
the muscle—adipose crosstalk in the multi-organ communication
network.

Muscle-liver crosstalk Systematic reviews of the effect of ex-
ercise training on non-alcoholic fatty liver disease (NAFLD)
suggest that exercise, independent of weight loss, ameliorates
hepatic steatosis [23]. The role of myokines in this process has
remained under-explored. Experimental data suggest that IL-6
upregulates hepatic peroxisome proliferator-activated receptor
« (PPAR ) and fatty acid oxidation. Most likely, the release
of hepatokines in response to physical activity plays a key role
in preventing the development of NAFLD. IGF-I and fibro-
blast growth factor (FGF)-21 are hepatokines that are upreg-
ulated in response to exercise in humans [24, 25] and the
crosstalk between these molecules and muscle and adipose
tissue improves metabolic performance and prevents the de-
velopment of NAFLD. In a recent study, Drevon and co-
workers [26] showed that long-term exercise improves insulin
sensitivity by changing the circulating level of the hepatokine
fetuin-A and NEFA, potentially involving a reduction in toll-
like receptor 4 signalling.

Muscle-bone crosstalk The tight functional association be-
tween muscle and bone is well known but, only recently, the
‘bone—muscle unit’ was described as a paradigm of multidi-
rectional crosstalk between different tissues, involving not on-
ly muscle and bone but also adipose tissue, cartilage and ten-
don [27]. In this scenario, secreted myokines play an impor-
tant role, most likely in a paracrine fashion [28], with IL-6
being confirmed to play a role in bone formation in human
studies. Many other myokines affect bone metabolism either
positively (e.g. IGF-I, FGF-2, IL-15) or negatively (e.g.
TGF-f3) [29].

Muscle-beta cell crosstalk Several reports point to the exis-
tence of a muscle—pancreas axis, with myokines playing an
important role in this crosstalk [30, 31]. This concept has been
substantially reinforced by a recent study wherein a fibre type-
specific myokine signature was demonstrated and the beta cell
protective effect of angiogenin and osteoprotegerin (type II
muscle-specific myokines) was reported [32]. Thus, it was
shown that these tricep-specific myokines reduce apoptosis
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Fig. 1 The network of organ communication and the specific role of
myokines. Both resistance and endurance training stimulate the release
of a host of myokines from skeletal muscle; many of the myokines acting
within the muscle as exercise factors are shown. Adipose tissue is a major
target for the biological effects of myokines, including increased expres-
sion of adiponectin and white-to-brown transition of the tissue. Exercise-
stimulated myokines also act on the liver although the release of

of beta cells. Specifically, both myokines prevent beta cell
apoptosis induced by proinflammatory cytokines or by condi-
tioned medium from insulin-resistant myotubes [32]. These
observations are of general interest for the exercise and
myokine field, and future studies need to address the impact
of fibre type-specific myokines on organ crosstalk.

Metabolic dysregulation and the role
of myokines

Persistent energy excess and an increased demand for lipid
storage leads to adipocyte hypertrophy, cellular stress and
low-grade chronic inflammation. As a result, obesity is
characterised by an altered adipose tissue secretome that has
a large impact on organ crosstalk, leading to insulin resistance
and type 2 diabetes [14]. Physical inactivity is associated with
a network of chronic diseases, including neurodegeneration,
type 2 diabetes, cardiovascular disease, and different forms of
cancer that involve enlargement of the visceral fat depot and
induction of multiple systemic inflammatory pathways [33].
Moreover, physical inactivity, per se, is a major driver of met-
abolic disorders; the changes it induces in the muscle
secretome and myokine profile most likely contribute to met-
abolic dysfunction, as evidenced by bed-rest studies, in which
transcription of more than 4000 genes was found to be altered
[34]. Given the existence of fibre type-specific myokine sig-
natures, it can be anticipated that lack of exercise may
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hepatokines during exercise, such as fetuin-A and IGF-I, may be more
important for improving metabolic performance. Muscle-bone crosstalk
involves a number of different myokines that both positively and nega-
tively modulate bone metabolism. The muscle—pancreas axis involves
fibre type-specific myokines exerting beta cell protection. PPAR«, per-
oxisome proliferator-activated receptor o. This figure is available as a
downloadable slide

compromise the regulatory crosstalk of the myokinome; how-
ever, this issue remains mostly unexplored.

Physical activity is known to exert an anti-inflammatory
effect that, in addition to a reduction in body weight and vis-
ceral fat mass, may be due to an increased level in immune-
modulatory agents, exerting a direct effect on the immune
system [35]. Further, the paradigm myokine IL-6 is thought
to induce an anti-inflammatory cascade by triggering the re-
lease of anti-inflammatory cytokines, such as IL-10, IL-1 re-
ceptor antagonist and soluble TNF receptor [3], jointly reduc-
ing systemic inflammation. At the local level, the novel
myokine chitinase-3-like protein 1 (CHI3L1) was recently
reported to exert an auto-protective function by inhibiting
TNF-«x-induced activation of NF-kB, inflammation and insu-
lin resistance in myotubes [36]. These autocrine and paracrine
functions of myokines and their regulation by exercise are
presently underappreciated and future studies may identify
myokines with potential therapeutic implications (see ‘Novel
myokines as potential targets for diabetes therapy’ section,
below).

