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Review
SPECIAL SECTION: OBESITY—ENVIRONMENT INTERACTIONS

Study Importance

What is already known?

► Previous reviews of the built environ-
ment have provided comprehensive 
summaries of the state of knowledge 
regarding the relationship between the 
physical environment and food environ-
ment and their impact on poor diets, 
lack of exercise, and higher obesity 
prevalence.

What does this review add?

► The present review provides an in-depth 
examination of the evolution of our con-
ceptual understanding of the built envi-
ronment and obesity, a call for a closer 
examination of the role of energy bal-
ance pathways, technological advances 
in the capture of built environment  
exposures, and suggestions for promis-
ing new avenues of research.

The built environment (BE) has been viewed as an important determinant 
of health. Numerous studies have linked BE exposure, captured using 
a variety of methods, to diet quality and to area prevalence of obesity, 
diabetes, and cardiovascular disease. First-generation studies defined 
the neighborhood BE as the area around the home. Second-generation 
studies turned from home-centric to person-centric BE measures, cap-
turing an individual’s movements in space and time. Those studies made 
effective uses of global positioning system tracking devices and mobile 
phones, sometimes coupled with accelerometers and remote sensors. 
Activity space metrics explored travel paths, modes, and destinations to 
assess BE exposure that was both person and context specific. However, 
as measures of the contextual exposome have become ever more fine-
grained and increasingly complex, connections to long-term chronic dis-
eases with complex etiologies, such as obesity, are in danger of being 
lost. Furthermore, few studies on obesity and the BE have included inter-
mediate energy balance behaviors, such as diet and physical activity, or 
explored the potential roles of social interactions or psychosocial path-
ways. Emerging survey-based applications that identify habitual destina-
tions and associated travel patterns may become the third generation of 
tools to capture health-relevant BE exposures in the long term.

Obesity (2020) 28, 22-30. 

Introduction
The built environment (BE) has been defined as the human-modified 
space in which people conduct their daily lives (1). Measuring and 
quantifying human exposure to the neighborhood BE have been accom-
plished in a variety of ways (2-11). Current studies on obesity and the 
BE owe much to the development of geographic information systems 
(GIS) (2,12,13) and the widespread use of global positioning system 
(GPS) devices  (14-18). Elements of the neighborhood BE tend to be 
categorized into the food environment and the physical activity (PA) 
environment (19). The food environment is conceptualized in terms of 
physical access to local supermarkets, groceries, fast food restaurants, 
or convenience stores (19). The PA environment refers to area walk-
ability, greenness, blue water, land use mix, and access to recreational 
facilities (19).

Much of the work on health and the BE, conducted over the past 2 decades, 
has focused on neighborhood-level BE features and their likely impact 
on poor diet, lack of exercise, and higher obesity prevalence (19-23).  

Most studies have been home-centric, meaning that the density of or 
distances to destinations of interest were measured in relation to the 
individuals’ homes (2,13). Whereas aspects of the neighborhood PA 
environment did predict walking and lower body weights (23-28), there 
was little to link the food environment to diet or diet-related health out-
comes, such as obesity, diabetes, and cardiovascular disease. Physical 
access to supermarkets around the home was unrelated to diet quality 
or obesity rates (2,20,29-41). There is preliminary evidence that activ-
ity space (AS) metrics are also unrelated to diet, obesity, or diabetes 
(17,18). Indeed, there is a growing understanding, with respect to the 
evaluation of the food environment in particular, that the BE constitutes 
only a small slice of the larger context of the food environment.

