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Abstract
Obesity is a major worldwide health threat. It is characterized by an abnormal adipose tissue overgrowth together with increased
monocytes infiltration, causing inflammation and oxidative stress, events associated with several illnesses. Investigations have
focused on the benefits of native fruit consumption, claiming these to be natural sources of bioactive compounds with antioxidant
and anti-inflammatory characteristics. It has been widely stated that berries are a source of the most antioxidant compounds, and,
thus, seem highly promising to endure research efforts on these vegetal matrices. The present article describes botanical, chemical
and biomedical features of the Chilean native berries, Aristotelia chilensis, Ugni molinae, and Berberis microphylla. This work
aims to potentiate incoming research focused on the search for novel treatments for first-order diseases with these particular plant
sources.
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Introduction

South America presents a rich biodiversity of fruits, some of
them with an important economic role in the countries where
they are found. However, the culture of native fruits in this
area has been less developed and their properties less studied.
In this regard, several features have been reported in the liter-
ature due its secondary metabolites and their potential effects
on human health.

Numerous epidemiological studies [1–3] indicate that a
diet rich in fruits and vegetables has been associated with
a lower risk of several chronic conditions, including obe-
sity, cancer, cardiovascular diseases, among others. Fruits,
widely contain micro and macronutrients such as

vitamins, minerals, and fiber; however, their beneficial
biological properties have been attributed mainly to the
presence of bioactive compounds, as well as to the syner-
gies among them [4]. Data suggests that the consumption
of these fruits has been associated with a lower incidence
of chronic diseases due to the chemopreventive and anti-
oxidant properties of bioactive compounds, such as vita-
min C, polyphenols, minerals, etc. [5–7]. These constitu-
ents are profoundly valuable due to their antioxidant and
anti-inflammatory features. The antioxidant activity of
these compounds is manifested by their scavenging ability
against reactive oxygen species (ROS), such as hydrogen
peroxide, hydroxyl, peroxide radicals and singlet oxygen
[8, 9]. On the other hand, they can also act on enzyme
function, receptor activities, and gene expression, among
others [10].

A major issue that affects the daily lives of individuals the
most is body weight increment. Even though human beings
require the presence of adipose tissues in the organism, there
are several harmful consequences when this tissue develops
excessively [11]. Obesity has claimed the spotlight world-
wide, emerging as one of the major global health threats that
affects our society nowadays [12, 13]. Indeed, it is well known
that an excessive body fat accumulation, which defines this
disease, is a source of several associated clinical manifesta-
tions such as type 2 diabetes (T2D), metabolic syndrome
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features, cardiovascular events, arthritis, etc. [14, 15]; and,
regrettably, its worldwide prevalence (from 40 years ago) is
only increasing [16]. In 2016, according to the World Health
Organization (WHO), 39% of the world’s adults aged
>18 years were overweight and 13% obese, being this number
tripled from 1975 [17]. Despite the essential and well-
established tools that we have to fight, namely caloric restric-
tion and exercise promotion, psychological approaches, and
even pharmacological and surgical methods, the positive obe-
sity trend has been maintained year after year. Thus, novel
complementary strategies that come from nature are welcome
to be tried out.

One of the main physiological characteristics of the adipose
tissue in obesity is the presence of a chronic inflammatory
state [18]. When adipose tissue hypertrophy occurs, adipo-
cytes secrete inflammatory signals, such as monocyte
chemoattractant protein-1 (MCP-1), which are responsible
for monocyte infiltration and M1 polarization of macrophages
[19]. The increase of resident macrophages in the adipose
tissue yields major circulating levels of tumor necrosis
factor-α (TNF-α), which by stimulation of the nuclear
factor-kappa B (NF-κB) in adipocytes, establishes a self-
perpetuating cycle of increased inflammatory cytokine re-
lease. Moreover, increased levels of TNF-α reduce
adiponectin expression and secretion [20] and activate induc-
ible nitric oxide synthase (iNOS), resulting in increased levels
of nitric oxide (NO) [21] and affect insulin sensitivity because
of a disruption of the insulin receptor signaling [22]. Hence,
the search for compounds, which could ameliorate the patho-
genesis of chronic inflammatory state in obesity, preventing
the onset of related-diseases, associated with adipose tissue
mass augmentation, is of great importance.

