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Background:Non-alcoholic fatty liver disease (NAFLD) affects 25–30% of the general population and is character-
ized by the presence of non-alcoholic fatty liver (NAFL) that can progress to non-alcoholic steatohepatitis
(NASH), liver fibrosis and cirrhosis leading to hepatocellular carcinoma. To date, liver biopsy is the gold standard
for the diagnosis of NASH and for staging liver fibrosis. This study aimed to train models for the non-invasive di-
agnosis of NASH and liver fibrosis based on measurements of lipids, glycans and biochemical parameters in pe-
ripheral blood and with the use of different machine learning methods.
Methods:Weperformed a lipidomic, glycomic and free fatty acid analysis in serum samples of 49 healthy subjects
and 31patientswith biopsy-provenNAFLD (15withNAFL and 16withNASH). The data from the abovemeasure-
ments combinedwithmeasurements of 4 hormonal parameterswere analyzedwith two different platforms and
five different machine learning tools.
Results: 365 lipids, 61 glycans and 23 fatty acids were identified with mass-spectrometry and liquid chromatogra-
phy. Robust differences in the concentrations of specific lipid species were observed between healthy, NAFL and
NASH subjects. One-vs-Rest (OvR) support vector machine (SVM) models with recursive feature elimination
(RFE) including 29 lipids or combining lipids with glycans and/or hormones (20 or 10 variables total) could differen-
tiatewith very high accuracy (up to 90%) between the three conditions. In an exploratory analysis, amodel consisting
of 10 lipid species could robustly discriminate between the presence of liver fibrosis or not (98% accuracy).
Conclusion:Wepropose novelmodels utilizing lipids, hormones and glycans that can diagnosewith high accuracy the
presence of NASH, NAFL or healthy status. Additionally, we report a combination of lipids that can diagnose the pres-
ence of liverfibrosis. Bothmodels should be further trained prospectively and validated in large independent cohorts.

© 2019 Elsevier Inc. All rights reserved.
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1. Introduction

Non-alcoholic fatty liver disease (NAFLD), the hepatic component of
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fibrosis and cirrhosis that can lead to hepatocellular carcinoma (HCC)
[2]. Median time to develop advanced fibrosis when inflammation is
absent on the initial biopsy (patients with NAFL) is 13.4 years, while
the median time when it is present (patients with NASH) is only
4.2 years [3].

The gold standard for the diagnosis of NAFLD (NAFL or NASH), and
for assessing fibrosis is liver biopsy [4]. However, liver biopsy is a costly
method that carries certain risks for the patient and the liver biopsy
specimen is not always representative of the actual status of the entire
liver, thereby often resulting in misclassification due to sampling error
and/or inter-observer viability. Regarding the risks related to liver bi-
opsy, the incidence of pain after biopsy is reported to be approximately
20%,whereas the incidence of serious complications ranges between 0.3
and 0.57% and ofmortality at 0.01% [5]. Therefore, finding easy to obtain,
relatively inexpensive and reliable biomarkers which can be measured
with less invasive or even noninvasive techniques is an urgent unmet
clinical need. Several studies have tried to identify non-invasive bio-
markers or to develop diagnostic scores to distinguish between NAFL
andNASH and the stage of liver fibrosis [6]. NAFL andNASHare complex
multi factorial disorders and thus no single surrogate marker could
probably predict in a reliable manner clinical outcome or benefits of
therapeutic interventions. In this context, significant progress has
been observedmainly with the use of imagingmodalities in diagnosing
NAFLDnon-invasively [4], the level of hepatic steatosis and the presence
or not of advanced liver fibrosis [6]. However, such tools are often not
available in the primary care or in smaller community-based gastroen-
terological or endocrinological departments. Additionally, there are no
reliable biomarkers or scores for the non-invasive diagnosis of NASH
and for staging liver fibrosis in a similar score as in liver histology
[4,6]. This is particularly important, since it will allow us to separate
the benign cases (i.e. patients with NAFL) from the patients that require
regular follow-up visits and treatment (i.e. patients with NASH and/or
liver fibrosis).

Advances in omics in the last years and in themethods for analysis of
big data have provided novel insights in the pathophysiology of many
diseases including NASH [7]. Specifically, studies focusing on the com-
prehensive analysis of cellular lipids in serum or liver biopsies of pa-
tients with NASH, i.e. lipidomics, have achieved to identify important
metabolic pathways involved in the development and progress of the
disease [8–11]. Liver is also considered the main site for glycosylation,
which is an important post-translational modification of secreted pro-
teins that affects protein stability and folding and consequently their
function [12]. The investigation of glycan structures (i.e. glycomics) in
other liver diseases have led to the development of diagnostic tests,
such as the GlycoCirrhotest [13], the GlycoFibrotest [14] and the
GlycoHCC test [15] for the diagnosis of cirrhosis, fibrosis or HCC. Finally,
certain hormones (i.e. adiponectin, leptin, follistatins, activins) have
been associated both indirectly via regulation of insulin resistance
(IR), inflammation [16] and glucose homeostasis [17–19] as well as di-
rectly by acting on hepatocytes with the development and progress of
NASH and liver fibrosis [18,20–22].

Aim of our studywas to investigatewhether analyzing combined in-
formation from serum lipids, glycans and selected hormones with dif-
ferent machine learning tools can lead to the development of
algorithms with high accuracy of predicting simultaneously NASH,
NAFL or healthy status as well as the presence of liver fibrosis.

2. Methods

2.1. Study design

The study design has been previously described [20,23]. Inclusion
and exclusion criteria are reported in the Supplementary Appendix.
Serum was available from 80 subjects: 49 without NAFLD (healthy)
and 31 with NAFLD (15 with NAFL and 16 with NASH). Liver biopsy
was performed under computed tomography-guidance and histology
was evaluated by two pathologists independently. Serumwas collected
after an overnight fasting and prior to liver biopsy.

2.2. Glycomics

Total N-glycans from serum sampleswere detected withMS. Details
are provided in the Supplementary Appendix.

2.3. Lipidomics

A lipidomics analysis was performed with LC/MS. Details are pro-
vided in the Supplementary Appendix.

2.4. Quantification of serum fatty acids

Fatty acids of whole serum were converted to their corresponding
fatty acid methyl esters [24]. Comparison of conventional and fast
gas chromatography in human plasma fatty acid determination [24]
and separated by gas-chromatography using an Agilent HP 7890 Gas
Chromatograph equipped with a 30 m × 0.25 μm × 0.25 mm
SupraWAX-280 capillary column (Teknokroma, Barcelona, Spain), an
autosampler, and a flame ionization detector. The amount of each
fatty acid is expressed as a percentage of the total identified fatty acids
in the sample.