Capturing the full contextual exposome, the totality of BE exposures 
at the individual level, has been described as fundamental to a better 
understanding of diet, obesity, and diabetes (42-46). The promise of 
evaluations of the BE was to show a causal link between elements of 
the BE, or changes in the BE over time, and obesity or other health 
outcomes (42-46). To that end, evaluations of BE exposures have 
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sought to develop methods to more accurately and completely capture 
elements of the BE. Accordingly, such BE measurement tools have 
become increasingly more sophisticated using wearable GPS devices, 
often augmented with travel diaries, travel logs, Google street views, 
or other mobile technologies (9,14,15,18,23,26,28,44,45,47-56). 
These approaches allow the capture of near instantaneous measures 
of exposure to the BE not only around the home location but also 
at work, school, and along travel routes (14,15,18,44,45,47-51,56). 
Mobile technologies have become increasingly atomized, allowing 
researchers to capture the minutiae of daily activities in time and 
space, sometimes at time resolutions of 10 seconds or less. By con-
trast, measures of diet quality, PA, and health have not followed suit. 
Standard methods of dietary intake assessment, such as food recalls 
or food frequency questionnaires, have generally not been used  
(2,4-6,11,19,57-59). Instead, the frequency of consuming “healthy” 
and “unhealthy” foods per day has been one proxy for diet quality 
(11). Health outcomes, when included in BE studies, have been lim-
ited to body weight, with only a few studies examining diabetes or 
cardiovascular outcomes (60-62).

The almost exclusive focus on quantifying BE exposure, together 
with cross-sectional study designs (19), has limited the ability to draw 
causal inferences regarding potential links between BE exposure and 
obesity (45,56). Furthermore, there seems to be a conceptual discon-
nect between current measures of BE exposure and the long-term tra-
jectories of body weight. Fine-grained mobile technologies capturing 
detailed movement in space and time at time resolutions of 10 seconds 
or less may prove highly useful in predicting risk factors for positive or 
negative behavior change when paired with spatiotemporally synced 
ecological momentary assessment (EMA) (63). However, as the mea-
sures of the BE exposome become instantaneous and increasingly time 
specific, links to chronic diseases with long onset periods and complex 
etiologies, such as obesity and diabetes, are in danger of being lost. 
Describing the evolving concept of BE exposure in relation to obesity 
is the topic of this review.

Evolving Measures of BE Exposure
Home as the center for BE exposure
Interest in health geography began in the early 1990s as researchers 
sought to establish evidence for geographic disparities in health outcomes 
(12,64). Concurrently, there was a renewed interest in social determi-
nants of health as well as in the socioeconomic and demographic factors 
that influence where people live (12,13). The earliest investigations into 
the BE and health often relied on neighborhood-level socioeconomic 
measures, such as indexes of socioeconomic position derived from the 
Census Bureau in the United States, the Townsend index, the Carstairs 
index, the Index of Multiple Deprivation in the United Kingdom, and the 
Socio-Economic Indexes for Areas in Australia, among others (65-70). 
These indexes were often composite indicators for area-level poverty 
or wealth, based on sociodemographic data on poverty, employment, 
education, and income, among other metrics (64-72). In these studies, 
an individual’s neighborhood was often defined by some administrative 
boundary (e.g., census tracts in the United States) in which the individ-
ual’s home was located (64,71,72). Often, actual addresses were geo-
coded to the centroid of the geographic administrative unit.

Early studies combined individual addresses with area-based, socio-
demographic data. The density of fast food restaurants or supermar-
kets as well as structural environment features, such as land use mix 

or availability of parks and trails, was calculated per administrative 
unit (7,13,19,58,73). However, care was needed in choosing the most 
relevant level of aggregation because both the scale and shape of the 
defined geographic units could influence the observed association, 
introducing a form of statistical bias known as the modifiable areal unit 
problem (74). The mismatch in geographic scales was resolved through 
hierarchical modeling (12,64,75).

Later studies used prespecified buffer zones, such as 400- or 800-m 
buffers around an individual’s home using GIS software packages 
(7,13,19,58,73). Here, the issue was between the nearest supermarket 
and the actual destination supermarket. While the location of the nearest 
supermarket could be readily obtained from GIS data, the location of 
the destination supermarket could be ascertained only through a survey 
(19,36,76-78). Those studies undermined the main premise of density 
metrics by showing that people did not shop at the nearest supermarket 
and did not eat at the nearest fast food restaurant (19,36,76-78). Those 
findings were instrumental in shifting attention to AS captured in space 
and time.