In Chile, several fruits from native plants have been con-
sidered, from ancient times, to have a wide range of health
benefits. Among them, Maqui (Aristotelia chilensis),
Murtilla (Ugni molinae), and Calafate (Berberis
microphylla) are some of the most recognized. The use of
native South American fruits has been claimed internation-
ally [23] since the presence has been shown of elevated
levels of antioxidant compounds and, consequently, highly
beneficial effects on human health [24]. The healthy proper-
ties of these fruits may rely on their polyphenolic composi-
tions since these compounds are found in significant propor-
tions in such fruits. Among these, anthocyanins are known
to be the most common type, and have been reported to
possess antioxidant and anti-inflammatory properties, and
happens to have the highest concentration among berries
[25, 26]. Thus, regarding the above, and according to evi-
dence reported in the literature, the present review summa-
rizes the contents of major bioactive compounds and the

health-promoting effects of the consumption of and treat-
ment with native berries of Chile, such as Aristotelia
chilensis, Ugni molinae, and Berberis microphylla (Table 1).

Aristotelia chilensis (Mol.) Stuntz (Maqui)

Overall Characteristics

Aristotelia chilensis is a fruit-bearing shrub that thrives in the
temperate forests stretching from central to southern Chile and
western Argentina. It belongs to the Elaeocarpaceae family
and is commonly known as “Maqui.” It is an evergreen shrub,
reaching 3–5 m in height. A. chilensis yields a small edible
purple/black berry averaging 5 mm in diameter and typically
having three to four seeds [44].

Bioactive Compound Content

Its leaves and fruits have been usually used for the treatment of
a wide range of illnesses [45]. Its several healthy effects have
been attributedmainly to the high content of polyphenols in its
fruits [46, 47]. Among these, the Maqui berry is reported to
have a relatively high anthocyanin content (137.6 mg/100 g
fresh weight (FW)), found mainly in the glycosylated forms of
delphinidin and cyanidin. Furthermore, analyses of
anthocyanidin constituents identified the presence of
delphinidin-3-sambubioside-5-glucoside [26, 31, 33, 46, 47].
This compound was the most abundant, covering 34% of the
total anthocyanins [46]. Other anthocyanins reported were
delphinidin, delphinidin gallate [47], delphinidin-3-
sambubioside, delphinidin-3-glucoside, delphinidin 3,5-
diglucoside, cyanidin 3-sambubioside, cyanidin 3-glucoside,
cyanidin 3-sambubioside-5-glucoside [26, 31, 33, 46] and
cyanidin 3,5-diglucoside [26, 33, 46]. These compounds were
also identified by Cespedes et al. [30, 47] in extracts, fractions,
and subfractions of fruit pulps. Thus, the most abundant an-
thocyanins from this species have been previously quantified
(in mg equivalents of delphinidin-3-glucoside / 100 g DW):
from 46.4 ± 0.1 to 101.05 of delphinidin-3-sambubioside-5-
glucoside, 23.7 ± 0.2 to 49.8 of delphinidin-3,5-diglucoside,
18.7 ± 0.2 to 20.73 of cyanidin-3,5-diglucoside/cyanidin-3-
sambubioside-5-glucoside, and 17.1 ± 0.2 to 32.53 of
delphinidin-3-glucoside [46, 47].

The phenolic compound content of Maqui extracts has a
significant positively correlation with the total antioxidant ca-
pacity of the extracts [28, 30]. Moreover, it was observed that
the beneficial effects of Maqui extract could probably also be
attributed to an elevated content and variety of phenolic acids,
such as gentisic, ferulic, gallic, p-coumaric, sinapic, p-
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Table 1 Common name, origin, main bioactive compounds and reported biomedical features of the species revised

Specie Common

name

Picture Family Origin Main

polyphenolic

groups

Chemical structure of most

abundant compounds

Reported biomedical features References

Aristotelia
chilensis

Maqui Elaeocarpaceae Argentina

Chile

Anthocyanins

Phenolic acids 

Flavonoids

Oxidative stress protection of human 

endothelial cells

[27]

Antioxidant, anti-inflammatory and 

cardioprotective effects in rat heart 

[28]

Antioxidant features on plasma oxidative 

stress markers after a meal intake

(beverage and burger) prepared with a 

concentrate berries mix (containing 

Maqui)

[29]

Anti-inflammatory effects in TPA-

induced formation of ear rat enema

[30]

Anti-lipogenic effect in 3T3-L1

adipocytes and anti-inflammatory 

features in RAW264.7 macrophages

[31]

