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In homeothermic animals sleep preparatory behaviours often

promote thermal efficiency, including warmth-seeking,

adopting particular postures (curling up, head tucking) and nest

building, all promoting warmer skin microclimates. Skin warmth

induces NREM sleep and body cooling via circuitry that

connects skin sensation to the preoptic hypothalamus.

Coupling sleep induction and lower body temperature could

serve to minimise energy expenditure or allow energy

reallocation. Cooling during NREM sleep may also induce

transcriptional changes in genes whose products facilitate

housekeeping functions or measure the time spent sleeping.
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Introduction
Sleep takes place whether animals are warm or cold

blooded [1]. Mammals and birds are homeotherms. They

generate heat through their metabolism and maintain

body temperature above that of the ambient surroundings

[2]. But when homeotherms enter NREM sleep, they

cool down. Thirty years ago, McGinty and Szymusiak

explored this correlation and suggested that cooling

served important functions, rather than simply being

the less interesting consequence of not moving [3]. They

speculated that these functions included ‘energy conserva-
tion, restoration of fatigable cerebral processes, avoidance of
biophysical disorders resulting from sustained high temperature,
and the immune response’ [3]. But even now, there are no

definitive answers concerning the role of temperature in

sleep function. In this review, we consider the recent

advances in understanding the relationship between

thermoregulation and sleep.
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Thermoregulation over the sleep wake cycle
Body temperature is under circadian control [4]. Even

human patients confined to ‘bed-rest’, where the effects

of physical activity are minimised, maintain stable

24-hour temperature cycles of approximately 1�C [5].

Two hours before falling asleep, our core temperature

starts to decrease under circadian control [6]. The likeli-

hood of the first bout of NREM sleep is highest when the

rate of body temperature decline is maximal [6]. But

circadian changes in body temperature can be uncoupled

from changes brought about directly by sleep entry [4]. In

experiments where the circadian rhythm is desynchro-

nised from the sleep cycle, the effect of sleep itself on

body temperature becomes clear: core temperature drops

on every transition to NREM sleep [4].

In mice, core body temperature decline also coincides

with the point at which they are most likely to sleep, just

as is seen in humans [6]. Thus, it is not just circadian

phase and physical activity that determine core and brain

temperature, but instead, the primary drivers are sleep-

wake states themselves [7]. More recently, Hoekstra et al.
also found that sleep state was a larger determinant of

brain cortical temperature than locomotion [8��]. On each

transition from wake to NREM, cortical temperature

decreases by about 0.2�C, but rises again quickly in the

next wakefulness episode [8��]. On the other hand, REM

sleep is accompanied by an increase in brain temperature

of approximately 0.1–0.2�C, although this is smaller than

that seen in wake [8��,9��].

In humans, increases in circulating melatonin correlate

with sleep onset, subjective sleepiness and a decline in

core temperature [10]. In CBA mice melatonin is highest

in the late dark phase, that is, the late waking portion of

the day [11]. Most laboratory strains of mice, however,

cannot synthesise melatonin [11], and so melatonin can

play no essential role in regulating temperature changes

and the time of sleep onset in mice. Rats become hypo-

thermic when injected with melatonin in the light phase,

but not in the dark phase [12], suggesting a complex

and species-dependent relationship between circulating

melatonin, sleep induction and temperature decline.

Nesting: microclimates for energy
conservation
Recently, research on sleep preparatory behaviours, for

example, nest building in the case of mice, suggests that

such behaviours require dedicated neuronal circuitry. This

engages before sleep onset, requiring inhibition of ventral

tegmental area dopamine neurons [13,14]. Nesting allows a

sleeping environment close to thermoneutrality, where
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8 Physiology of sleep
core temperature can be maintained with minimum energy

expenditure. Given a temperature preference, mice will

also choose nesting sites in warmer environments, closer to

thermoneutrality [15��], where they will spend 85% of the

light period [16�,17]. However, when nest site tempera-

tures rise above thermoneutrality, the nesting material

becomes unnecessary and nest quality deteriorates [18�].
The importance of nesting insulation for smaller mammals

cannot be overstated. Mice living at 10�C expend three and

a half times more energy than those close to thermoneu-

trality and consume three times more food to compensate

[19]. The presence of nesting material reduces this food

consumption and can even reduce litter mortality [20]

(reviewed in Ref. [6]).

Sleep posture is also important in energy conservation.

For example, to recover from long migration bouts, gar-

den warblers adopt energy saving postures during sleep,

by tucking their head into their body, despite increased

risk of predation [21�]. This has parallels to the sleeping

postures and curling up behaviour common to mammals.

Given the prevalence of conserved behaviours to save

energy during sleep, we suggest a neuronal mechanism

may exist that promotes sleep optimised towards conserv-

ing energy at thermoneutral temperatures.