The postulated links between home BE and individual or neighbor-
hood-level health are summarized in Figure 1. Elements of BE exposure 
were linked cross-sectionally to the prevalence of obesity, hypertension, 
diabetes, dyslipidemia, and metabolic syndrome (2,19,34,37,61,79,80). 
With respect to the PA environment, studies have generally found 
that greater land use mix, higher residential density, higher walkabil-
ity scores, and more green space were all associated with lower BMI. 
Other measures of the BE such as road traffic and noise have been 
associated with a higher likelihood of having hypertension or dyslipid-
emia (34). However, there was less evidence to link local PA resources, 
such as recreational facilities, with body weight or hypertension (34). 
Moreover, the few examples of longitudinal evaluations of the PA envi-
ronment and changes in body weight have produced null or inconsistent 
findings (34,81).

The evidence on the association between the food environment and 
obesity was even less consistent (2,34). Studies have suggested that 
a higher density of supermarkets or full-service restaurants is asso-
ciated with lower body weight whereas higher densities of conve-
nience stores or fast food restaurants are associated with higher body 
weight (2,20,29-31,34-41). However, other studies have not observed 
the same association between supermarket density and lower BMI 
(32,33,36,39). Still more studies have been unable to replicate the 
findings between fast food restaurants or convenience stores and 
higher BMI (32,39,40).

Many early home-centric BE studies had several notable limitations 
with respect to their study design, measurement of the BE, and their 
consideration of BE–health pathways. First, the majority of early 
BE and health studies utilized a cross-sectional study design, which 
does not allow for a causal interpretation for observed associations 
between the BE and health (81). Second, home-centric analyses can 
capture the BE features and resources within an individual’s neigh-
borhood; however, proximity does not allow one to infer usage 
(19,36). For example, it was shown that  people do not shop for 
food in their immediate neighborhood but will instead travel great 
distances to the supermarket or fast food restaurant of choice (36). 
Third, the choice of BE variables can influence the magnitude and 
direction of the observed association between BE and health; not all 
such metrics are predictive of health (82). Relatedly, investigators 
should be more transparent regarding the variables and methods used 
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to quantify the BE (83). A recent systematic review examined 113 
studies (encompassing 1,937 tests of association) that sought to eval-
uate the relationship between the retail food environment and health 
(83). The authors found that the reporting of methods was quite poor 
for more than half of the studies included in the review and that the 
wide diversity in methods led to an array of conclusions (83). Fourth, 
some of the theoretical pathways through which features of the BE 
become internalized to influence health are not always readily appar-
ent (49). Additionally, as indicated in Figure 1, most early studies 
focused on the relationship between BE and health, with few evaluat-
ing its effect on any energy balance behaviors. Few early studies had 
any actual measures of diet or PA, and those that did usually evalu-
ated these outcomes separately without consideration of the mediat-
ing role these energy balance behaviors might have on the BE–health 
relationship. Fifth, some studies do not adequately disentangle the 
physical attributes of the BE from the demographic and socioeco-
nomic environments (84). For example, studies have shown that the 
socioeconomic indicator residential property value is associated with 
both perceived proximity to neighborhood PA environment features 
as well as health (31,36,40,41,76,84-86).

Some of these limitations can be overcome through the usage of per-
son-centric analyses that incorporate individual-level behaviors (e.g., 
diet, PA), demographics (e.g., race, culture), socioeconomic status 
(e.g., property value, educational attainment), and psychosocial factors 
(e.g., attitudes, perceptions). Researchers should also move to directly 
examine the intermediary pathways through which BE features might 
operate to influence health via person-centric attributes. These method-
ological additions will aid researchers in understanding how individu-
al-level characteristics influence a person’s exposure to BE elements 
in space and time and how the BE hinders or helps facilitate health- 
promoting behaviors.

