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Plasma High-Resolution Metabolomics Differentiates 
Adults with Normal Weight Obesity from Lean  
Individuals
Moriah P. Bellissimo 1,2,3, Qingpo Cai4, Thomas R. Ziegler2,3,5, Ken H. Liu6,7, Phong H. Tran2, Miriam B. Vos8, 
Greg S. Martin7, Dean P. Jones3,6,7, Tianwei Yu4, and Jessica A. Alvarez2,3

Objective: This study explored underlying metabolism-related dysfunction by examining metabolomic  
profiles in adults categorized as lean, as having normal weight obesity (NWO), or as having overweight/obesity.
Methods: Participants (N = 179) had fasting plasma analyzed by liquid chromatography and high-resolution  
mass spectrometry for high-resolution metabolomics. Body composition was assessed by dual-energy 
x-ray absorptiometry. NWO was defined as BMI < 25 and body fat > 30% for women and > 23% for men. 
Differentiating metabolomic features were determined by using linear regression models and likelihood ratio 
tests with false discovery rate correction. Mummichog was used for pathway and network analyses.
Results: A total of 222 metabolites significantly differed between the groups at a false discovery rate of 
q = 0.2. Linoleic acid, β-alanine, histidine, and aspartate/asparagine metabolism pathways were significantly 
enriched (all P < 0.01) by metabolites that were similarly upregulated in the NWO and overweight/obesity 
groups compared with the lean group. A module analysis linked branched-chain amino acids and amino 
acid metabolites as elevated in the NWO and overweight/obesity groups compared with the lean group  
(all P < 0.05).
Conclusions: Metabolomic profiles of individuals with NWO reflected similar metabolic disruption as those 
of individuals with overweight/obesity. High-resolution metabolomics may help identify people at risk for 
developing obesity-related disease, despite normal BMI.

Obesity (2019) 27, 1729-1737. doi:10.1002/oby.22654

Introduction
Obesity is a leading risk factor for major diseases, including cardiovas-
cular disease, type 2 diabetes, and cancer, and health conditions such 
as depression, obstructive sleep apnea, and decreased physical func-
tioning (1). Individuals with obesity have excess fat mass and meta-
bolic dysregulation resulting in increased all-cause mortality risk (1).  
BMI, calculated using simple anthropometric measures of height 
and weight, is used clinically to define obesity as a BMI greater than  
30 kg/m2. Although BMI is useful for identifying individuals at extreme 
levels with very high or low adiposity, BMI values in more moderate ranges 
are not well correlated with body fatness (2,3). This is because BMI uses 

total body weight and does not account for body composition components, 
such as lean mass and fat mass, which independently influence disease risk.

Within the range of intermediate BMI values is a group of individu-
als with a body composition phenotype termed normal weight obesity 
(NWO) (4). These individuals have BMI within the normal weight 
range (18.5-24.9  kg/m2) but exhibit excess fat mass. The current 
reported estimates for NWO are as high as 30% (4,5). Individuals with 
NWO were shown to have an increased risk of cardiometabolic disease 
and mortality compared with individuals who were normal weight and 
lean and individuals who were metabolically healthy with obesity (6). 
Previous studies have shown that individuals with NWO have elevated 
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cardiometabolic disease risk factors, demonstrated by hyperlipidemia, 
hypertension, glucose intolerance, insulin resistance, increased inflam-
mation, increased oxidative stress, and decreased physical functioning 
(7). Although there is a growing literature of metabolic dysregulation 
in NWO, there is a need to define the nutrition- and metabolism-related 
pathophysiology of NWO.

High-resolution metabolomics (HRM) is an innovative platform that 
is useful for exploring obesity-related disease from a systems-biology 
approach (8). HRM is a powerful tool for nutrition research because it 
enables the profiling of thousands of small-molecular-weight metab-
olites in human  biological samples and allows the investigation of 
important questions regarding complex metabolite interactions  that 
derive from diet, endogenous nutrient metabolism, the microbiome, 
and exogenous chemicals (8). Metabolomics has been used to iden-
tify specific metabolic signatures related to BMI and obesity (9,10). 
However, there is little known regarding the metabolomic profiles from 
HRM of individuals with NWO compared with other body composition 
subtypes. In this study, we used HRM to investigate differences in the 
plasma metabolome between three body composition subtypes: lean, 
NWO, and overweight/obesity. We hypothesized that individuals with 
NWO would have metabolomic profiles that were similar to participants 
with overweight/obesity and distinct from participants who were lean.