Getting ready to sleep: microclimates and the
warm bath effect
In addition to energy conservation, there is another reason

why the warmth provided by nesting and adopting spe-

cific sleep postures, that is, curling up, or for humans,
Figure 1
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changing into night clothes and getting under the duvet,

could be important. This insight comes from the ‘warm

bath effect’. Warming before sleep, usually from a warm

bath or shower, promotes shorter sleep latencies, longer

initial sleep episodes and even ‘deeper’ sleep as measured

by EEG [22�,23]. Similarly, specific warming of the hands

and feet promotes NREM sleep induction [24–27]

(reviewed in Ref. [28]). The ‘warm bath effect’ is a

clear phenomenon: a meta-analysis of 13 human trials

concluded that water-based passive warming for as little

as ten minutes, between one and two hours before sleep,

shortens sleep latency by approximately 36% [22�]. This

is mechanistically consistent with an increase in periph-

eral vasodilation observed in several human trials,

that results in a decrease in core temperature and a

corresponding decrease in sleep latency [22�,29–31].

Nesting or sleeping under blankets could be a deliberate

thermoregulatory behaviour that promotes local skin

warming, or a microclimate of skin warmth, permissive

for sleep and it is this process that the ‘warm bath effect’

mimics [15��]. Seen in another way, in preparation for

sleep, mammals minimise the gradient between the skin

and core temperature to reduce the energy lost as heat to

the environment [18�] (Figure 1a). In clinical studies, this

is approximated by the distal-to-proximal gradient that

increases (towards zero) as sleep approaches [32]: that is,

during wake, the (proximal) torso is warmer than the

(distal) hands or feet, but before sleep the hands and

feet become progressively warmer until they equal the

torso. By using a duvet and/or night clothes, people form
)
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the thermoneutral zone (TNZ). This has similarities to the distal-

eripheral skin temperature and facilitates heat redistribution from the

maintenance of warm microclimates minimises energy loss while

mperature. In mice, increasing ambient temperature promotes NREM

sharply most likely due to heat stress. REM sleep is maximised in a

ed that the thermoneutral pulsing method employed in [9] did not fully

,57,62].

www.sciencedirect.com
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skin microclimates of around of 33 to 35�C — between

2 to 3�C warmer than during waking — and core temper-

ature also falls by 1�C resulting in a thermal gradient

change of as much as 4�C before sleep [29,32,33]. This

could explain why increasing the ambient temperature

toward the thermal neutral point enhances NREM sleep

in rodents [15��,34] (Figure 1b). In support of a microcli-

mate mechanism, capsaicin ablation of skin and brain

thermoreceptors in rats eliminates warmth induced

increases in sleep [34]. Cation channels activated by

warming are present on sensory afferents in the skin

but also on many neurons in the brain. Although direct

hypothalamic warming promotes NREM sleep [35–38],

mild ambient warming does not produce clear changes in

brain temperature [3] (reviewed in Ref. [39]), suggesting

that NREM sleep induction by ambient warmth relies on

the ion channels in the skin sensory afferents.

Further support for local skin warming promoting NREM

sleep comes from uncoupling protein 1 (UCP-1) KO mice

[40�]. The skin can be warmed not just by ambient

temperature but also by brown adipose tissue (BAT)

thermogenesis. UCP1 is expressed in BAT and is

required for the heat production capacity of brown

adipocyte mitochondria. Pharmacological stimulation of

BAT thermogenesis with b3-adrenergic agonists (the b3
adrenergic receptor is expressed on BAT) enhances

NREM sleep [41�]. In normal mice, administering inflam-

mation-promoting agents (TNFa, IL-1b, lipopolysaccha-

ride and clodronate-containing liposomes) induces a

biphasic response: 6–12 hours of body cooling and extra

NREM sleep, followed by 12 hours of hyperthermia

(fever) and normal amounts of NREM sleep. However,

in UCP-1KO mice, the fever-promoting agents no longer

induce the extra NREM sleep or initial hypothermia

[40�]. One interpretation is that these agents induce

NREM sleep, and perhaps the associated hypothermia,

via local skin warming from BAT stimulation.

Adult humans have cold-inducible depots of BAT,

although the metabolic significance of human non-

shivering thermogenesis remains contentious [42]. In

neonates, the significance is clear and BAT thermogen-

esis provides compensation for increased surface area-

to-volume ratio and insufficient skeletal muscle mass

[43]. Hence, BAT may have a more important role in

neonatal sleep that more closely mirrors BAT contri-

butions to sleep in rodents.