Person as the center of BE exposure
Acknowledging that an individual’s home neighborhood cannot cap-
ture the full extent of health-related BE exposure, researchers turned 
to more advanced GPS technologies to track movements in space and 
time (14,15,18,44,45,47-51,56). Cumulative mobility over a given time 

period is the basis for constructing AS areas (18). These AS-derived 
areas are then supplemented with travel diary data to provide context 
for the GPS tracks, such as the reason for the trip, identified destination, 
and any participation in PA or foods consumed (50).

Several different measures of AS have been used. The radius of gyration 
is defined as the average distance of a set of GPS points or tracks to 
the most frequented location (87). The standard deviational ellipse of 
a set of GPS-recorded points is defined as the area that covers approx-
imately 68% of GPS points and that is centered on the average of the 
point pattern (88). Convex hulls are defined as polygons that contain all 
GPS points or tracks and have no angles greater than 180° (89). Studies 
have also utilized a nonparametric method known as 2D kernel den-
sity estimation in which a symmetrical kernel function is superimposed 
over a cluster of GPS points centered around its mean (90). The set of 
overlapping kernel density functions are then superimposed to create a 
continuous density surface (90). Other methods include mapping GPS 
points along street networks, buffered street networks, daily path areas, 
and more (18).

The literature examining whether BE features captured in an individ-
ual’s AS are more predictive of health than home-centric-defined fea-
tures is relatively nascent (14,15,18,44,45,47-51,56). In some cases, 
AS-defined food and structural environment features have been shown 
to be more predictive of health behaviors than those captured in the 
home neighborhood. A study examining fast food outlet density and 
consumption of saturated fats, whole grains, and fruits and vegetables 
found that the density captured via the AS was positively associated 
with saturated fat intake and negatively associated with whole grains 
(18). No such associations were observed using fast food outlet den-
sity captured in the 0.5-mile street network buffer (18). However, two 
studies conducted in New York City produced counterintuitive results, 
with one finding that higher noise density in AS-defined neighborhoods 
was associated with lower systolic and diastolic pressure and the other 
finding that home-centric food environments were more predictive of 
BMI and blood pressure (48,49).

These disparate findings may be demonstrative of the utility of AS 
BE measures in various settings or may highlight differences in the 

Figure 1 Conceptual model of home-centric analyses linking the built environment to health. Bulleted items are provided as 
examples and are not meant to represent an exhaustive list. Dashed arrow indicates the mediating role of health behaviors on the 
association between the built environment and health that was not directly evaluated by early studies. aDefined as fixed radius 
buffers around home address (e.g., 400- or 800-m buffers).



ObesityReview
SPECIAL SECTION: OBESITY—ENVIRONMENT INTERACTIONS

www.obesityjournal.org  Obesity | VOLUME 28 | NUMBER 1 | JANUARY 2020     25

operationalization of the AS techniques. For example, Zenk  et al. 
found that AS defined by daily path areas was predictive of diet but 
standard deviational ellipse was not (18). In addition, GPS monitor-
ing and travel diaries place a heavy burden on participants and pro-
duce high volume data with thousands of data points. These data must 
then be cleaned and consolidated into useful metrics, for which there 
are many, with varying predictability based on setting and the health 
outcome(s) of interest. This varied predictability may also be due, in 
part, to the timing and duration of BE exposure covered by the AS 
measures. For example, a given GPS path may be predictive of PA or 
diet quality for that day or week but may be less predictive of long-
term behavior or chronic diseases that are the result of the totality of 
behaviors over a protracted period of time (e.g., obesity, diabetes).

In order to overcome issues with the timing of BE exposures relative to 
the distal outcomes of interest, investigators have increasingly turned to 
EMA to capture real-time, proximal dietary and PA decision-making as 
well as mood as it occurs in a real-world setting (63,91-95). EMA is able 
to capture dynamic behaviors as they occur throughout the day and can 
allow investigators to observe the array of risk factors that precipitate a 
change in behavior that is spatiotemporally linked to the GPS-derived 
area measures (63,91-95). This method of data collection often uses short 
message services or applications via mobile devices and therefore it can 
often be coupled with GPS and accelerometer data. EMA represents an 
exciting and rapidly growing field of exposure and outcome assessment 
that is readily applicable to the study of the BE and health and that com-
plements new and evolving GPS-derived metrics (63,91-95).