Methods
Participants and study design
Emory University and Emory Healthcare employees were randomly 
invited to join the Emory/Georgia Tech Predictive Health Institute’s 
Center for Health Discovery and Well Being (http://predi ctive health.
emory.edu) cohort study between December 2007 and December 
2010. Participants underwent extensive dietary, metabolic, and other 
phenotypic assessments, as described in detail elsewhere (11). All 
participants provided written informed consent, and the study was 
approved by the Emory University Institutional Review Board. 
Exclusion criteria included the addition of a new prescription medi-
cation for chronic disease treatment within the previous year (other 
than antihypertensive or antidiabetic agents), acute illness within 
12 weeks of the study visit, hospitalization for an acute or chronic 
disease within the previous year, history of substance/drug or alcohol 
abuse, a current active malignant neoplasm, women who were preg-
nant or breastfeeding, or an uncontrolled (nonmedicated) or poorly 
controlled autoimmune, cardiovascular, endocrine, gastrointestinal, 
hematologic, infectious, inflammatory, musculoskeletal, neurologic, 
psychiatric, or respiratory disease (11). All data included in this 
analysis were collected at baseline visits. The current study included 
a subset of individuals with available baseline plasma HRM data. 
Demographic, education, and income information was self-reported. 
Participants were classified as having a history of chronic disease 
(yes or no) if they reported a current diagnosis of diabetes, hyperten-
sion, or hyperlipidemia or if they were currently taking antihyperten-
sive, antidiabetic, or lipid-lowering medications.

Clinical markers, physical fitness, and diet-quality 
scores
Fasting concentrations of glucose, insulin, and lipids were measured 
by Quest Diagnostics (Valencia, California). The homeostatic model 
assessment of insulin resistance (HOMA-IR) was calculated according 

to Matthews et al. (12). Systolic and diastolic blood pressure were mea-
sured using an automated machine (Omron, Kyoto, Japan). Physical 
fitness (maximum oxygen consumption [VO2max]) was assessed using a 
GE T2100 treadmill (GE Healthcare, Waukesha, Wisconsin), following 
a modified Balke protocol. Participants completed the Cross-Cultural 
Activity Participation Study (13) to determine  whether individuals 
met the 2007 American College of Sports Medicine/American Heart 
Association physical activity and strength guidelines. Dietary intake 
was assessed using the 2005 Block Food Frequency Questionnaire 
(NutritionQuest, Berkeley, California). Any reported intakes less than 
500 calories or greater than 5,000 calories were considered implausible 
and excluded. Three validated diet quality scores, the Alternate Healthy 
Eating Index (14), Dietary Approaches to Stop Hypertension diet  
score (15), and the Mediterranean Diet Score (16), were calculated 
from the Block Food Frequency Questionnaire output, as previously 
described (17).

Body composition analysis and body composition 
subgroups
Whole and regional body composition was assessed with dual- 
energy x-ray absorptiometry using a Lunar iDXA densitometer and 
enCORE (version 12.2) with CoreScan software (GE Healthcare, 
Madison, Wisconsin). BMI was calculated from height and weight 
measured using an electronic scale and stadiometer (Tanita TBF-25; 
Tanita Health Management, Arlington Heights, Illinois). Participants 
were then classified into one of three body composition subtypes  
(lean, NWO, or overweight/obesity) based on sex-specific body fat 
percentage values and BMI. For men, body fat percentage > 23% was 
considered elevated, and for women, body fat percentage > 30% was 
considered elevated, based on published literature (18). Participants 
were categorized as having a lean body composition subtype if their 
BMI was between 18.5 and 24.9 and their body fat percentage was 
below the sex-specific cutoff values. NWO was defined as BMI be-
tween 18.5 and 24.9 and a body fat percentage above the sex-specific 
cutoff values. Lastly, overweight/obesity was categorized as BMI ≥ 25 
and a body fat percentage above the sex-specific cutoff values. Waist 
circumference was measured three times by a health professional 
trained in anthropometry using a tape measure, and the average value  
is reported.