2.5. Targeted biochemical measurements

We have previously measured adiponectin, leptin, activin A,
follistatin and triglycerides in serum samples of this study. Results
from these measurements have been previously published [20,23].
These measurements are now included in the analysis to estimate
their predictive accuracy in combination with other omics measure-
ments. Details about the previous measurements are presented in the
Supplementary Appendix.

2.6. Statistical analysis

2.6.1. Data processing, normalization and scaling
The values from all glycans were normalized initially to the value

(ion signal) of the most abandoned glycan (2792). Two glycans (1999
and 2519) were removed from the analysis, as their missing values
were N1/3 of the sample size (which was the exclusion threshold in
our study). The values from all the lipidomic measurements were nor-
malized to total positive or total negative ion signal. Fatty acidmeasure-
ments were normalized and expressed as percent of total fatty acid
concentration. Targeted biochemical measurements were not normal-
ized. A missing value in mass spectrometric analysis indicated very
low signal. Thus, a fraction (1/5th) of the minimum value was added
to all variables including themissing values in lipidomics and glycomics.
No missing values were present in the fatty acids data set. The missing
values in targeted biochemical measurements were very few (2 in
Activin A, 1 in cholesterol, triglycerides (TG), high- and low- density li-
poproteins (HDL and LDL), and were related to the lack of available
serum (and not to low signal) for these subjects and, thus, were re-
placed with the median value of the group. Since lipidomics, glycomics
and fatty acids data are normalized, they carry relative information. For
such compositional data, a centered log ratio transformation is recom-
mended [25], where the ratio of measurements by their geometric
mean for each variable is log-transformed. Furthermore, a log transfor-
mation is performed on targeted biochemical measurements to achieve
a balanced distribution. Each dataset is then mean-centered and scaled
to have a unit variance [26] (s. Supplementary Fig. A1).

2.6.2. Data analysis and visualization
In Supplementary Table A1 and in Fig. 3E, mean ± SD for normally

distributed and median with 25th and 75th percentile are reported.
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Shapiro-Wilk testwas used to assess the distributions. One-wayANOVA
for normally distributed and Kruskal-Wallis test for non-normally dis-
tributed features was performed followed (when p b 0.05) by post-
hoc Tukey's or Dunn's test. ANCOVA was performed subsequently in
order to adjust for BMI between groups (non-normally distributed fea-
tures were logarithmically transformed before the ANCOVA). A multi-
class significance analysis of microarrays (SAM) was performed with a
false discovery rate adjusted each time so that less than one false signif-
icant parameter is expected among all significant features. Additionally,
to visualize the differences between the groups, heatmaps were created
with hierarchical clustering following the Euclidean distance measure
and the ward clustering algorithm. For further visualization and identi-
fication of significant features a sparse Partial Least Squares – Discrimi-
nant Analysis was performed (sPLS-DA) with maximum 5 components
each containing amaximumof 10 variables [27]. Additionally, for two of
the predictive models that derived frommachine learning further visu-
alization and identification of significant features was performed with a
principal component analysis (PCA) and with a t-distributed stochastic
neighbor embedding (t-SNE) (s. Fig. 8).

2.6.3. Classification – machine learning
For the classification of the data and development of receiver operat-

ing characteristic (ROC) curves different machine learning techniques
with different software (Scikit-learn Library in Python and
MetaboanalystR) were tested. Specifically, with Scikit-learn [28], a re-
cursive feature elimination (RFE) algorithm along with linear support
vector machine (SVM) was performed on all data to rank and identify
the important variables [29] (s. Supplementary Fig. A2). We then used
the One-vs-Rest (OvR) multiclass classification strategy [30] using dif-
ferent classification techniques including the SVM with both linear
and nonlinear (radial basis function or RBF) kernels, k-nearest neigh-
bors and random forest. 2/3 of the data were used to train the model
and 1/3 to test it with a 3-fold cross validation scheme, which was re-
peated 100 times with random slices of data into train and test sets to
reduce the variance in the classification accuracy and ROC curves. The
main parameters for each classifier (e.g., C andgamma in SVMandnum-
ber of neighbors in kNN) were tuned using an exhaustive search over
specified parameter values also known as “grid search” along with
cross validation. Balanced accuracy was used as the metric to identify
the best parameter set for each classifier. Optimal parameters were
then kept fixed for the rest of the analysis. With Metaboanalyst-R [31],
groups were reduced to two (healthy vs NAFL-NASH, NAFL vs healthy-
NASH and healthy-NAFL vs NASH) and a linear PLS-DA, a linear SVM
and random forest were performed, each time using the respective fea-
ture rankingmethod. ROC curves were generated byMonte-Carlo cross
validation (MCCV) using balance sub-sampling. 2/3 of the sampleswere
used to evaluate the feature importance and the top 2, 3, 5…max impor-
tant features were used to build themodel whichwas tested on the 1/3
of the remaining sample. This procedure was repeated multiple times.
The classification analysis and development of models were performed
for glycans, lipid classes, individual lipids, hormones and combination of
glycans, hormones and individual lipids before and after excluding the
lean subjects. The same analysis was also performed between subjects
with (n = 10) vs without fibrosis (n = 21). Data sets are available in
[32], R command history related to Metaboanalyst-R is available in
[33], and code related to OvR-Python in [34].

3. Results

3.1. Anthropometric and clinical characteristics of study population

The anthropometric and clinical characteristics of study population
are described in Supplementary Table A1. The healthy group consisted
primarily of two subgroups, i.e. lean/slight overweight (BMI
b 27.5 kg/m2) liver-healthy group and overweight/obese (BMI
≥ 27.5 kg/m2) liver-healthy group. Thus, we have performed two
types of analysis to assess whether BMI is relevant in our measure-
ments. In the first, we have compared all liver-healthy subjects (inde-
pendent of BMI) vs. NAFL vs. NASH and in the second, we have
compared only the overweight/obese (BMI ≥ 27.5 kg/m2) liver-healthy
subjects vs. NAFL vs. NASH.