Energy balance pathways
Any observable relationship between the BE and obesity should first, 
logically, have some observable effect on upstream energy balance  
behaviors, such as diet and PA (Figure 2) (11). Several studies have  
examined the role that the PA environment plays on PA and use of active 
modes of transport to commute to work or school. One feature of the PA 

environment that has been consistently linked to increased PA (specifi-
cally, walking) is neighborhood walkability (23-26). Walkability is typi-
cally defined by land use mix, residential density, retail floor area density, 
and street connectivity (27,28). With respect to the food environment, 
several studies have examined whether the composition of healthy and 
unhealthy food outlets, often referred to as the Retail Food Environment 
Index, in the home neighborhood was associated with diet quality. Several 
studies have observed that proximity to supermarkets, grocery stores, and 
sit-down restaurants is associated with high diet quality (37,38,96-98), 
while proximity to convenience stores and fast food restaurants has been 
associated with poor-quality diets (2,20,99). However, as observed with 
obesity and diabetes, the relationship between the home food environ-
ment and diet quality has not always been consistent (2).

While there are several studies that have evaluated the effect of BE expo-
sure on health and health behaviors separately, there are far fewer that 
have formally evaluated the potential mediating role of health behav-
iors in the BE–health relationship. International research examining 
the interplay among the BE, health behaviors, and health has provided 
evidence that PA mediates the effect of the PA environment on health 
(100-103). A study of Belgian adults examined the potential mediat-
ing effect of accelerometer-assessed PA and sedentary behaviors on the 
relationship between walkability and adiposity (100). They found that 
moderate-to-vigorous PA as well as walking and cycling for transport 
significantly mediated the relationship between walkability and both 
BMI and waist  to height ratio; however, no such mediating relation-
ship was found for sedentary behaviors (100). A study of New Zealand 
adults found that PA and sedentary behaviors played a significant medi-
ating role on the effect of street connectivity and neighborhood destina-
tion accessibility on BMI and waist circumference (101). A third study 
found that light and moderate-to-vigorous PA mediated the relationship 
between elements of the urban walking environment and BMI among a 
group of Japanese adults aged 65 to 84 years (102). With respect to car-
diometabolic outcomes, a study using a representative sample of adults 
in South Australia found that the effect of walkability and road network 

Figure 2 Conceptual model of SOS home- and person-centric analyses linking the built environment to health. Bulleted items are provided as 
examples and are not meant to represent an exhaustive list. aDefined as fixed radius buffers around home address (e.g., 400- or 800-m buffers).
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buffers on hemoglobin A1c was significantly mediated by self-reported 
PA levels (103). However, it is worth noting that, since the walkability 
index has been derived from elements in the environment that relate to 
walking, it should be expected that, by design, walking and walkability 
will be correlated. Therefore, the observed associations between walk-
ability and PA levels may represent a form of autocorrelation. To our 
knowledge there are few, if any, examples of formal mediational analy-
ses of PA in the relationship between BE and obesity, diabetes, or met-
abolic syndrome in US-based adult populations. Moreover, there are no 
equivalent studies that have examined the mediating role of diet, food 
shopping, or cooking behaviors on the BE–health relationship either 
in the US or internationally. However, such studies evaluating media-
tional effects of dietary behaviors may not prove fruitful if BE exposure 
assessment relies on home-centric measures alone.