Antioxidant properties [32]

Ameliorating effects on T2D 

development in both animal (C57BL/6J 

mice) and cellular (H4IIE and L6 cell) 

models

[33]

Inhibiting effects on α-glucosidase and 

α-amylase activity in diabetic patients

[34]

Prevention of RAW264.7 macrophage

activation and improving effects on 3T3-

L1 adipocytes apoptosis

[35]

Increased GSH levels and GSH/GSSG

ratio, prevented caspase-3 induction,

decreased MCP-1 gene expression, and 

improved IRS-1 phosphorylation on

differentiated 3T3-L1 treated with

conditioned media from activated

macrophages

[36]

Different mixtures, fractions, and 

subfractions of methanolic extracts

presented inhibitory effects on

inflammatory mediators in murine

macrophages

[37]

An isolated tetracyclic indole alkaloid

induces vasodilation in rats aorta 

through modulation of calcium transport

[38]

Ugni molinae
T.

Murta

Murtilla

Chilean

guava

Chilean

cranberry

Uñi

Myrtaceae Chile

Argentina

Bolivia

Anthocyanins

Phenolics

acids

Flavonoids

Ellagitannins

Anti-inflammatory effects in TPA- and 

AA-induced formation of mouse ear

enema

[39]

Increment of plasmatic antioxidant 

capacity in healthy subjects

[40]

Protection against oxidative damage

induced in vitro in human erythrocytes

[41]

Regulation of oxidative stress and 

carbohydrate metabolism in human red 

[34]

Mortillo

blood cells

Reduced ROS, lipid peroxidation and 

anion superoxide production in human 

endothelial cells

[42]
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hydroxybenzoic [47] and vanillic acid [30], flavonoids (quer-
cetin, myricetin, rutin, (+)-catechin and (+)-epicatechin and
gallocatechin gallate) and proanthocyanidins [30, 47].
Moreover, the presence of flavan-3-ol polymers and flavonols,
such as glycosylated quercetin and kaempferol [34], was de-
tected in crude extracts of Maqui leaves. The oxygen radical
absorbance capacity (ORAC) value of Maqui has been deter-
mined to be 37,174 μmol Trolox equivalent (TE)/100 g DW
[48]. Recently, a bioassay-guided isolation of antioxidant con-
stituents from this fruit confirmed the presence of cyanidin 3-
O-β -D-g lucopyranos ide , de lph in id in 3 -O-β -D-
glucopyranoside, cyanidin 3-O-β-D-sambubioside, caryatin
(3,5-di-O-methylquercetin), hyperoside (quercetin-3-O-galac-
toside), quercetin 3-O-α-L-arabinofuranoside, quercetin 3-
O-β-D-xylopyranoside, gallic acid, gallic acid methyl ester,
protocatechuic acid, protocatechuic acid methyl ester,
hydroxymethylfurfural, acetyloxymethylfurfural, and 1,5-di-
methyl citrate [49].

Finally, and as expected, the method that is applied to iso-
late and characterize these compounds has a significant impact
on the constituents detected (and also on the antioxidant ca-
pacity) [50]. Moreover, it is important to mention that the
presence of other food compounds could have an implication
on the bioaccessibility of the main bioactive compounds
(anthocyanins) occurring in Maqui (or other fruits), e.g., pre-
vious results published related to different dietary fiber con-
tent [51].

Antioxidant and Anti-Inflammatory Features: Role
in Obesity-Related Features

Regarding the antioxidant activities of fruits and/or leaves of
this shrub, it was observed, for instance, that fruit extracts