3.2. Lipidomics - differences in blood concentrations of lipids can be used to
discriminate between healthy subjects and patients with NAFL and NASH

A lipidomic analysis was performed which identified 365 lipid spe-
cies belonging in 17 different lipid classes. Hierarchical clustering
based on concentrations of lipid classes (total amount for each class)
showed that two main clusters are formed: one consisting of healthy
subjects and the other consisting of patients with NAFL or NASH (Fig.
1A). Similarly, sPLS-DA analysis (Fig. 1B) showed that the two main
components could mostly differentiate the healthy group (red dots
clustering at the left side) from the other two groups (green and
blue dots for NAFL and NASH, respectively, clustering together at
the right). Specifically, serum concentrations of diglycerides (DG),
phosphatidylglycerols (PG) and phosphatidic acids (PA) were signifi-
cantly increased in NAFL and NASH, whereas the concentrations of
acylcarnitines (AcCa), cholesterol esters (Che), coenzyme Q10 (Co),
lysophosphatidylcholines (LPC) and sphingomyelines (SM) were re-
duced (Fig. 1C). Except from AcCa, the observed differences in the
lipid classes remained significant after excluding the healthy controls
with BMI b 27.5 kg/m2 (Fig. 1D–F).

Given the limited discriminatory ability of lipid classes, we investi-
gated whether the concentrations of individual lipid species can help
differentiate between these groups. Significance Analysis ofMicroarrays
(SAM) with corrected FDR for the number of investigated parameters
identified 62 lipid species that significantly differ between healthy,
NAFL andNASH (Fig. 2A).Most of these lipid species belong to Phospha-
tidylethanolamines (PE), Phosphatidylcholines (PC) and SM lipid clas-
ses (Fig. 2B). Hierarchical clustering showed that lipid species can
specifically best discriminate healthy subjects from subjects with NAFL
and NASH (Fig. 2C). sPLS-DA showed that with the use of two main
components (Fig. 2D and E), each consisting of 10 lipid species, healthy,
NAFL and NAFLD subjects converge into separate clusters (Fig. 2D: red
dots healthy subjects located left, green dots NAFL subjects located
upper right and blue dots subjects with NASH located low right).

The same analysis was repeated after excluding the healthy subjects
with BMI b 27.5 kg/m2 (Fig. 2F-K) from the healthy group (obese
healthy vs. NAFL vs. NASH). The number of significant parameters ac-
cording to SAMwas reduced to 32, with similar representation (mainly
PE, PC and SM) as previously. Hierarchical clustering demonstrated that
lipid species could best differentiate NASH subjects from healthy and
NAFL. Similar to the first analysis, sPLS-DA showed robust discrimina-
tion between healthy, NAFL and NASH, suggesting BMI-independent
differences in lipidome between healthy subjects and patients with
NAFL and NASH.

3.3. Fatty acids - differences in fatty acid composition are observed between
healthy, NAFL and NASH subjects

The concentrations of 23 fatty acids as relative percent to the total
lipid concentration was assessed chromatographically in the NASH,
NAFL and healthy status. Serum from 64 subjects was available for
these measurements. sPLS-DA analysis showed only a partial discrimi-
nation of healthy subjects (red dots) from NAFL and NASH (green and
blue dots, respectively) before (Fig. 3A) and after excluding the controls
with BMI b 27.5 kg/m2 (Fig. 3C). This discrimination was achieved by
component 1, where five fatty acids were mainly contributing to its
composition (Fig. 3B and D). These fatty acids were significantly differ-
ent between groups also in the univariate analysis (Fig. 3E). Specifically,
C16:0 (palmitic acid) was higher in NAFL and NASH compared to
healthy population. Additionally, the monounsaturated fatty acids
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Fig. 1. Profile of circulating lipid classes in healthy vs. NAFL vs. NASH. A. Heatmap of hierarchical clustering displaying the relative concentrations of 17 lipid classes assessed in our study. B. Score plot of component 1 and component 3 of the sPLS-DA
analysis (red dots: healthy, green dots: NAFL, blue dots: NASH). C. Boxplots of the significantly different lipid classes between the three groups. Black box (D-F) demonstrates similar analysis when healthy subjects with BMI b 27.5 kg/m2 were
excluded from the control group (overweight/obese control vs NAFL vs NASH): D. Heatmap of hierarchical clustering displaying the relative concentrations of 17 lipid classes. E. Score plot of component 1 and component 3 of the sPLS-DA
analysis, F. Boxplots of lipid classes demonstrating significant differences between the three groups. The black dots in boxplots represent the concentrations of the selected feature from each sample. The notch indicates the 95% confidence
interval. The yellow diamond indicates the mean concentration of each group. One-way ANOVA followed by Tukey's test was performed for the normally distributed variables and Kruskal-Wallis test followed by Dunn's test was performed for
the non-normally distributed ones (1C: DG, PG, Che, 1F: PG).
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C24:1n9 Nervonic acid MUFA 0.11 (0.07, 0.18) 0.13 (0.08, 0.27) 0.10 (0.06, 0.18) .63 .54
C18:2n6 Linoleic acid n-6 PUFA 27.6 ± 4.1a 25.4 ± 4.2 22.3 ± 3.3a <.001 <.001
C18:3n6 gamma-linolenic acid n-6 PUFA 0.39 (0.30, 0.55) 0.39 (0.29, 0.46) 0.33 (0.27, 0.51) .53 .90
C20:2n6 n-6 PUFA 0.18 (0.15, 0.21) 0.17 (0.15, 0.20) 0.15 (0.13, 0.19) .52 .80
C20:3n6 n-6 PUFA 1.54 (1.24, 1.78) 1.45 (1.32, 1.65) 1.57 (1.23, 2.01) .74 .85
C20:4n6 Arachidonic acid (AA) n-6 PUFA 5.37 (4.15, 7.08)a 4.44 (3.37, 4.94) 4.14 (3.82, 4.50)a .004 .034
C22:4n6 n-6 PUFA 0.14 (0.11, 0.17) 0.12 (0.10, 0.15) 0.12 (0.10, 0.18) .27 .46
C22:5n6 n-6 docosapentaenoic acid n-6 PUFA 0.11 ± 0.03 0.09 ± 0.02 0.11 ± 0.04 .05 .07
C18:3n3 Alpha-linolenic acid n-3 PUFA 0.32 (0.27, 0.38) 0.26 (0.23, 0.37) 0.27 (0.24, 0.33) .08 .48
C20:5n3 Eicosapentaenoic acid (EPA) n-3 PUFA 0.18 (0.15, 0.26) 0.15 (0.10, 0.28) 0.15 (0.12, 0.26) .34 .25
C22:5n3 n-3 docosapentaenoic acid n-3 PUFA 0.29 0.25, 0.37) 0.28 (0.24, 0.40) 0.32 (0.25, 0.35) .92 .87
C22:6n3 Docosahexaenoic acid (DHA) n-3 PUFA 1.07 (0.87, 1.36) 1.17 (0.71, 1.54) 0.98 (0.81, 1.18) .57 .70