Early evaluations of the neighborhood BE assumed that, much like the  
PA environment, the health-relevant food environment comprised  
the food stores and restaurants around the home (2,4,8,13,19,57). Yet 
the current body of evidence evaluating the food environment and health 
shows that this was an overly simplistic model (2,4,8,13,19,36,57). 
It is now understood that the built elements of the food environment 
constitute only a small slice of the wider context of the food environ-
ment. Other factors at the individual level (e.g., socioeconomic status, 
cultural and religious norms, perceptions, attitudes); at the store and 
restaurant level (e.g., affordability, availability, convenience, mar-
keting); and even at the local, state, and federal levels (e.g., social, 
income, and food policies) are more predictive of where individuals 
shop (19,36,104-108). Many studies fail to account for the diet cost 
at various food outlets as well as differences in individual purchasing 
power. Moreover, home-centric measurement fails to capture meals that 

may be consumed in the vicinity of the workplace or school, leading to 
incomplete assessment of the food environment to which an individual 
is exposed. Therefore, more thorough investigations of the relationship 
between the food environment and health should include diet and diet 
cost in their analyses as well as extend capture of food environment 
exposures to where people live, work, and spend their leisure time.

Psychosocial pathways
Individual-level psychosocial factors such as perceptions (e.g., neigh-
borhood attractiveness, availability of fresh produce), attitudes, social 
cohesion, and self-rated health and wellness can aid researchers in elu-
cidating how individuals interact with and internalize their environment 
(Figure 3) (2,109-115). Indeed, where objective, GIS-based assessments 
of the BE have failed to produce consistently significant associations 
with health outcomes, such as obesity and diabetes, perceived metrics 
such as the availability of supermarkets have been shown to be far more 
predictive (2). The collection of survey-based psychosocial measures 
may also assist in accurately capturing individual-level utilization of 
BE resources better than objective, GIS-based measures alone (2,109).

Individual perceptions of the BE have been shown to be correlated with 
objective measures of the BE (109,116) as well as measures of socioeco-
nomic status (117), and they are predictive of health (2,109-115,118). 
One study found that a four-item food environment assessment tool, 
which measured an individual’s perceptions of healthy food access, 
matched very closely with actual access in a low-income population 
(116). However, the degree to which perceived and objective measures 
of the BE match up may vary by population in a systematic way (109). 
Caspi and colleagues found that mismatch between perceived and 

Figure 3 Conceptual model of home- and person-centric (dynamic and destination focused) analyses linking the built environment to psychosocial factors 
and health. Bulleted items are provided as examples and are not meant to represent an exhaustive list. aDefined as fixed radius buffers around home address 
(e.g., 400- or 800-m buffers).
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objective BE measures was high but also observed that perceived super-
market access was more predictive of fruit and vegetable consumption 
than objective measures such as supermarket proximity (109). A sim-
ilar relationship has been observed with perceived and objective mea-
sures of the structural environment and levels of PA, with the perceived 
presence of facilities, sidewalks, shops, and area traffic each showing 
a positive association with level of PA (113). Likewise, other self-rated 
measures of BE, such as attractiveness, noise, and crime, were associ-
ated with individual property value, which in turn correlated highly to 
neighborhoods with a high prevalence of obesity (117).

Positive attitudes, self-efficacy, and social supports have been demon-
strated to be positively associated with healthy eating and higher levels 
of PA (55,77,119-126). One study found that participants who strongly 
agreed that a healthy diet was important had a healthier diet overall 
compared with those participants who disagreed or strongly disagreed 
(127). This attitude–diet relationship was found to be present regardless 
of the average cost of a healthy diet at the supermarket (127). Studies 
examining psychosocial factors predictive of PA levels have found that 
self-efficacy and social supports are associated with greater levels of 
activity (55,119,125,126). Interestingly, studies that have jointly exam-
ined both perceived and objective measures of the BE and psychosocial 
factors have found a synergistic relationship between the BE, self- 
efficacy, and social supports (55,119,125,126). Those individuals pos-
sessing positive psychosocial characteristics and living in environments 
conducive to PA have shown the greatest levels of PA or participation in 
active transport to work or school (55,119,125,126).