Plasma HRM
Plasma HRM was performed on plasma samples from 179 fasted indi-
viduals using published methods (19) in the Emory University Clinical 
Biomarkers Laboratory. In brief, fasting plasma previously stored at 
−80°C was treated with acetonitrile and an internal standard mixture 
using an established protocol (19). Following protein precipitation, 
fasting plasma samples were analyzed in triplicate with a Fourier 
transform mass spectrometer (Dionex UltiMate 3000, Q  Exactive 
Orbitrap; Thermo Fisher, Waltham, Massachusetts) using C18 liquid 
chromatography and positive electrospray ionization to maximize 
the detection of low-molecular-weight chemicals. After analysis of 
all participant samples and quality control samples, liquid chroma-
tography–mass spectrometry data were extracted using the R-based 
packages apLCMS (20) and xMSanalyzer (21) to provide a mass- 
to-charge feature table of detected ions denoted by relative retention 
time and accurate mass. Batch correction was completed by ComBat 
(22). Data preprocessing included (1) filtering of features based on 
the coefficient of variation, (2) filtering of samples based on Pearson 
correlation between averaged technical replicates and percentage of 
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missing values (features were retained only if there was a signal in 
at least 50% of samples), and (3) log10 transformation, quantile nor-
malization, and mean centering. A total of 9,967 metabolomic fea-
tures were included in this analysis after data filtering.

Metabolite identification
The R package xMSannotator was used for metabolite annotation, 
which uses multiple criteria to provide a score-based annotation (23). 
Identities of multiple endogenous metabolites, including the amino 
acids, have been confirmed by comparing coelution with an authentic 
standard (24) in the Emory Clinical Biomarkers Laboratory, and they are 
equivalent to a level 1 identification according to the Schymanski et al. 
criteria (25). Additional annotations were made with a high or medium 
confidence (≥ level 2) with a protonated adduct (M + H adducts). When 
identity confirmation was not available, metabolites were annotated 
by searching metabolite databases, such as the Human Metabolome 
Database (http://www.hmdb.ca) and METLIN (https ://metlin.scripps.
edu), for metabolite mass-to-charge matches. For selected features 
that could not be annotated based on mass spectrometry (MS1) data 
only, ion dissociation spectra (tandem mass spectrometry  [MS/MS]) 
were collected on a Thermo Scientific Fusion Mass Spectrometer 
for MS/MS spectral library matching using the mzCloud database 
(https ://www.mzclo ud.org).

Statistical analyses and bioinformatics
Descriptive statistics (mean [SD]) are presented for clinical vari-
ables. Distributions were assessed for normality, and any non- 
normally distributed clinical variables were natural log transformed 
for use in parametric statistics and back transformed for data presen-
tation. ANCOVA tests, with adjustment for age, race, sex, and history 
of chronic disease (yes or no), were used to test for overall group 
differences in clinical, body composition, and lifestyle factors. Post 
hoc comparisons between specific groups were assessed with Tukey 
honestly significant difference tests. Fisher exact tests were used for 
comparison of categorical variables because of small numbers in the 
variable levels. HRM bioinformatics analyses were performed using 
R. For HRM analyses, we used multiple linear regression analyses 
with likelihood ratio tests, adjusting for age, sex, race, and history of 
chronic disease, to determine differences between the three body com-
position groups (lean, NWO, and overweight/obesity). False discov-
ery rate was controlled for with the Benjamini-Hochberg procedure 
(q = 0.2). Metabolites that significantly differed between the groups 
were analyzed by the mummichog pathway enrichment and module 
analysis program (26). Significantly enriched metabolic pathways 
that included less than four metabolites were excluded from findings. 
Module analyses  were also produced from mummichog, which are  
unbiased from established biological pathways and which construct 
independent networks of highly correlated metabolites (26). To test 
for differences in significantly enriched pathways and module metab-
olites between body composition subtypes, intensity values for indi-
vidual metabolites within each pathway and network were compared, 
with adjustment for age, race, sex, and history of disease. In post hoc 
analyses of differing metabolites, we also controlled for group differ-
ences in VO2max. In a subset of the cohort (n = 86), sensitivity anal-
yses were performed on metabolites of interest between individuals 
classified as having NWO and overweight/obesity using Student t 
tests. Individuals in the subset were matched by age (within 2 years), 
race, and sex. Of 43 individuals classified as having NWO, 32 were 
matched to individuals classified as having overweight/obesity on 
all three criteria, and 11 were matched on two of the three criteria. 