E

Fig. 3. Fatty acids concentrations in healthy vs. NAFL vs. NASH. A. Scores Plot of component 1 and component 2 of the sPLS-DA analysis (red=healthy, green=NAFL, blue=NASH). B. Loadings of component 1 showing thatmainly the first five fatty
acids are contributing to the component. Black box (C-D) demonstrates similar analysis when healthy subjects with BMI b 27.5 kg/m2were excluded from the control group (overweight/obese control vs NAFL vs NASH): C. Scores Plot of component 1
and component 2 (red=healthy, green=NAFL, blue=NASH). D. Loadings of component 1 showing that five fatty acids aremainly contributing to the component. E. Table of the 23 fatty acidsmeasured in our study. p-values are derived from one-
wayANOVAor Kruskal-Wallis test; p adj.-values are derived fromone-wayANCOVA after adjusting for BMI (non-normally distributed variableswere logarithmically transformed). Same superscript letters indicate significant differences between the
two groups based on post-hoc Tukey's or Dunn's test.
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C16:1n7cis (cis-palmitoleic acid) and C18:1n9cis (oleic acid) were
higher in NASH compared to healthy group, whereas the polyunsatu-
rated linoleic fatty acid (C18:2n6) and arachidonic fatty acid
(C20:4n6) were lower (Fig. 3E). These differences between groups
remained significant after adjusting for BMI.

3.4. Glycomics – differences in N-glycans are observed between NAFLD vs
healthy subjects

GC–MS identified 61 N-glycans in the serum of healthy subjects and
patients with NAFL and NASH. Concentrations of seventeen glycans
were significantly different between groups (Fig. 4A), while five glycans
concentrationswere significantly different after excluding the lean con-
trols (Fig. 4C). Main structural characteristics of the glycans were the
presence of fucose (10 out of 17) and of sialic acids (13 out of 17).
sPLS-DA analysis showed that only two from the five components
could partially discriminate the healthy group from the other two
(both before and after excluding the healthy controls BMI
b 27.5 kg/m2) but could not discriminate patients with NAFL from
those with NASH (Fig. 4B, D).

3.5. Evaluation of predictive accuracy of NASH, NAFL or healthy status with
the use of five machine learning methods

Wehave used twodifferent platforms (Scikit-learn Library in Python
and MetaboanalystR) to evaluate the performance of five different ma-
chine learning techniques (linear and non-linear SVM, k-nearest neigh-
bor (kNN), linear PLS-DA and random forest) in predicting whether a
subject belongs to NASH, NAFL or healthy groups (Table 1). A binary
classification method was used to reduce the groups from three to
two following the OvR (One-vs-Rest) strategy in Scikit-learn. In
MetaboanalystR, three individual classifications were performed, and
subjects were grouped as healthy vs. NAFL-NASH, NAFL vs. healthy-
NASH and NASH vs. healthy-NAFL. Each omics data set (lipidomics,
glycomics, biochemical parameters including four hormones and tri-
glycerides) was analyzed individually as well as in combination aiming
to achieve the highest accuracy with a few number of variables. Fatty
acids were analyzed only individually since the available fatty acids
data were acquired for 64 subjects (due to limited serum availability),
whereas the data from other measurements (i.e. glycomics, lipidomics,
hormones)were collected for 80 subjects. The highest accuracy was ob-
served for the SVM(with nonlinear radial basis function kernel)method
for lipid species both alone and in different combinationswith the other
omics data (Table 1).

3.6. Development of predictive models for the differentiation between
NASH, NAFL and healthy status

Based on the above analysis, nonlinear SVMwithRFEwas selected as
a method to develop ROC curves by using a limited number of lipids,
hormonal or glycan variables (Table 2). With the use of 29 different
lipid species, a very high predictive accuracy was achieved (Fig. 5A)
for all the three groups. Fatty acids and hormonal levels demonstrated
high accuracy for discriminating healthy and NASH status but low for
predictingNAFL (Fig. 5B andD). Glycansperformed better for predicting
NAFL compared to fatty acids and hormones, but worse for predicting
healthy and NASH (Fig. 5C). Combining 19 lipids and adiponectin (Fig.
5E) or 19 lipids and one glycan (Fig. 5F) led also to very high accuracies
and high sensitivities and specificities. Similarly, combinations of nine
lipids and adiponectin (Fig. 5G) or nine lipids and one glycan (Fig. 5H)
could discriminate with high sensitivity and specificity between the
groups, whereas combination of lipids with glycans and hormones led
to no further improvement (data not shown).

The same analysis was repeated after excluding subjects with BMI
b 27.5 kg/m2 from the healthy group. This had a small impact on the ob-
served predictive accuracy especially for NAFL group (Fig. 6A) in the
model consisting of 29 lipids. However, combinations of lipids and gly-
cans (Fig. 6F) or lipids, hormones and glycans (Fig. 6H) could discrimi-
nate very efficiently between groups.

3.7. Exploratory analysis of the discriminatory and predictive potentials of
lipidomics, hormones, glycomics and fatty acids in liver fibrosis

Among the 31 subjects with NAFLD, 21 had fibrosis in the histology
according to Kleiner fibrosis score and 10 did not. We performed an ex-
ploratory analysis of these two groups (fibrosis “yes” or “no”), which
showed that similar to what we observed in the whole study popula-
tion, lipidomics primarily were able to discriminate robustly (with
95% sensitivity and 99% specificity) between the two groups whereas
glycans and fatty acids had less predictive potentials (Fig. 7 and Table 3).

4. Discussion

We report novel combinations of glycans, lipids and hormonal vari-
ables that can diagnose simultaneously and with high accuracy the
presence of NASH, NAFL or healthy status.

Additionally, we report a combination of lipids that can diagnose the
presence of liver fibrosis. We obtained excellent classification perfor-
mance, which we believe can be improved further. Both diagnostic
models should be further trained and validated in large independent co-
horts both cross-sectionally and, more importantly, prospectively.