While psychological factors have been shown to be related to both BE 
features as well as health, more work is needed to understand how the 
perceived environment and positive attitudes mediate the effects of the 
BE on health. Furthermore, there is limited evidence evaluating the role 
that mental health and well-being play in mediating the effects of the 
BE on health. One study found that the presence of depressive symp-
toms changed both the strength and the direction of the association 
between the perceived structural environment and PA levels (128). To 
our knowledge, there are no studies that have examined how the effect 
of the food environment on diet quality and health outcomes is mediated 
by individual perceptions, attitudes, and mental health. Such studies 
should use dynamic, person-centric measures of the food environment 
to capture the full extent of exposure at home, work, school, and during 
commutes as well additional contextual factors such as prices, policies, 
marketing, and cultural and religious norms.

EMA, now viewed as a new and promising behavioral outcome of BE 
exposure (63), is concordant in space and time with spatiotemporally 
driven GPS measures of the BE exposome such as AS metrics. EMA has 
helped to shift attention from dietary quality or body weight to momen-
tary, place-driven impulses, behavioral triggers, or environmental cues. 
These triggers may be predictive of longer-term health outcomes, such 
as obesity and diabetes. While the EMA may provide answers to the rela-
tionship between BE and risk factors for behavior change, such methods 
may have less utility in providing insights into how the neighborhood 
BE or larger BE exposome influences chronic diseases with protracted 
onset periods. Such long-term chronic diseases have etiologies that are 
highly complex and that result from the accumulation of exposures to 
the BE as well as socioeconomic status, behavior, and more (129).

Residential selection bias
Underpinning many residential BE exposures are the socioeconomic 
and sociodemographic factors that determine where individuals are 

able to live as well as whether and where they are able to relocate 
(19,74,130). Historical patterns of residential segregation, a prominent 
manifestation of structural racism, have dramatically shaped the human 
geography of much of the world and have been linked to health dis-
parities (131,132). Relatedly, inequities in educational and work op-
portunities as well as intergenerational accumulation of wealth also 
play a key role in where individuals locate as well as how they interact 
with the BE (133). Two individuals may occupy the same physical res-
idential space or AS but experience very different social or economic 
environments (133). Therefore, careful confounding control is needed 
as there are several socioeconomic and sociodemographic factors that 
are associated with both where a person lives and the risk of obesity, 
which, in turn, may vary based on the shape and scale of the defined 
area (74,130). Interestingly, the incongruence in area-level socioeco-
nomic advantage or disadvantage between residential BE versus AS BE 
and its relationship to health is currently an active area of research that, 
to date, has produced mixed findings (91,134).

It is also worth noting that much of the extant research into the rela-
tionship between the BE and health has been conducted in the US and 
other high-income countries (135). The investigations into whether 
such findings are applicable to low- and middle-income countries are 
still in their infancy (135). As with high-income countries, care must 
be taken in such evaluations to consider the larger social and political 
context behind where people live. Moreover, the development of new 
technologies to assess the BE should be flexible and adaptive enough 
for use in both settings.

Obesity and BE: The Third-Generation 
Studies
The shift from home-centric BE exposure measurement to a more flexi-
ble, person-centered approach was intended to provide better information 
on the extent of health-relevant BE exposures throughout the day. These 
GPS-driven approaches have demonstrated great utility in predicting PA, 
such as walking, as well as use of active transport (23-26,37,38,96-98). 
Moreover, the evaluation of GPS data and metrics continues to evolve 
and show great promise in predicting risk factors for behavior change 
when combined with spatiotemporally linked outcome assessment meth-
ods such as EMA (63). However, wearable GPS monitoring devices tend 
to produce big data that can be computationally intensive and difficult 
to operationalize into metrics predictive of health based on the outcome 
of interest, population, and setting. Such computational challenges are 
represented by Aiello and colleagues, who evaluated the relationship be-
tween food purchase behaviors and health outcomes using 1.6 billion 
geocoded food purchases (136). Moreover, the cost of GPS monitoring 
is such that it cannot be readily scaled up to large longitudinal cohort 
studies. There is therefore a need for more efficient tools to assess the 
context of habitual interactions with the BE (45,56).