Statistics comparing clinical variables and individual metabolite in-
tensity values were performed in JMP Pro (version 13, SAS Institute 
Inc., Cary, North Carolina).

Results
Demographic and clinical characteristics for all participants are 
shown in Table 1. Distributions of age and race did not significantly 
differ between the three groups (P = 0.07 and P = 0.3, respectively). 
There were significantly more women in the NWO group (P < 0.05) 
compared with the lean and overweight/obesity groups. The over-
weight/obesity group had a significantly higher proportion of in-
dividuals with a history of chronic disease compared with the lean 
and NWO groups (P = 0.01). In general, the population was highly 
educated and participants reported a high annual household income, 
which was similar between all groups (P > 0.05 for both). Fasting 
plasma glucose, total cholesterol, low-density lipoprotein choles-
terol, and diastolic blood pressure levels did not significantly dif-
fer between the groups (P > 0.05). Fasting insulin, HOMA-IR, and 
triglyceride values were similar between the lean and NWO groups 
(P > 0.05) but were significantly higher in the overweight/obesity 
group (P < 0.05). Systolic blood pressure levels differed only between 
the NWO and overweight/obesity groups (P < 0.05). High-density li-
poprotein cholesterol levels did not differ between the lean and NWO 
groups but were significantly lower in the overweight/obesity group 
(P < 0.05). The proportion of participants in each group with adverse 
clinical biomarkers is shown in Supporting Information Table S1.

Body composition, diet quality, and physical 
fitness
Body composition and lifestyle variables are presented in Table 2. 
Per the  body composition subtype classification, BMI was similar 
between the lean and NWO groups (P > 0.05) but was significantly 
higher in the overweight/obesity group (P < 0.05). Body fat percentage 
increased significantly from participants classified as lean to having 
NWO to having overweight/obesity (P < 0.05). Although lean body 
mass did not differ between the lean and overweight/obesity groups, 
it was significantly lower in the NWO group (P < 0.05). Visceral ad-
ipose tissue increased significantly with each group, whereas waist 
circumference was significantly higher only in the overweight/obesity 
group (P < 0.05). VO2max was highest in the lean group and signifi-
cantly lower in the NWO and overweight/obesity groups (P < 0.05). 
Based on self-reported data, a greater proportion of the lean group 
completed moderate-to-vigorous aerobic activity (P < 0.05), but there 
were no differences between groups for strength training (P > 0.05). 
The Mediterranean Diet Score and the Alternate Healthy Eating Index 
were similar across all groups (P > 0.05). The Dietary Approaches to 
Stop Hypertension diet quality score was significantly higher in the 
lean group compared with the overweight/obesity group (P < 0.05).

HRM
Of the 9,967 filtered metabolomic features, 1,533 features were sig-
nificantly associated with the body composition subtypes at P < 0.05 
(Figure 1A). Following false discovery rate correction, there were 
222 significantly associated metabolites (q = 0.2), which were used 
as input for mummichog (26) pathway enrichment and module anal-
yses. Significantly enriched pathways are shown in Figure 1B. There 
were 10 significantly enriched pathways predominantly related to 

http://www.hmdb.ca
https://metlin.scripps.edu
https://metlin.scripps.edu
https://www.mzcloud.org


Obesity

1732     Obesity | VOLUME 27 | NUMBER 11 | NOVEMBER 2019 www.obesityjournal.org

Metabolomics in Normal Weight Obesity Bellissimo et al.

lipid and amino acid metabolism. Representative metabolites within 
the significantly enriched pathways are shown in Figure 2. All me-
tabolites included in Figure 2 were matched by an M + H adduct and 
have a level 1 or level 2 annotation with high or medium confidence 
(23,27). Metabolites within the linoleic acid metabolism pathway, 
such as linoleic acid and oxidized linoleic acid–related metabolites, 
were higher in the NWO and overweight/obesity groups compared 
with the lean group (P < 0.05 for all). Metabolites within β-alanine, 
histidine, and aspartate/asparagine metabolism were significantly el-
evated in the NWO and overweight/obesity groups compared with 
the lean group. Glutathione and glutamate metabolism contained 
metabolic features that were similarly elevated in the NWO and 
overweight/obesity groups compared with the lean group as well 
as metabolite levels that were elevated in only the overweight/obe-
sity group compared with the lean group. The significantly enriched 
pathways lysine metabolism, glycine and serine metabolism, and 
the urea cycle contained metabolite levels that were higher in the 
overweight/obesity group compared with the lean group. Following 
further adjustment for VO2max, lysine levels were similar between all 
three groups. No other findings in pathway analyses changed after 
adjustment for VO2max, as shown in Figure 2. Significantly enriched 
pathways with all tentatively annotated metabolic features are shown 
in Supporting Information Table S2.