Several studies have aimed to develop non-invasive diagnostic
scores for advanced fibrosis, whereas fewer efforts have focused on
the diagnosis of NASH [6,35]. Among them, circulating cytokeratin-18
fragment (Ck-18f), has been the most investigated biomarker so far,
with two meta-analyses suggesting an AUROC of 0.82 with sensitivity
ranging from 66%–78% and specificity of 82%–97% for NASH diagnosis
[36,37]. The low sensitivity, observed especially in studies including
multiethnic populations [38], the variations in proposed diagnostic
cut-off levels and the lack of a widely available assay for clinical pur-
poses have resulted in the limited use of CK-18f in the clinical setting.
Several combinations of serum biomarkers and/or clinical variables
have also been proposed (reviewed in [11]), but none of them has re-
ported AUROCs as high as in our study. Furthermore, many of these
studies were performed in morbidly obese individuals thus, may have
limited applicability to the general population.

Our study, using a stepwise approach andmultiplemachine learning
methods, has focused on variables that are key players in pathophysio-
logical mechanisms related to the development of steatosis and NASH
such as changes in lipidome representing the abnormal lipid metabo-
lism [39], in glycans reflecting the ability of the liver to synthesize pro-
teoglycans [12] and in hormones associated with the increased IR and
abnormal glucose homeostasis commonly observed in these patients
[40]. Glycomics is a novel subspecialty in omics systems sciences that of-
fers substantial promise for next-generation biomarkers on disease sus-
ceptibility, drug target discovery, and precision medicine. Glycosylation
disorders have been reported in NAFLD and loss of glycosylation of
crucial uptake and efflux transporters in patients with NASH could
influence transporter function and contribute to changed drug
disposition [41].

Most importantly, in our study, we have followed a novel approach
that has several major advantages: First, we have comparatively tested
several supervised learning methods to identify the most accurate to
predict among the groups. Previous studies primarily used one classifi-
cation method (mostly based on logistic regression analysis) and fea-
tures were selected in many cases through univariate tests (t-tests,
Welch's tests, individual AUC scores) [42,43]. Such methods, however,
tend to be overly optimistic and are highly susceptible to overfitting,
thus, it is difficult to be reproduced. Among themethodswe have tested,
SVM with RFE has demonstrated the highest accuracy. RFE method
removes the redundant features and builds a predictive model only
with the highly scored variables, which helps avoid overfitting. Since



Component 1

C
om

po
ne

nt
  4

- 0 .4

-0 .2

0 .0

0 .2

0 .4

0 .6

2
4

1
8

- 2

-1

0

1

2
5

9
2

- 0 .4

-0 .2

0 .0

0 .2

0 .4

0 .6

2
6

6
3

- 0 .4

-0 .2

0 .0

0 .2

0 .4

2
8

8
0

- 1 .0

-0 .5

0 .0

0 .5

1 .0

2
9

5
3

- 0 .4

-0 .2

0 .0

0 .2

0 .4

0 .6

3
2

2
8

- 0 .4

-0 .2

0 .0

0 .2

0 .4

0 .6

3
2

4
1

- 1 .0

-0 .5

0 .0

0 .5

1 .0

3
5

0
3

- 1 .0

-0 .5

0 .0

0 .5

1 .0

1 .5

3
5

7
3

- 0 .6

-0 .3

0

0 .3

0 .6

3
5

9
0

- 0 .4

-0 .2

0 .0

0 .2

0 .4

3
6

0
3

- 1 .0

-0 .5

0 .0

0 .5

1 .0

1 .5

4
0

3
9

- 0 .4

-0 .2

0 .0

0 .2

0 .4

0 .6

4
0

5
2

- 0 .5

0 .0

0 .5

1 .0

2
7

7
9

- 0 .4

-0 .2

0 .0

0 .2

0 .4

0 .6

2
9

6
8

- 1 .0

-0 .5

0 .0

0 .5

1 .0

3
3

2
9

- 0 .6

-0 .3

0

0 .3

0 .6

3
6

9
1

- 0 .5

0 .0

0 .5

1 .0

2
7

7
9

- 1 .0

-0 .5

0 .0

0 .5

1 .0

2
9

5
3

- 0 .2

0 .0

0 .2

0 .4

0 .6

2
9

6
8

- 1 .0

-0 .5

0 .0

0 .5

1 .0

3
3

2
9

- 0 .5

0 .0

0 .5

1 .0

3
6

9
1

Component 1

C
om

po
ne

nt
  4

A

C

*
#

*

**
#

** **

* ** **

**

* * * *

** **

* *

*
#

*
*

* *

B D

-1 .0

-0 .5

0 .0

0 .5

1 .0

1
9

8
8

*

Fig. 4. N-glycan profile in healthy vs. NAFL vs. NASH. A. Glycans with significantly different concentrations between the three groups. B. Score plot of component 1 and component 4 from the sPLS-DA analysis (red= healthy, green=NAFL, blue =
NASH). Black box (C-D) demonstrates similar analysis when healthy subjects with BMI b 27.5 kg/m2were excluded from the control group (overweight/obese control vs NAFL vs NASH): C. Glycanswith significantly different concentrations between
the three groups. D. Score plot of component 1 and component 4 from the sPLS-DA analysis (red=healthy, green=NAFL, blue=NASH). x-axis shows themost likely structure of the glycan and y-axis itsmass (m/z) according tomass spectrometry.
*,**,***, p b .05, b0.01 and b 0.001 in the post hoc t-test between the groupwith the star (NAFL or NASH) vs. healthy. #, p b .05 in the post-hoc t-test betweenNASH vs. NAFL. The 2953 and the 1988 glycanswere participating regularly in the predictive
models.
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Table 1
Predictive accuracies (%) of five machine learning techniques for multiclass (OvR) and binary classification using two different software.