induced a reduction in lipid oxidation and thiobarbituric acid
reactive substance (TBARS) concentration and presented sig-
nificant antioxidant and cardioprotective effects on acute
ischemia/reperfusion performed in vivo on rat hearts [28].
Moreover, it has been reported thatMaqui leaf extracts present
antioxidant features detected by 2,2-diphenyl-1-
picrylhydrazyl radical (DPPH) decoloration and xanthine ox-
idase activity inhibition [32]. Finally, it has been described
that subfractions of Maqui induced inhibition of copper-
induced oxidation of low-density lipoprotein (LDL) which
protect against hydrogen peroxide-induced intracellular oxi-
dative stress in human endothelial cells [27]. Furthermore, a
standardized Maqui berry extract, Delphinol®, have an effect
on oxidized low-density lipoprotein (ox-LDL) and 8-iso-
prostaglandin F2α oxidative stress biomarkers. Results
showed that Delphinol® supplementation improved oxidative
stress not only in healthy subjects but in those overweight and
smokers as well [52]. Besides, a berry concentrate mix (pre-
pared from Maqui and several others berry samples) was ad-
ministered to healthy male volunteers, as a beverage (6% of
the mix), and also in combination with a ground turkey burger
(prepared with 5% of the mix). Before meal intake, and at
every hour for six hours after intake, a venous blood sample
was collected in order to analyze markers of oxidative stress
(MDA and DPPH). The authors observed a significant de-
crease in oxidative stress indicators for both types of meals,
related to control one [29]. Moreover, in line with an im-
proved oxidized environment related to decreasing cardio-
vascular malfunction (e.g., low oxLDL), it has been report-
ed recently that horbatine ((1R)-3-[(1S,5S)-(4,4,8-
trimethylbicyclo[3.3.1]non-7-en-2-yl)methyl]-2,3-dihydro-
1H-indole), a tetracyclic indole alkaloid extracted from
Maqui leaves, induce vasodilation in rats aorta through

Table 1 (continued)

Berberis
microphylla

Calafate

Barberry

Mulun

Berberidaceae Argentina

Chile

Anthocyanins

Flavonols

Inhibition of chloramphenicol-induced 

ROS production in human blood cells 

[43]

High antioxidant capacity [26]

Prevention of RAW264.7 macrophage

activation

[35]

Improving effects on 3T3-L1 adipocytes

apoptosis and insulin-sensitivity induced 

by conditioned media from activated 

macrophages

[36]

TPA, tetradecanoylphorbol acetate; T2D, type 2 diabetes; GSH, reduced glutathione; GSSG, oxidized glutathione; MCP-1; monocyte chemoattractant
protein-1; IRS-1, insulin receptor substrate; AA, arachidonic acid; ROS, reactive oxygen species. Chemical structures: 1Shinbo, Y., et al. KNApSAcK: a
comprehensive species-metabolite relationship database. Plant Metabolomics. 2006. 165–181; 2NCBI, PubChem Database, CID = 10,100,905, https://
pubchem.ncbi.nlm.nih.gov/compound/10100905 (accessed on Apr. 27, 2019); 3NCBI, PubChem Database, CID = 441,667, https://pubchem.ncbi.nlm.
nih.gov/compound/441667 (accessed on Apr. 27, 2019); 4NCBI, PubChem Database, CID = 443,654, https://pubchem.ncbi.nlm.nih.gov/compound/
443654 (accessed on Apr. 27, 2019); 5NCBI, PubChem Database, CID = 5,280,343, https://pubchem.ncbi.nlm.nih.gov/compound/5280343 (accessed
on Apr. 27, 2019); 6NCBI, PubChem Database, CID = 443,651, https://pubchem.ncbi.nlm.nih.gov/compound/443651 (accessed on Apr. 27, 2019);
7NCBI, PubChem Database, CID = 443,650, https://pubchem.ncbi.nlm.nih.gov/compound/443650 (accessed on Apr. 27, 2019)
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modulation of calcium transport, indicating a possible pro-
tective role in this type of disturbances [38].

On the other hand, regarding glycemic control, Rojo et al.
[33] described the ameliorative effects of an anthocyanin-
enriched fraction of Maqui fruit on T2D features in both ani-
mal and cellular models. It was observed that this formulation
improved fasting glucose and glucose intolerance in diet-
induced hyperglycemic obese C57BL/6 J mice. These results
were comparable with the effects of metformin. Regarding rat
cellular models, it was observed that this anthocyanin formu-
lation diminishes glucose production and improves insulin-
stimulated glucose-6-phosphatase inhibition, suggesting ef-
fects on gluconeogenesis in H4IIE liver cells, and increases
basal and insulin-stimulated glucose uptake in L6 myotubes.
Similar results were observed with delphinidin 3-
sambubioside-5-glucoside, a Maqui characteristic anthocya-
nin, which was explicitly isolated. Finally, it was observed
that crude extracts of Maqui fruit presented inhibiting effects
on α-glucosidase and α-amylase activity, suggesting a possi-
ble delaying effect in carbohydrate digestion, reducing the
glucose absorption rate and, thus, improving post-prandial
glucose tolerance in diabetic patients [34]. Complementing
this, Hidalgo et al. [53] reported that Delphinol®, a standard-
ized Maqui berry extract, reduced post-prandial blood glu-
cose. This was seen in individuals with moderate glucose
intolerance and streptozotocin-diabetic rats. In this double-
blinded trial, subjects fasted for 12 h received a single
0.8 mg/mL dose of Delphinol® before the rice was given for
consumption. A glucose tolerance test was performed imme-
diately, and after seven days, when subjects received a place-
bo. The results showed that Delphinol® intake before rice
consumption significantly lowered post-prandial blood glu-
cose and insulin compared to placebo. The authors identified
inhibition of the Na + −dependent glucose transport by
delphinidin, the principal anthocyanin of Delphinol® [53].
Both works showed that Maqui reduced blood glucose levels
by either targeting enzymes involved in carbohydrate metab-
olism or by inhibiting the Na + −dependent glucose
transporter.