Figure 3 depicts a module analysis of metabolites significantly differ-
ing between the body composition subtypes (P < 0.05 for all metabo-
lites). The module was predominantly composed of amino acids and 
amino acid–related metabolites (17 of 21 metabolites), including the 
branched-chain amino acids (BCAAs) leucine/isoleucine, cystine, 
pyruvate, histidine, 5-oxoproline, ornithine, and putrescine, which 
had significantly elevated levels in the NWO and overweight/obesity 
groups compared with the lean group. Additional amino acid metabo-
lite intensities, such as the BCAA valine, 3-methyl-2-oxobutanoic acid  
(a valine-related metabolite), the aromatic amino acids (AAAs) tyrosine 
and threonine, glutamate, and phenylpyruvate (a phenylalanine-related 
metabolite), were higher in the overweight/obesity subtype compared 
with the lean subtype, but these metabolite intensity levels in the NWO 
group did not differ from either of the other groups. Following addi-
tional adjustment for VO2max, 5-oxoproline levels were significantly 
elevated in the overweight/obesity group compared with the lean group 
but did not differ significantly in the NWO group. All of the metabolic 
features tested followed the same pattern after adjustment for VO2max, 
as noted in Figure 3.

In sensitivity analyses of matched participants classified as having 
NWO and overweight/obesity, there were no changes in statistical find-
ings from the results reported above and shown in Figures 2 and 3; 

TABLE 1 Demographic and clinical characteristics

  Lean (n = 26) NWO (n = 43)
Overweight/obesity  

(n = 110)

Age, y 47.3 ± 2.0 47.8 ± 1.6 50.6 ± 1.0
Female sex 15 (58) 35 (81)* 66 (60) 
White 23 (88) 35 (81) 79 (72)
Education      

Less than high school 1 (4) — —
Completed high school 1 (4) — 4 (4)
Some college 1 (4) 5 (12) 21 (19)
4 years of college 6 (23) 12 (28) 25 (23)
Any graduate school 17 (65) 26 (60) 60 (55)

Annual household income, $      
≤ 50,000 1 (4) 1 (3) 14 (14)
> 50,000-100,000 6 (24) 6 (15) 33 (32)
> 100,000-200,000 10 (40) 21 (53) 31 (30)
> 200,000 8 (32) 12 (30) 25 (24)

Chronic disease (yes) 5 (19) 6 (14) 38 (35)* 
Plasma glucose, mg/dL 95.7 ± 4.8 93.1 ± 4.0 94.9 ± 3.1
Plasma insulin, μIU/mL* 2.7 ± 0.5* 3.6 ± 0.5* 5.5 ± 0.6 
HOMA-IR* 0.6 ± 0.1* 0.8 ± 0.1* 1.3 ± 0.1 
Total cholesterol, mg/dL 193.9 ± 9.4 201.4 ± 8.0 197.8 ± 6.1
LDL-C, mg/dL 105.3 ± 8.2 117.8 ± 7.0 118.4 ± 5.3
HDL-C, mg/dL 72.7 ± 3.8* 63.5 ± 3.3* 55.5 ± 2.5 
Triglycerides, mg/dL 81.1 ± 11.4* 101.2 ± 9.7* 117.2 ± 7.4 
Systolic blood pressure, mm Hg 119.4 ± 3.6* 118.1 ± 3.1* 126.1 ± 2.3 
Diastolic blood pressure, mm Hg 74.7 ± 2.5 75.5 ± 2.1 79.9 ± 1.6

Values are mean ± SE or n (%). Results of Tukey post hoc analyses are denoted by capital letters. Values not connected by the same letter are significantly different at  P < 0.05. 
Plasma variables were adjusted for age, sex, race, and history of chronic disease.
*Variables were natural-log transformed for analyses and back transformed for data presentation; reported as geometric mean ± SE.
HDL-C, high-density lipoprotein cholesterol; HOMA-IR, homeostatic model assessment of insulin resistance; LDL-C, low-density lipoprotein cholesterol; NWO, normal weight 
obesity.
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all metabolite intensity levels remained similar between the NWO and 
overweight/obesity groups.