Models (A) All subjects

OvR (Scikit-learn) Binary (MetaboanalystR)

Variables (n) SVM (linear) kNN SVM (RBF) Random forest Variables (n) PLS-DA (linear) Random forest SVM linear

1. Lipid classes 4 58 ± 8 50 ± 8 63 ± 10 56 ± 10 3 84/58/75 80/60/73 76/51/72
2. Lipid species 29 86 ± 9 65 ± 10 88 ± 7 65 ± 9 50 77/55/70 83/60/80 81/58/76
3. Hormones 4 54 ± 8 49 ± 8 55 ± 9 54 ± 9 4 86/60/80 80/57/76 85/54/77
4. Glycans 5 57 ± 9 45 ± 7 54 ± 10 49 ± 9 5 54/44/58 60/60/51 59/49/53
5. Fatty acids 5 50 ± 9 43 ± 8 54 ± 11 45 ± 10 5 61/48/57 71/49/63 66/48/62
6. Lipid species + Glycans 10 80 ± 8 67 ± 10 78 ± 9 66 ± 9
7. Lipid species + Glycans 20 86 ± 8 67 ± 10 82 ± 9 66 ± 10
8. Lipid species + Hormones 10 74 ± 10 59 ± 9 76 ± 9 67 ± 10
9. Lipid species + Hormones 20 80 ± 10 64 ± 10 87 ± 8 65 ± 9
10. Lipid species + Hormones + Glycans 10 77 ± 9 71 ± 11 77 ± 9 68 ± 10
11. Lipid species + Hormones + Glycans 20 83 ± 8 63 ± 9 86 ± 7 65 ± 9

Models (B) All subjects (excluded controls with BMI b 27.5 kg/m2)

OvR (Scikit-learn) Binary (MetaboanalystR)

Variables (n) SVM (linear) kNN SVM (RBF) Random
forest

Variables (n) PLS-DA
(linear)

Random
forest

SVM (linear)

1. Lipid classes 4 59 ± 9 49 ± 9 55 ± 9 56 ± 10 5 77/50/67 77/53/68 77/52/69
2. Lipid species 29 84 ± 9 70 ± 11 88 ± 9 64 ± 9 50 70/52/68 79/49/77 75/53/72
3. Hormones 4 52 ± 8 48 ± 9 51 ± 9 49 ± 9 4 79/51/72 74/47/68 78/50/69
4. Glycans 5 62 ± 10 54 ± 9 62 ± 9 49 ± 10 5 58/41/63 52/53/48 55/49/53
5. Fatty acids 5 51 ± 10 42 ± 10 51 ± 12 50 ± 9 5 57/43/57 74/43/62 61/41/59
6. Lipid species + Glycans 10 71 ± 10 67 ± 10 71 ± 10 65 ± 11
7. Lipid species + Glycans 20 88 ± 7 67 ± 10 90 ± 9 64 ± 11
8. Lipid species + Hormones 10 78 ± 9 73 ± 10 79 ± 10 67 ± 11
9. Lipid species + Hormones 20 86 ± 7 72 ± 10 89 ± 7 68 ± 10
10. Lipid species + Hormones + Glycans 10 82 ± 9 75 ± 9 83 ± 9 68 ± 10
11. Lipid species + Hormones + Glycans 20 83 ± 8 74 ± 10 85 ± 9 69 ± 9

For the OvR (Scikit-learn) % of predictive accuracy ± SD of the cross validations is reported. For the Binary (MetaboanalystR) predictive accuracy of healthy vs NAFL-NASH/NAFL vs
healthy-NASH/NASH vs healthy-NAFL is reported. Number of variables included each time in themodel is reported. For the Binary (MetaboanalystR) analysis the number of variables se-
lected was the one that achieved the highest accuracy.
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our study included a small number of subjects, we have additionally
used the biggest part of the population to train the model but also a
small part (through balanced subsampling) to validate it. Second, our
predictive models are able to diagnose between three (and not two)
conditions i.e., healthy status, NAFL and NASH. Thus, they allow the
evaluation of a subject with a single blood draw without the need of
an imaging modality for diagnosing NAFL. This concept is especially at-
tractive for routine screening of the population at high risk for the de-
velopment of the disease such as obese patients or patients with type
2 diabetes in a primary care setting and without the need of specially
trained personnel. Additionally, our approach can be used to build a
similar model for differentiating between “none vs. non-advanced vs.
advanced fibrosis”. Importantly, we have additionally developed
models that can differentiate healthy status, NAFL and NASH among
overweight and obese people, taking into consideration that this popu-
lation is not onlymore probable to have NASH, but is also more likely to
be tested by doctors. We recognize, though, that despite significant
progress, mass-spectrometric methods are still not widely available,
cost-effective and optimally standardized [7]. Thus, we are reporting
differentmodels combining a variety of detectionmethods (mass-spec-
trometry, chromatography, ELISA) and with variable number of param-
eters for which accurate cost-effectiveness has to be assessed in the
future. Despite the above issues, these models seem to be more cost-
effective than liver biopsy. Specifically, the costs of liver biopsy have
been reported to be at £956 (i.e. $1153) in 2012–2013 [44], whereas
in the US currently the costs of liver biopsy vary between $2000–8000
(personal communication). The costs of the model combining lipids,
glycans and adiponectin in our study was $605/subject, thus signifi-
cantly lower compared to liver biopsy. We are also expecting the costs
to be further reduced as mass-spectrometric methods are becoming
widely available and if targeted (instead of untargeted) measurements
of lipids and glycans are performed. Finally, we believe that these
models may be further improved or simplified by including targeted
biochemical, genetic and clinical parameters. The best candidates are
liver transaminases, platelets, age, BMI and PNPLA3 genotype [11].
These variables were not included in the current study since some of
them were used as inclusion criteria to organize the study groups (e.g.
liver transaminases and BMI), whereas no material was available for
others (i.e. DNA for PNPLA3 genotype).

Regarding the variables that were selected by our models, the most
robust differences and consequently the most profound contribution
to the predictive algorithms were observed in lipid species. Previous
lipidomic descriptive studies in NAFLD reported higher DG and TG and
lower PC levels in the liver and in serum in NAFLD as well as significant
changes in fatty acid composition [9,10,45]. A recent study suggested
also that changes in specific triglyceride groups can differentiate be-
tween NAFL and NASH [46]. In line with these findings, we observe in
our study higher total DG, a trend to higher total TG and lower levels
in many of the PC species in NAFL and NASH. Several of these variables
are also selected by our predictivemodels. Additionally, similar to a pre-
vious lipidomic analysis [10], we observed a progressive increase of
palmitoleic (16:1n7) and oleic acid (18:1n9), as well as a progressive
decrease of linoleic acid (18:2n6) from healthy to NAFL and NASH. Un-
fortunately, quantification of the total amount of these fatty acids was
only possible to a subset of the study population, which affected their
performance as diagnostic predictors in our models. Furthermore, we
identified changes in TG species that can particularly contribute to the
diagnosis of liver fibrosis (fibrotic model). Recent data indicate that in-
hibition of diacylglycerol acyltransferase-2, one of the two enzymes that
catalyze the final step of TG synthesis, is considered to treat patients



Table 2
Top-ranked variables considered in different predictive models of NASH vs. NAFL vs. healthy.