Regarding obesity features and the adjacent pro-
inflammatory environment, it has been reported that a poly-
phenolic extract of Maqui inhibited lipid accumulation in
differentiating 3T3-L1 cells, suggesting an anti-lipogenic
effect, and that it also inhibited the production of NO, pros-
taglandin E2 (PGE2), and the expression of iNOS and
cyclooxygenase-2 (COX-2) in RAW264.7 macrophages,
suggesting anti-inflammatory properties [31]. Moreover,
Ojeda et al. [54] reported that Maqui juice reduced COX-
2 expression, as well as TNF-α-induced NF-κB activity in
the Caco-2 cell line. It was also observed that cytoplasmic
kappa light polypeptide gene enhancer in B cell NF-κB
inhibitor alpha (IκBα) levels were reduced and extracellu-
lar signal-regulated kinase 1/2 (ERK1/2) and protein kinase

B phosphorylation were increased, further supporting this
anti-inflammatory effect.

Moreover, it was demonstrated that subfractions of
Maqui showed inhibitory effects in tetradecanoylphorbol
acetate (TPA)-induced formation of mouse ear edema [30]
and that different mixtures, fractions, and subfractions of
methanolic extracts of this fruit present major anti-
inflammatory features over inflammatory mediators in mu-
rine macrophages [37]. Lastly, a crude extract of Maqui was
shown to inhibit the inflammation explicitly linked to the
pathogenic interaction between adipocytes and macro-
phages. The gene expression of iNOS and TNF-α was
inhibited; meanwhile, interleukin-10 (IL-10) was induced
by incubating an adipocyte/macrophage co-culture with the
Maqui extract [35]. Moreover, in differentiated 3T3-L1
cells that were treated with conditioned media from activat-
ed macrophages, Maqui extracts increased reduced gluta-
thione (GSH) levels and the GSH/oxidized glutathione
(GSSG) ratio, prevented caspase-3 induction, decreased
MCP-1 gene expressions, and improved a specific insulin
receptor substrate-1 (IRS-1) phosphorylation [36].

Ugni molinae Turcz (Murtilla)

Overall Characteristics

Ugni molinae Turcz belongs to the Myrtaceae family. It is an
evergreen shrub, and it is also known as Murtilla, Murta,
Chilean cranberry or Chilean guava, and as Uñi in the
Mapuche language of Southern-Chile inhabitants [55]. This
fruit is native of Chile, western Argentina, and certain regions
of Bolivia. Murtilla is a well-known regional plant that bears
aromatic, red globular fruits. The berries typically possess a
diameter of 0.7–1.3 cm and weight between 0.25 and 0.40 g
[56].

Bioactive Compound Content

So far, it has been determined that Ugni molinae possesses a
complex mixture of polyphenols ranging widely in molecular
weights, such as phenolic acids, flavanols, flavonols and hy-
drolyzable tannins (ellagitannins) [55, 57, 58], which have
been mainly studied in leaves [40]. In this context, Rubilar
et al. [57] isolated from leaves alcoholic and aqueous extracts,
myricetin, kaempferol glucoside, glycosylated forms of
myricetin and quercetin (dirhamnoside, glucoside,
rhamnoside, and xyloside), and epicatechin and gallic acid.
Later, the same authors reported the presence of high-
molecular-weight procyanidins and flavan-3-ol polymers in
their monomeric forms (catechin or epicatechin). However,
despite previous characterizations, Ruiz et al. [26] found an-
thocyanin in Ugni molinae fruits, such as cyanidin-3-
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glucoside (2.4–4.5 mg/100 g FW) and peonidin-3-glucoside
(6.0–7.0 mg/100 g FW), comprising an important source of
these compounds [55]. Complementing this, Junqueira-
Gonçalves et al. [59] determined the phenolic compounds of
Ugni molinae fruit extracts by liquid chromatography mass
spectrometry. The ethanolic extract showed the presence of
three major compounds: caffeic acid 3-glucoside, quercetin-
3-glucoside, and quercetin, while the methanol acid extract
showed cyanidin-3-glucoside, pelargonidin-3-arabinose and
delphinidin-3-glucoside [59]. The ORAC value of Murtilla
was determined to be 43,574 TE/100 g DW [59]. Finally, it
has been recently reported that the concentration of flavonoids
in leaves was three times the content of the fruit (2.32 mg
antioxidants/g fruit vs. 6.81 mg antioxidants/g leaves) [60].