A final point to note is that, in rodents, certain types of

acute stress (e.g. social defeat stress, fighting and

restraint) promotes NREM sleep [44,45]. However, acute

stress in mice also induces BAT thermogenesis [46] (sleep

in the cited study was not investigated). This stress-

induced BAT thermogenesis could feasibly promote

sleep, possibly explaining the link between acute stress

and increased sleep.
www.sciencedirect.com 
Circuitry of sleep and temperature regulation
Sensory neurons in the skin use transient receptor potential

channels (TRP) to detect increases in ambient temperature

[47,48]. This information reaches the lateral parabrachial

nucleus (LPb) in the brainstem and is transmitted to the

MnPO and MPO nuclei [39,49–52]. The glutamatergic

neurons in the MnPO and MPO then signal to downstream

targets including the dorsal medial hypothalamus and

rostral raphe pallidus to induce, depending on species,

vasodilation, sweating, panting and the down regulation

of BAT [39,49–52] (Figure 2). Specific hypothalamic cell

types in MPO, such as BDNF-, PACAP- and TRPM2-

expressing neurons, can be activated by external warming

and when optogenetically or chemogenetically activated,

result in hypothermia [39,49–51] but none of these studies

looked at what happened to the vigilance state (e.g. sleep).

Furthermore, the external temperatures (e.g. 38�C) used to

activate these hypothermia-inducing neurons were consid-

erably above thermoneutrality and are likely too hot to

promote sleep in rodents [53]. So, it is unclear at the

moment if the BDNF-neurons and PACAP-neurons are

involved in sleep induction by ambient warmth.

Recently some of the mechanisms by which warmth-

induced sleep may take place have been discovered. Placing

mice in a warm environment at their thermoneutral temper-

ature activates hypothalamic median and medial preoptic

(MnPO/MPO) hypothalamic glutamate/NOS1 neurons

[15��], presumably by the route described in the above

paragraph. These glutamate/NOS1 neurons can induce

simultaneous hypothermia and NREM sleep (Figure 2)

[15��]. To induce hypothermia, the glutamate/NOS1 neu-

rons would innervate the previously described circuitry of

warm defence. To induce NREM sleep, they may innervate

sleep-promoting GABAneurons, also located in MPO [15��].
When these GABA neurons are activated, there is little

hypothermia induced, demonstrating that NREM sleep

can be artificially dissociated from hypothermia. The

sleep-promoting GABA neurons could also be nitrergic, as

RNA profiling indicates that GABAergic NOS1 neurons are

also present in MPO/MnPO [15��,54��] (Figure 2).

The MnPO sends both inhibitory and excitatory connec-

tions to the LPO region. Thus, skin warmth-activated

MnPO/MPO glutamate/NOS1 neurons could potentially

innervate both galanin/GABA neurons in the LPO hypo-

thalamus, which have been long postulated to induce

NREM sleep [55,56], as well as GABA neurons in MPO

(see Figure 2). When chemogenetically or optogenetically

activated, galanin neurons in LPO do, indeed, induce

NREM sleep [57��,58��], but also concomitantly hypother-

mia [57��,58��,59]. When galanin neurons in LPO are

lesioned, mice have slightly increased amounts of sleep,

but sleep becomes highly fragmented [58��], and the mice

have difficulty catching up on lost sleep after sleep depriva-

tion, that is, their sleep homeostasis becomes impaired

[58��]. Consistent with the chemogenetic stimulation results
Current Opinion in Physiology 2020, 15:7–13
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Figure 2
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Possible circuit arrangements for the detection and integration of warm thermal information into sleep-promoting circuitry.

Warmth is detected by TRPM2 channels on neuronal afferents in the skin and this information is transmitted to the lateral parabrachial nucleus

(LPb) and on to nitrergic-glutamate neurons in the MPO/MnPO hypothalamus. Both nitrergic and glutamatergic populations have a degree of

heterogeneity and express a mixture of transient receptor potential melastatin 2 (TRPM2) channels and leptin receptors. These nitrergic-glutamate

neurons in MPO/MnPO can initiate warm defence, probably through innervation of dorsal medial hypothalamus (DMH) neurons, but they also

promote sleep. This circuit could involve short range innervation of local GABAergic populations or longer projections to LPO GABA/galanin

neurons or directly to arousal or sleep promoting regions. Adapted from [6,15��,47,48,50,57��,58��].
[57��], mice with lesioned galanin neurons develop chronic

hyperthermia, retaining their usual diurnal variation in body

temperature, but with the temperature shifted up by several

degrees [58��]. Overall, these combined effects are unlikely

to result from a single type of LPO galanin or MPO

GABAergic neuron. Molecular phenotyping of the PO area

has revealed multiple types of galanin neuron which are

intermingled; most galanin neurons are GABAergic, but

some co-release GABA and glutamate, and one population

utilisesGABA and monoamines [54��]. The reason that mice

with genetic lesioning of LPO galanin neurons actually sleep

more in baseline conditions is not clear, but given sleep’s

importance, it could be a compensatory mechanism by other

elements of the sleep-promoting circuitry [58��].