All subjects

Lipids (29 variables) Fatty acids (5 variables) Glycans (5 variables) Hormones (4 variables)
AcCa(10:0) PC(34:2e) PE(38:6) C18:2n6 1661 Leptin
Cer(d34:2) PC(35:3) PI(36:1) C18:3n6 2592 Adiponectin
DG(34:1) PC(36:4) SM(d32:0) C20:0 2764 Activin A/Follistatin
DG(36:4) PC(36:5e) SM(d32:2) C20:4n6 2968 Triglycerides
LPC(20:0e) PC(37:2) SM(d40:1) C22:4n6 4039
LPC(22:5) PC(40:6e) TG(38:0)
LPE(16:0) PC(40:7) TG(38:2)
PC(32:0) PC(40:8) TG(43:1)
PC(32:1e) PC(42:6) TG(53:5)
PC(34:0) PE(38:1)

Lipids + Hormones (20 variables) Lipids + Glycans (20 variables) Lipids + Hormones (10 variables) Lipids + Glycans (10 variables)
AcCa(10:1) PC(36:5e) Cer(d18:2_25:1) PC(40:5e) DG(34:1) LPC(22:5)
Cer(d43:0) PC(37:2) LPC(20:0e) PC(40:7) LPC(20:0e) LPE(16:0)
DG(34:1) PC(37:3) LPC(22:5) PC(42:6) LPE(18:0) PC(34:1)
DG(36:4) PC(40:8) LPE(16:0) PE(38:1) PC(34:2e) PC(34:1e)
LPC(20:0e) PE(34:1) PC (32: 1e) ≥ PC(16:0e_16:1) PE(38:6) PC(36:4) PC(35:3)
LPC(22:5) PE(38:1) PC (32:1e) ≥ PC(16:1e_16:0) SM(d35:1) PC(36:5e) PC(42:6)
LPE(18:0) SM(d40:1) PC(34:0) SM(d38:1) PC(37:3) PE(38:1)
PC(34:2e) TG(38:0) PC(34:1) TG(40:0) PC(40:8) SM(d35:1)
PC(36:3) TG(38:2) PC(34:1e) TG(52:4) PE(38:1) SM(d40:1)
PC(36:4) Adiponectin PC(35:3) 2592 Adiponectin 2592

All subjects (excluded controls with BMI b 27.5 kg/m2)

Lipids (29 variables) Fatty acids (5 variables) Glycans (5 variables) Hormones (4 variables)
AcCa(10:0) PC(34:1) PE(40:4e) C16:0 1988 Leptin
Cer(d34:2) PC(35:3) PI(36:1) C18:1n9cis 2592 Adiponectin
DG(34:1) PC(36:5e) SM(d32:0) C18:2n6 2764 Activin A/Follistatin
DG(36:4) PC(37:2) SM(d32:2) C18:3n6 2968 Triglycerides
Hex1Cer(d34:2) PC(40:7) SM(d36:0) C22:4n6 3953
LPC(20:0e) PC(40:8) SM(d36:4)
LPC(22:5) PC(42:6) SM(d37:1)
LPE(18:0) PE(34:1) SM(d40:1)
LPE(22:5) PE(34:3e) TG40:0)
PA(44:4) PE(38:1)

Lipids + Hormones (20 variables) Lipids + Glycans (20 variables) Lipids + Hormones (10 variables) Lipids + Glycans (10 variables)
Cer(d34:0) PC(36:5e) Cer(d34:0) PC(36:2) LPC(20:0e) Cer(d43:3)
DG(36:4) PC(37:2) Cer(d43:3) PC(40:7) LPC(20:3) DG(34:1)
LPC(20:0e) PC(40:7) DG(34:1) PC(42:6) LPE(16:0) DG(36:2)
LPC(20:3) PC(40:8) DG(36:4) PE(34:1) PC(34:1) LPC(20:0e)
LPE(16:0) PE(38:1) LPC(20:0e) PE(34:3e) PC(34:2e) LPC(22:5)
LPE(18:0) PE(40:4e) LPC(22:5) CO(36:1) PC(36:5e) LPE(16:0)
LPE(22:5) SM(d32:0) LPE(16:0) TG(38:0) PC(40:8) PC(35:2)
PC(34:0) SM(d36:0) PC(34:0) TG(38:2) PE(38:1) PC(40:7)
PC(34:1) SM(d40:1) PC(34:1) 1988 SM(d32:0) PE(34:1)
PC(34:2e) Adiponectin PC(35:2) 2592 Adiponectin PE(34:3e)

Lipids + Hormones + Glycans (20 variables) Lipids + Hormones + Glycans (10 variables)
DG(34:2) PC(36:4) LPC(22:5)
DG(36:4) PC(40:8) LPE(16:0)
LPC(20:0e) PE(34:1) PC(34:1)
LPC(22:5) PE(40:4e) PC(40:8)
LPE(16:0) PI(36:1) PE(34:1)
LPE(18:0) SM(d35:1) PI(36:1)
PA(44:4) SM(d38:0) SM(d38:0)
PC(34:1) SM(d40:1) SM(d40:1)
PC(34:2e) Adiponectin Adiponectin
PC(36:3) 2592 2592
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with NAFLD/NASH [47,48]. We subsequently tested whether including
adiponectin, leptin, follistatin and activin A (measured all through vali-
dated immunoassays) could improve the accuracy of the models or
maintain high accuracy with lower number of variables. We have se-
lected these hormones based on their involvement in glucose regula-
tion, IR, lipid metabolism and their associations with obesity, type 2
diabetes [17–19] andNAFLD [18,20–22]. Among them, only adiponectin
is contributing tomodels combining lipidswith hormones or lipidswith
hormones and glycans. Of note, adiponectin improves the accuracy of
our predictive models even after excluding the subjects with BMI
b 27.5 kg/m2, suggesting that its relation to NAFL and NASH is not ex-
plained just by the higher weight and fat mass of these patients.
Adiponectin, beyond its weight- and glucose-regulatory effects exerts
anti-steatotic, anti-inflammatory and anti-fibrotic actions in the liver,
suggesting a protective role against development and progress of
NAFLD [18,20–22]. In line with the experimental results, in a meta-
analysis of 27 studies adiponectin levels progressively decreased from
controls to subjects with NAFL and to subjects with NASH indepen-
dently of BMI, age, sex and the presence of T2D [22]. Adiponectin to-
gether with leptin and ghrelin have been previously used to develop a
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Fig. 5. ROC Curves for the classification of healthy vs. NAFL vs. NASH. A-D. ROC curves for single lipids, fatty acids, glycans and hormones data set computed using the nonlinear SVM classifier. E-H. ROC curves for the integrated lipids with hormones
and lipids with glycans data sets computed using the nonlinear SVM classifier. The number of variables used to produce each curve is indicated in parenthesis. 11
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Fig. 6. ROC Curves for the classification of healthy (obese) vs. NAFL vs. NASH. A-D. ROC curves for single lipids, fatty acids, glycans and hormones data set computed using the nonlinear SVM classifier. E-I. ROC curves for the integrated lipids with
hormones, lipids with glycans and lipids with hormones and glycans data sets computed using the nonlinear SVM classifier. The number of variables used to produce each curve is indicated in parenthesis.
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Fig. 7. ROC Curves for the classification of fibrosis status. A-C. ROC curves for single lipids, glycans and fatty acids data sets in subjects with liver fibrosis (n=21) vs. subjects without liver
fibrosis (n = 10).
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diagnostic model for NASH, which demonstrated lower sensitivity and
specificity (AUROC of 0.789) compared to the present models [49].