It is also worth considering the potential privacy concerns that arise with 
the use of continuous GPS monitoring techniques (137). While there 
are several methods researchers have implemented to mask the exact 
location of their participants to prevent privacy breaches, each method 
comes with its own strengths and weaknesses as well as different asso-
ciated reidentification risks (137). There is currently no universally 
accepted geographic masking method for confidential locations (137).

Chaix described the concept of “contextual expology” as a subdisci-
pline of BE research focusing on the spatiotemporal configuration of 



Obesity Obesity and the Built Environment: A Reappraisal Drewnowski et al.

28     Obesity | VOLUME 28 | NUMBER 1 | JANUARY 2020 www.obesityjournal.org

BE exposures and accurate mapping of spatial behavior (56). With 
this in mind, the Residential Environment and Coronary Heart Disease 
study developed the Visualization and Evaluation of Route Itineraries, 
Travel Destinations, and Activity Spaces (VERITAS) as an interactive 
Web mapping application that geolocates participant’s self-reported 
habitual destinations (56). VERITAS has proven useful in identifying 
highly frequented locations that can then be operationalized in several 
ways such as creating convex AS polygons, buffered areas, or travel 
paths using street networks (56). In addition, a validation study of 
VERITAS against continuous GPS monitoring data found that GPS data 
fell within 500 m of a VERTIAS-identified location for approximately 
86% of the Residential Environment and Coronary Heart Disease study 
population (45). While highly promising as a BE exposure assessment 
tool, no VERITAS-derived BE measures have, to date, been used to 
examine health or health behaviors. In addition, the VERITAS ques-
tionnaire does not ask participants to provide the path they travel to go 
to and from their key destinations (45,56).

A new tool, the Knowledge-based Activity Reporting and Mapping 
Application, or KARMA, is a dynamic, cloud-based, interactive appli-
cation that addresses some of the gaps identified in VERITAS. KARMA, 
like VERITAS, allows participants to self-report key destinations that 
they frequent most using an interactive Web-based tool with the in- 
person help of a trained interviewer. However, unlike VERITAS, 
KARMA uses the Google application programming interface to then 
map the most logical travel path, based on travel mode, which is 
then able to be modified by the participant if necessary. This allows 
KARMA to evaluate flexible AS, buffered dwell points, and travel 
paths. In addition, KARMA allows participants to input the timing of 
travel and activities throughout a given day, allowing research to exam-
ine the duration of time spent at each dwell point or in transit.

KARMA was developed within the Seattle Obesity Study III (SOS III), 
which seeks to critically examine the interplay between the BE, diet 
quality, PA, and diet-related health outcomes. As such, SOS collects 
both self-reported and objective measures of diet quality, PA, and BMI. 
Expanding beyond more traditional survey-based evaluations of diet, 
which usually measure only adequate fruit and vegetable intake, SOS III 
is able to collect detailed data on habitual dietary patterns using food fre-
quency questionnaires and to assign objective diet quality scores using the 
Healthy Eating Index (11,138). PA was measured at baseline via Actigraph 
(ActiGraphTM, Pensacola, California) accelerometer devices as well as 
self-reporting, allowing us to correct these self-reported metrics longi-
tudinally (139). Moreover, SOS III also collects information on an array 
of demographic, socioeconomic, and psychosocial factors (Figure 3). 
This puts the SOS III study in the unique position to address some of the 
existing gaps in the BE literature related to the mediating roles of health 
behaviors and psychosocial factors in the BE–health relationship.

Conclusion
As our understanding of how individuals interact with the BE, and how 
these interactions are internalized, becomes increasingly complex, so 
too must our conceptual models of obesity and the BE. Studies exam-
ining the effects of the BE on obesity and diabetes must consider how 
these effects are enhanced or mitigated via health behaviors, socioeco-
nomic status, and psychosocial factors. The assessment of the BE must 
expand beyond the immediate home environment to encompass a vari-
ety of other locations and destinations of travel. Streamlined, efficient, 
destination-focused, Web-based tools such as VERITAS and KARMA 

may become the next generation of tools to assess habitual BE exposure 
in long-term studies of weight trajectories, obesity, and diabetes. O
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