Discussion
In this Atlanta, Georgia-based cohort, we found that adults with a NWO 
phenotype had metabolomic profiles that were similar to those of indi-
viduals with overweight/obesity and distinct from those of lean indi-
viduals. In particular, linoleic acid, β-alanine, histidine, and aspartate/
asparagine metabolism, as well as some BCAAs, were upregulated in 
the NWO and overweight/obesity subtypes compared with the lean sub-
type. We also found dysregulation of amino acid metabolism related 
to valine, tyrosine, and phenylalanine in the overweight/obesity group 
compared with the lean group.

An analysis of classic clinical measures showed similar profiles 
between individuals with NWO and lean individuals for lipid levels, 
insulin resistance (via HOMA-IR), and blood pressure. Whereas other 
studies have shown elevated clinical measures in individuals with 
NWO compared with lean individuals (7,28), we did not find those 
distinctions in this cohort. Only triglyceride concentrations were sim-
ilar between individuals with NWO and overweight/obesity. All other 
clinical variables were comparable between the NWO and lean groups. 
The combined results of the clinical measures and HRM in individuals 
with NWO show that HRM may be a more sensitive measure to detect 
metabolism-related dysfunction prior to altered clinical measures in 
middle-aged adults.

Linoleic acid is an essential omega-6 polyunsaturated fatty acid, and its 
effects on cardiometabolic health have been debated (29,30). In our study, 
linoleic acid metabolism was significantly upregulated in the NWO and 

overweight/obesity groups compared with the lean group, indicating 
disruption of this metabolic pathway with elevated adiposity. Additional 
studies have shown increased total linoleic acid levels in participants with 
BMI > 30 (31), whereas others have reported decreased levels of linoleic 
acid but increased levels of linoleic acid–related metabolites (32,33). 
Because it can be converted to arachidonic acid, linoleic acid has been 
suggested to promote proinflammatory pathways (34,35). Evidence has 
suggested that individuals with obesity may have a greater proinflamma-
tory response to linoleic acid consumption compared with lean individ-
uals (34,36). Previous studies have shown that individuals with NWO 
have increased circulating proinflammatory biomarkers (7). Through 
their actions on peroxisome proliferator-activated receptor gamma activa-
tion (37), the oxidized linoleic acid metabolites 9-HODE and 13-HODE 
may promote both inflammation and adipocyte differentiation (34). In 
addition, through competition with the shared Δ6 desaturase enzyme, a 
high intake of linoleic acid may blunt the anti-inflammatory effects of α- 
linolenic acid (a precursor to docosahexaenoic acid and eicosapentaenoic 
acid) (34,38). In aggregate, upregulated linoleic acid metabolism may  
be indicative of increased inflammation in settings of excess adiposity.

Previous studies have reported elevated amino acid concentrations 
in individuals with obesity. Our findings show similarly increased 
levels of amino acids and related metabolites, including histidine, in 
individuals with NWO compared with individuals classified as lean. 
Studies using principal component analyses to investigate relation-
ships between cardiometabolic health and the plasma metabolome 
have identified histidine as a significantly associated metabolite 
(39,40), although others have found a negative association with, 
or no relationship between, histidine, BMI, and obesity (9,31,41). 
Metabolites that are enriched within histidine and β-alanine overlap 
with glutamate metabolism and may represent anaplerotic substrates 
(31). Lysine metabolism was upregulated in the overweight/obesity 

TABLE 2 Body composition variables, physical fitness, and diet quality scores

  Lean (n = 26) NWO (n = 43)
Overweight/obesity 

(n = 110)

BMI 23.9 ± 0.9* 24.3 ± 0.7* 30.8 ± 0.6‡ 
Total body mass, kg 69.7 ± 2.9* 68.5 ± 2.5* 87.6 ± 1.9‡ 
Lean body mass, kg 50.3 ± 1.5* 44.4 ± 1.2‡ 51.1 ± 1.0* 
Fat mass, kg 16.5 ± 1.8* 21.5 ± 1.5‡ 33.6 ± 1.1 
Total body fat, % 23.1 ± 1.0* 31.3 ± 0.8‡ 37.7 ± 0.6 
Visceral adipose tissue, kg* 0.22 ± 0.04* 0.5 ± 0.1‡ 1.3 ± 0.2 
Waist circumference, cm      