It is worth mentioning that alongside abiotic conditions
(soil, climate) and agronomic management, the genotype
of cultivars is an issue that should be addressed and taken
into account in order to standardize possible solutions
coming from this type of vegetal material. A Chilean re-
search group has studied for several years different geno-
types of Ugni molinae, and they recently published that
different genotypes were responsible for the differences
between ellagitannins, gallic acid derivatives, and flavo-
nol compositions on the leaves of this specie (keeping all
other variables constants) [61].

Antioxidant Features: Possible Role
in Obesity-Related Features

The antioxidant properties ofUgni molinaewere studied back
in 2004 using samples obtained from both, continental Chile
and Juan Fernandez island. Healthy volunteers were given a
1% (w/v) infusion twice a day for three days. An increase in
plasmatic antioxidant capacity was observed [40]. Moreover,
Chilean guava leaf infusion treatment protected against oxida-
tive damage induced in vitro by hypochlorous acid on human
erythrocytes [41].

Moreover, extracts of Chilean guava fruits and leaves
presented interesting counteracting activity to oxidative
stress and carbohydrate metabolism regulation features by
the inhibition of α-glucosidase and α-amylase activities
[34]. Thus, this plant presents promising activities for blood
glucose level control. It has also been described that ex-
tracts of Chilean guava leaves presented anti-inflammatory
effects on TPA- and arachidonic acid (AA)-induced ear
edema formation in mouse [39]. Recently, Jofre et al.[42]
corroborated the anti-oxidative effect of Ugni molinae
Turcz fruit by detecting diminished ROS, lipid peroxidation
and anion superoxide production in human endothelial
cells.

Berberis microphylla G. Forst. (Calafate)

Overall Characteristics

Berberis microphylla (Berberis buxifolia), also known as
Calafate and Barberry, belongs to the Berberidaceae family
and is native to the Patagonian area of Chile and Argentina
[55]. Calafate is an evergreen or semi-evergreen shrub or small
tree, which grows under a wide range of environmental condi-
tions. Calafate fruits are dark purple, black or bluish berries [26].

Bioactive Compound Content

Literature data on edible Berberis species is scarce. According
to Pomilo [62] and Ruiz et al. [26], phenolic compounds in
Calafate fruit are mainly anthocyanins in their glycosylated
forms (3-glucoside conjugates), such as petunidin-3-
rutinoside-5-glucoside, petunidin-3-gentobioside,
delphinidin-3-rutinoside, delphinidin-3-glucoside, petunidin-
3-rutinoside, peonidin-3-glucoside, malvidin-3-glucoside
and malvidin-3-rutinoside [62]. Later, Ruiz et al. [26] found
anthocyanins that were different from the ones described
above. These were: delphinidin-3,5-dihexoside, delphinidin-
3-rutinoside-5-glucoside, cyanidin-3-glucoside, cyanidin-3-
rutinoside, cyanidin-3,5-dihexoside, petunidin-3-glucoside,
petunidin-3,5-dihexoside, peonidin-3-rutinoside, peonidin-
3,5-dihexoside, malvidin-3,5-dihexoside and malvidin-3-
rutinoside-5-glucoside, and glycosylated flavonols such as
myricetin-3-rutinoside-7-glucoside, myricetin-3-glucoside,
myricetin-3-rutinoside, quercetin-3-rutinoside-7-glucoside,
quercetin-3-galactoside, quercetin-3-rutinoside, quercetin-3-
glucoside, quercetin-3-(6′-acetyl)-hexoside, quercetin-3-
rhamnoside, isorhamnetin-3-rutinoside-7-glucoside,
isorhamnetin-3-galactoside, isorhamnetin-3-rutinoside,
isorhamnetin-3-glucoside, and isorhamnetin-3-(6′-acetyl)-
hexoside. Nevertheless, the most abundant anthocyanins
found in the Calafate fruit are petunidin-3-glucoside (21.6 ±
0.22 mg / 100 g DW) and delphinidin-3-glucoside (14.7 ±
0.55 mg / 100 g DW) [36]. The total content of anthocyanin
and flavonol in Calafate berries have been estimated to be
about 17.1 and 0.16 μmol g-1, respectively.