Lastly, the N-glycome profile has been assessed in very few studies
and with less advanced methods [50–52]. In one of them, eight out of
the 41 detected glycans by glycoblotting have been reported to be sig-
nificantly different in NAFL vs. NASH in a Japanese population [52]. A
maximumAUROC of 0.866 was achieved by analyzing each glycan indi-
vidually [52]. In another study, twelve glycans were detected by
glycome mapping on DNA sequencing equipment in serum and only
one was significantly different between NAFL and NASH [50]. In a
more recent work, with the use of immunoprecipitation followed by
MALDI-TOFMS higher serum levels of a specific alpha-1 antitrypsin gly-
cosylationwere reported in NASH, a result thatwas derived by the com-
parison of 5 NAFL vs. 6 NASH subjects [51]. In our study, with the use of
standardized GC–MSmethods, 61 glycans were detected among which
17were significantly different between the groups. However, the differ-
ences were observed mainly between healthy and NAFLD patients and
in many cases diminished after excluding the subjects with BMI
b 27.5 kg/m2 from the control group, suggesting that they are primarily
weight-related. Most of the significant glycans were core- or multi-
fucosylated and many of them contained sialic acids. The levels of sialic
acids have been associated with metabolic syndrome [53] as well as
NAFLD [54,55]. Increased core-fucosylation of proteins has been associ-
ated with liver fibrosis as well as HCC with a core-fucosylated form of
alpha-fetoprotein being approved by the FDA as a biomarker of HCC
[56,57]. Using a recent algorithm for diagnosing advanced liver fibrosis
in NASH, fucose levels were one of the ten metabolites included in the
diagnostic panel [35]. In our diagnostic models of healthy, NAFL and
Table 3
Top-ranked variables considered in the predictive models of fibrosis.

Lipids Glycans Fatty acids

DG(36:3) 2081 C14:0
LPC(18:0) 2315 C18:1n9trans
PC(36:2) 2592 C18:3n3
PC(37:2) 2605 C20:3n6
PC(40:5) 4587 C22:6n3
TG(38:0)
TG(50:0)
TG(51:1)
TG(57:1)
TG(60:2)
NASH, which combine lipids, glycans and/or hormones, a multi- and
core-fucosylated glycan (2592) was often selected, along with a second
agalactosylated non-fucosylated glycan (1988) in some cases. In the ex-
ploratory analysis for the presence of liver fibrosis, 4 out of 5 selected
glycans were core-fucosylated. Nevertheless, N-glycome profile is
strongly related to bodyweight, which can help improve the diagnostic
accuracy of NAFL subjects in our models, but may be especially useful
for the non-invasive discrimination between different fibrosis
stages. Of note, serum fucosylated haptoglobin appears to be a
useful glyco-biomarker of liver fibrosis and a predictor of HCC in
patients with chronic hepatitis C, a prominent feature of which is
NAFLD [58,59].

Our study has both strengths and limitations. First, the sample size
was not large, albeit adequate to prove our hypotheses. A validation co-
hort was not available, but as described above, we have used balanced-
subsampling and cross-validation. With this approach, 2/3 of the study
population is used for training the model and 1/3 of the population is
used to validate the model. This procedure is repeated multiple times
with different slices of the data and serves as a control against random
results. Another limitation is that the population under study was gen-
erally homogenous (white people from northern Greece) and conse-
quently, our results should be further tested in larger and more
heterogeneous cohorts and in different populations. Additionally, we
have not accounted for variables that may be useful for enhancing
the predictive capabilities of our models such as PNPLA3 genotype,
age, BMI, decompensated diabetes, liver function tests, and ethnicity.
On the other hand, our study integrated measurements from different
omics procedures, which were evaluated with several supervised
learning methods. Given the exploratory character of our study,
we are also reporting several models that include a variety of
variables. These models should be further trained by larger cohorts
from different populations.

In conclusion, we propose several non-invasive models consisting
of lipids, hormones and glycans that can diagnose with very high
accuracy (N90%) and simultaneously the presence of NASH, NAFL or
healthy status. We additionally propose a combination of lipids
that can diagnose with very high accuracy (97%) the presence of liver
fibrosis. These models may serve as a low-risk cost-effective alternative
method to liver biopsy for diagnosing and staging NAFLD. Future
studies should aim to further improve these models and validate
them in large independent cohorts both cross-sectionally as well as
prospectively.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.metabol.2019.154005.
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Fig. 8. PCA and tSNE visualizations of the samples in the projected space. A. PCA projection in the subspace spanned by the first two components as well as two-component tSNE
visualizations for the reduced lipids data that contain 29 variables. The best ROC curves and classification of healthy vs. NAFL vs. NASH were achieved for this data set with 80 subjects.
B. PCA projection in the subspace spanned by the first two components as well as two-component tSNE visualizations for the reduced lipids + glycans data that contain 20 variables
(18 lipids + 2 glycans). The best ROC curves and classification of healthy (obese) vs. NAFL vs. NASH were achieved for this data set with 57 subjects. Group 1: Healthy, Group 2: NAFL,
Group 3: NASH.
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