Men 82.3 ± 3.2* 85.8 ± 3.2* 97.6 ± 2.6‡ 
Women 77.0 ± 2.9* 77.5 ± 2.1* 91.7 ± 1.7‡ 

VO2max, mL/min/kg 42.9 ± 2.3* 34.6 ± 2.0‡ 34.2 ± 1.5‡ 
Met MVPA guidelines‡ 16 (64)* 14 (33)‡ 45 (41)c 
Met strength guidelines‡ 10 (38) 8 (19) 23 (21)
Mediterranean Diet Score 4.7 ± 0.4 4.1 ± 0.4 3.9 ± 0.3
DASH diet score 5.5 ± 0.3* 5.0 ± 0.2*,‡ 4.9 ± 0.2‡ 
Alternate Healthy Eating Index 48.6 ± 2.6 46.8 ± 2.2 45.0 ± 1.7

Values are mean ± SE or n (%). Results of Tukey post hoc analyses are denoted by capital letters. Values not connected by the same letter are significantly different at P < 0.05.
*The variable visceral adipose tissue was natural-log transformed for analyses and back transformed for data presentation and is reported as geometric mean ± SE.
‡Met 2007 guidelines of 30 minutes of moderate-activity exercises at least 5 times/week, 20 minutes of vigorous-activity exercises 3 times/week, or a combination of both. 
Participants reported meeting strength guidelines by performing muscular strengthening exercises at least twice weekly.
DASH, Dietary Approaches to Stop Hypertension; MVPA, moderate-to-vigorous physical activity; NWO, normal weight obesity.
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group. Lysine is an essential amino acid that is needed to synthesize 
carnitine for fatty acid transport into the mitochondria for oxidation. 
Both carnitine and lysine levels were shown to be elevated in obe-
sity (41), and here we report higher levels of carnitine in participants 
with NWO and overweight/obesity compared with lean participants. 
Acylcarnitine levels, especially C3 and C5 acylcarnitine levels (42), 
have been found to be elevated in obesity, perhaps as a result of 
incompletely oxidized BCAAs. Finally, pathways related to nitroge-
nous waste excretion and aspartate/asparagine metabolism were dys-
regulated in the NWO and overweight/obesity groups compared with 
the lean group, in line with other obesity and cardiometabolic disease 
research (43). Our findings of altered amino acid metabolism are in 
accordance with published reports regarding obesity pathophysiol-
ogy, and they represent new findings for individuals with NWO.

Similar to previous obesity-related research (42,44), we found dysregu-
lation of BCAAs, AAAs, and related metabolites, which was associated 

with greater adiposity in the module analysis. There is now a well- 
established metabolic signature of obesity, including elevated BCAA and 
AAA concentrations (particularly tyrosine and phenylalanine), related to 
insulin resistance, mitochondrial oxidative capacity overload (42), and, 
ultimately, increased risk of developing type 2 diabetes (44). The altered 
flux of BCAA catabolism exceeds mitochondrial oxidative capacity and 
ultimately leads to the release of BCAAs into the blood (42). The increase 
in AAA levels may be due to competition for the same cellular transport 
protein used by large neutral amino acids. Elevated levels of glutamate, 
alanine, and pyruvate in individuals with obesity, which we also show in 
participants with NWO, may also be linked to altered BCAA metabolism 
and overload of the Krebs cycle (42). Glutamate is produced in the first 
step of BCAA catabolism, and increased concentrations of glutamate 
may shift pyruvate toward conversion to alanine (42). In summary, we 
found altered BCAA and AAA metabolism in participants with NWO 
and overweight/obesity, which may reflect the underlying pathophysiol-
ogy of insulin resistance and mitochondrial energy metabolism overload.