Ruiz et al.[63] evaluated the compositions of flavonols
and alkaloids found in the pulp, skin, and seed of
Calafate and other berries. Samples were collected from
several locations in southern Chile. Flavonols were de-
tected in all samples and quercetin-3-rutinoside was the
most abundant. Calafate pulp and skin showed higher
flavonol concentrations than seeds. Interestingly, the mat-
uration process decreased the flavonol concentration
[63].
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Role in Obesity-Related Features

The high content of polyphenolic compounds in Calafate has
been correlated with a high antioxidant capacity [26]. In fact,
the ORAC value for this fruit was determined at 72,425 μmol
TE/100 g DW, positioning it as the vegetable matrix with the
highest antioxidant capacity consumed in South America [48].
In this regard, it has been observed that chloramphenicol-
induced ROS production was inhibited by water Berberis ex-
tracts in human isolated blood cells [43].

On the other hand, and as observed for Maqui, Calafate
inhibits inflammation linked to the pathogenic interaction be-
tween adipocytes and macrophages. Thus, a Calafate extract
reduced the expression of iNOS and TNF-α, meanwhile, in-
creased IL-10, when applied to an adipocyte/macrophage co-
culture, suggesting a potential anti-inflammatory role [35].
Moreover, it was recently reported that a Calafate extract in-
hibits the inflammatory response and stimulates glucose up-
take in 3T3-L1 cells treated with conditioned media from ac-
tivated macrophages [36]. These results can be considered as a
promising first approach over obesity-derived insulin
resistance.

In our laboratory, it has been observed that a purified
polyphenol-rich Calafate extract administered to mice fed a
high fat diet prevents the development of obesity (Soto-
Covasich et al.—unpublished data). Therefore, it is of great
interest to evaluate a role for Calafate in the obesity-induced
inflammatory state and to determine whether Calafate might
prevent or overcome insulin resistance, and also its role in the
development of obesity itself. Despite its antioxidant proper-
ties, the potential of Calafate remains poorly studied, and fur-
ther work must be done to determine its real therapeutic
potential.

Conclusions

The studies reviewed showed a rich and diversified composi-
tion of bioactive compounds in native fruits of Chile and their
relationship with health-promoting properties vis-a-vis
obesity-related illnesses, such as cardiovascular diseases, dys-
lipidemia, T2D, and on the etiopathogenesis within. Maqui,
Murtilla, and Calafate plant species exhibited an important
diversity of phytochemicals, mainly phenolic compounds.
The main effects of these compounds are related to antioxi-
dant and anti-inflammatory activities. Understanding the role
of these bioactive compounds in the maintenance of health is
nowadays a cutting-edge field of study.

It is worth mentioning that the effect of their intake might
not be the result of a single bioactive compound but may arise
from the synergy of compounds. Thus, it may be worthwhile

to encourage an increased consumption of these berries and to
include these fruits in food products in order to enhance the
diet’s bioactive compound content. Currently, some research
groups are beginning to review the antioxidant capacity and
health promoting features of some drinks enriched with this
type of fruits [64]. On the other hand, they are trying to iden-
tify the sub-compounds that are present in the organisms (in
tissues or plasma), after the intake of this matrices, as it was
described recently for Calafate on gerbils [65]. The last ap-
proach intends to focus the research on a single or a specific
combination of sub-compounds and, thus, to unveil which of
the original polyphenols present in the vegetal matrix is the
most potent in each investigative context. This knowledge
could, then, significantly improve the practical solutions,
which could in future be derived and administered to subjects
as a validated complementary therapy.

Summing up, future research is still needed to understand
the possible mechanisms of action of the bioactive compounds
contained in this type of berries, and their potential use in the
formulation of functional foods, supplements, and
nutraceuticals for use on human health.
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