Thermal theories of REM sleep
During REM sleep in rodents, body temperature is not

regulated. In contrast to NREM sleep, REM sleep is

characterised by brain temperature rises resulting from
Current Opinion in Physiology 2020, 15:7–13 
the relative increase in warmer vertebral, over carotid

artery, blood flow (please see background literature for

this in Ref. [8��]). In humans, thermoregulatory disrup-

tion during REM sleep is less clear cut: sweating

responses are observed, but they are blunted in REM

sleep [60]. REM sleep in rodents operates in a narrow

thermal window whereby the amount of REM is maximal

around thermoneutral temperatures [61,62] (Figure 1b).

For instance, the percentage of REM sleep doubles as the

temperature rises from 22 to 29�C, but returns to baseline

at 36�C [9��,57��]. This thermal neutral preference for

REM sleep is abolished in the MCH receptor 1 knockout

mouse [9��]. Optogenetically inhibiting MCH neurons

produces the same result whilst stimulation at thermo-

neutral temperatures further increased REM sleep [9��].
Hence, a mechanism that directs REM sleep initiation

towards optimal thermal efficiency exists in the mouse

and may support an ‘energy allocation’ hypothesis for

REM sleep [9��,63�,64].
www.sciencedirect.com
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There is a significant relationship between disrupted REM

sleep and disrupted thermoregulation in Parkinson’s dis-

ease [65]. REM sleep behaviour disorder (RSB) is a signifi-

cant risk factor for Parkinson’s disease, with more than 75%

of RSB patients developing Parkinson’s over a subsequent

12 year period [66]. Parkinson’s patients have lower night

time core body temperatures that correlate with the sever-

ity of RSB symptoms [67]. Patients can also have disrupted

sweat responses [68]. Hence, there is a need to understand

the basic biology of REM sleep and temperature regulation

in these patients to aid in their care.

Why would brain cooling be an important
feature of sleep?
One unanswered question is why NREM sleep and body

cooling seem to be linked. Similarly, why is REM sleep

different or privileged in this regard? On the scale of the

whole organism this process appears optimised towards

energy conservation. However, total energy savings of

eight hours sleep, in a 24-hour cycle, are as small as 5–15%

[64,69,70]. It is possible, instead, that sleep facilitates a

reallocation of resources that cannot be achieved during

wakefulness, which may amplify these energy savings by

as much as 35% [63�,64]. For example, some functions of

the immune system change during sleep and might be

achieved more efficiently in this manner [71].

Alternatively, cooling during each NREM sleep episode

may impact cellular function on a molecular level. For

example, expression of Cold-Inducible RNA Binding Pro-

tein (CIRBP) and RBM3 (RNA binding motif protein 3)

genes is induced at the lower temperatures encountered

during bouts of NREM sleep [8��,72,73]. These proteins

alter clock gene expression. Sleep deprivation dampens

CIRBP expression and hence cooling during NREM sleep

is one putative mechanism by which the time spent sleep-

ing could be measured though altered clock gene expres-

sion [8��]. CIRBP ablation in mice results in reduced REM

sleep and CIRBP expression could initiate sleep-specific

housekeeping functions [8��]. RBM3 expression also has a

neuroprotective role in the prion and Alzheimer’s mouse

models, particularly in the hippocampus, andso may serve a

similar function during sleep [74]. Longer or deeper bouts

of NREM sleep, such as the recovery sleep (sleep homeo-

stasis) following sleep deprivation, are associated with

greater brain cooling of more than 2�C over one hour

(Hubbard et al., bioRxiv doi: 10.1101/748871). This sug-

gests that sleep-associated cooling is homeostatic. LPO

galanin neurons may play a central role in this because they

both drive hypothermia and are needed for recovery sleep

after sleep deprivation [58��]. This further empzzhasises

the fundamental connection between NREM sleep and

brain and body cooling.

We have described some features of sleep, such as cooling

induced changes in gene expression. These could form

important elements in the role of sleep; however, they
www.sciencedirect.com 
may not be sufficient to describe the function of sleep.

For example, in Djungarian hamsters comparisons

between recovery sleep after daily torpor and recovery

sleep after sleep deprivation revealed different EEG

characteristics, suggesting these states are not entirely

analogous [75]. Finally, we should note that these and

other hypothesis of sleep function do not explain a key

component of sleep — the requirement for loss of

consciousness. Accounting for this characteristic will be

necessary for any complete theory of sleep.
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