Figure 1 (A) Manhattan plot of metabolites significantly different between body composition subtypes. There were 
1,533 metabolic features that were significant at P < 0.05 (grey open circles) and 222 metabolic features that 
were significant at a false discovery rate (FDR) of q < 0.2 (black triangles). (B) Pathway enrichment analysis of 
the 222 metabolites significantly associated with the body composition subtypes at an FDR of q < 0.2. Numbers 
in parentheses denote the number of significant metabolic features (numerator) out of the number of detected 
metabolic features within that pathway (denominator). m/z, mass-to-charge.
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Figure 2 Representative metabolites within significantly enriched metabolic pathways. All metabolites were matched by an M + H adduct in positive electrospray ionization 
mode. Results of Tukey post hoc analyses are denoted by capital letters. Values not connected by the same letter are significantly different at P < 0.05. aFindings were 
confirmed in post hoc analyses with further adjustment for VO2max and in a subset of the cohort (n = 86) in which participants were categorized as having NWO or overweight/
obesity and were matched by age, race/ethnicity, and sex. bFollowing further adjustment for VO2max, metabolite levels were similar between all three groups. EpOME, epoxy-
octadecenoic acid (a peroxidation product of linoleic acid); HODE, hydroxyoctadecadienoic acid (a derivative of linoleic acid); HPODE, hydroperoxy-octadecadienoic acid 
(intermediate of linoleic acid metabolism and precursor for the oxidized metabolite octadecadienoic acid); mz, mass-to-charge; M + H, protonated adduct; NWO, normal 
weight obesity.

Figure 3 Module analysis of correlated metabolic features that were significantly associated with the three 
body composition subtypes. Results of Tukey post hoc analyses are denoted by box color and significantly 
different at P < 0.05. aFindings were confirmed in post hoc analyses with further adjustment for VO2max and in 
a subset of the cohort (n = 86) in which participants were categorized as having NWO or overweight/obesity 
and matched by age, race/ethnicity, and sex. bFollowing further adjustment for VO2max, metabolite levels were 
significantly elevated in the overweight/obesity group compared with the lean group. IDP, inosine diphosphate.
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In this study, individuals with NWO had significantly lower lean body 
mass compared with those in the lean and overweight/obesity groups, 
and individuals with NWO had significantly higher visceral adipose 
tissue compared with lean individuals. Furthermore, individuals with 
NWO and overweight/obesity had significantly lower fitness levels 
compared with lean individuals. Relevant to our metabolomics find-
ings, resistance and aerobic training in insulin-resistant adults with 
overweight showed reductions in the whole-plasma molar sum of the 
BCAAs and improved clearance of acyl groups (45). Thus, the plasma 
metabolomic differences observed between individuals with NWO 
and lean individuals may reflect a combination of differences in body 
composition and fitness, although further adjustment for VO2max did 
not alter our main findings. While physical fitness is important for met-
abolic health, differences described here were more likely due to dif-
ferences in body composition subtypes or in other variables that were 
not assessed.

To our knowledge, this is the first study to examine the plasma metab-
olomic profiles of individuals with NWO, and it fills an important gap 
in knowledge about this population. This novel approach allowed for 
the comparison of detailed health profiles between groups beyond clas-
sic clinical laboratory assessments. Furthermore, the use of pathway 
enrichment analysis provides context to associations of disease with 
metabolic pathways instead of single metabolites. Pathway analysis 
also provides the advantage of being downstream from genetic changes 
and allows insight into products of genetic or epigenetic alterations. A 
limitation of the study was its cross-sectional nature, which impedes 
our ability to infer causality in the results. Health status, education, and 
income were collected by self-report and therefore may be subject to 
recall bias. This cohort was predominantly composed of individuals 
who reported a high education and income, which may not be reflective 
of the general US population. Our power to determine differences in 
outcomes between groups might have been limited by small numbers. 
For example, several metabolites in participants with NWO had inter-
mediate values that were between the metabolite values in lean partici-
pants and participants with overweight/obesity but were not statistically 
significantly different. This might have been due to small numbers 
between groups or heterogeneity in the metabolic health of individuals 
with NWO. Finally, there are no established cut points to define obesity 
based on body fat percentage, and applying another threshold to define 
obesity in this population might have yielded different results.

This study reports novel findings in this adult population that individu-
als with NWO have altered metabolomic profiles, denoting underlying 
metabolic dysfunction similar to individuals with overweight/obesity, 
despite having normal BMI and generally normal clinical biomarkers. 
Specifically, linoleic acid and amino acid pathways were dysregu-
lated in the NWO and overweight/obesity subtypes compared with the 
lean subtype. Thus, the plasma metabolome may be a useful measure 
of health status to detect perturbations that predict early metabolic 
changes. Larger, prospective studies are needed to determine whether 
HRM can identify normal weight individuals at risk for obesity-related 
diseases and whether targeted interventions in individuals with NWO 
can reduce such risks. O

© 2019 The Obesity Society
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