An additional level of complexity surrounding the myokine
field results from the different protocols used in studies of
exercise training vs acute exercise (in laboratory settings),
and the different findings obtained from human and rodent
studies [6]. Moreover, some myokine studies have used a
combination of endurance and strength training, with many
different protocols of intensity and duration being used in
these studies [6]. Furthermore, the number of myokines with
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proven functions in humans is very limited [6]; at present,
robust data only exist for IL-6, IL-8, IL-13, IL-15, FGF-21,
angiopoietin-like 4 (ANGPTL4), among a few others. Thus,
the vast majority of myokines await functional assessment in
humans. Consequently, more work is needed to integrate the
myokine and inflammation network and to fully understand
the role of myokines in metabolic dysregulation in humans.

Novel myokines as potential targets
for diabetes therapy

The myokine concept has triggered extensive research efforts
to identify novel myokines that might represent potential ther-
apeutic targets to combat obesity and associated metabolic
disorders.

Irisin gained considerable interest because it was claimed to
increase thermogenesis and energy expenditure as a result of
inducing the browning of white fat [17]. It is possible that irisin
is present in the human circulation at very low concentrations,
although the effect of exercise on irisin levels remains controver-
sial. Spiegelman and colleagues reported a slight increase (20%)
after 12 weeks of exercise [37]. However, a meta-analysis of
randomised controlled studies showed a decrease in irisin levels
after chronic exercise [38]. Given the lack of evidence for brow-
ning of white fat in humans in response to exercise [18], the
function of irisin remains to be established.

FGF-21 is a protein preferentially expressed in the liver but is
also described as being a myokine [39]. However, studies on the
effect of exercise on FGF-21 have remained controversial [4]. The
ability of FGF-21 to normalise glucose and lipid metabolism and
to prevent the development of obesity and diabetes was first re-
ported in 2005 [40]. Since then, the metabolic functions of FGF-21
have been studied in detail and it is now evident that this protein
represents a paradigm for orchestrating the multi-organ crosstalk
between fat, liver, brain and the vasculature [41]. FGF-21 stimu-
lates glucose uptake in muscle and fat, the synthesis and release of
adiponectin, and the white-to-brown shift of adipocytes leading to
an increased energy expenditure. These beneficial properties raised
substantial expectations that FGF-21 might represent a new target
for diabetes therapy. However, native FGF-21 has a half-life (¢,,)
of about 1 h and modifications of the molecule have been devel-
oped so that it may be administered as a drug [42]. Today, a new
class of FGF-21 molecules is available, comprising analogues with
an improved ¢, [42]. A substantial number of these molecules is
under development for the therapy of non-alcoholic steatohepatitis
(NASH) and type 2 diabetes, and both Phase 1 and Phase 2 studies
are currently ongoing.

Chemokine (C-X3-C motif) ligand 1 (CX3CL1; also re-
ferred to as fractalkine) is known to play a role in leucocyte
adhesion. It has also been identified as a myokine with poten-
tial function in muscle injury and repair [43]. Interestingly,
fractalkine was found to act as a novel player in regulating
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insulin secretion and beta cell function, and a recent study
demonstrated that chronic administration of a long-acting
fractalkine analogue caused persistent improvement of glu-
cose tolerance, increased glucose-stimulated insulin secretion
and reduced apoptosis of beta cells in different rodent models
of obesity [44]. Due to an additional effect on hepatic insulin
sensitivity, fractalkine may be of great interest for future de-
velopment as a new agent for type 2 diabetes therapy.

Conclusions

Higher organisms need complex regulatory systems that con-
tribute to adaptation and fine tuning of metabolic activities.
The organ crosstalk network is an important component of
this process and serves to communicate immediate and long-
term information for functional adjustments in different tis-
sues. Multiple signals are involved in this phenomenon and
myokines are part of this information transmission pathway,
certainly playing an important overall role in positive meta-
bolic control. The myokine concept discussed in this paper has
provided a new understanding of the role that skeletal muscle
plays as an active endocrine organ. However, the precise un-
derstanding of myokine biology is currently hampered by the
huge number of myokines mostly identified in cell cultures or
animals. In humans, functional allocation of myokines has
been very limited so far. Future directions should address the
fibre type-specific myokine signatures and the autocrine and
paracrine actions of myokines. This may provide new insight
into muscle physiology and diseases such as cachexia and
sarcopenia, both of which are under-explored areas in
myokine research.

Muscle contraction and, thus, physical activity is a major
regulator of myokine secretion, but physical activity and ex-
ercise training are part of a healthy lifestyle and the precise
dissection of myokine action from other signalling events is
very difficult. Myokines most likely act in an integrated way
with metabolites, exosomes and other crosstalk signals. It may
also be important to study individual myokine signatures to
further explore the therapeutic value of certain myokines. As
shown for irisin, a great deal of caution is required when
extrapolating data obtained in rodent studies to humans.
However, FGF-21 is a good example of an organokine that
may turn out to be of great therapeutic value.
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