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A B S T R A C T

Low sperm concentration, increased fraction of morphologically abnormal sperm, and raised levels of markers of
oxidative stress are often reported in the seminal plasma of infertile obese males. The precise reason for changes
remains unknown. This short review summarises evidence from human and animal studies linking leptin to the
reproductive dysfunction reported in obese males and presents a possible mechanism for this based on the
available data in the literature. Serum leptin concentrations correlate positively with body fat mass but its
precise link to semen abnormalities reported in obese males has yet to be conclusively established. Decreased
sperm concentration, increased fraction of morphologically abnormal sperm and increased markers of oxidative
stress have been reported following six weeks of daily leptin treatment to normal weight rats. In addition,
decreased expression of endogenous antioxidant enzymes and increased expression of respiratory chain enzymes
noted in the testes of leptin treated rats increases the propensity to oxidative stress. Besides that, leptin’s in-
terference with histone to protamine transition in the DNA of sperm increases the susceptibility of sperm to free
radical attack and may explain the often reported higher DNA fragmentation index in sperm of obese males.
Concurrent supplementation of melatonin, a natural anti-oxidant, to these rats prevents the effects of leptin. The
role of leptin in obesity-related reproductive dysfunction has to be considered seriously and these effects of
leptin might involve increased oxidative stress.

1. Introduction

Leptin, a 167 amino acid non-glycosylated adipokine, was first
identified through positional cloning in 1994. It has a molecular weight
of 16 kDa and a tertiary structure similar to that of a cytokine [1].
Leptin in circulation is largely produced and secreted by white adipose
tissue [2] but small quantities are also produced by a number of non-
adipocyte tissues including the gastric mucosa [3], mammary epithelial
cells [4], myocytes [5], anterior pituitary [6], placenta [7], and human
ejaculated spermatozoa [8].

Circulating levels of leptin correlate positively with percentage body
fat [9]. Besides that, serum leptin levels exhibit sexual dimorphism,
where the levels are a little higher in women than in men [9,10]. This is
due to the generally higher percentage of body fat present in women
than in men. In addition, it may also be due to the stimulatory effects of
oestrogen on leptin secretion in the female, and the inhibitory effects of
testosterone on leptin secretion in the male [11]. Serum leptin levels
increase with age in children of both sexes until puberty. The levels in
females continue to increase after puberty but, in males, they tend to

either remain unchanged or decrease a little following puberty. This is
perhaps associated with the increased muscle mass and concurrent
decrease in body fat that is usually seen in young males. Leptin levels
tend to rise later in life in males as body fat mass increases.

The actions of leptin are mediated following its binding to mem-
brane bound receptors. To date, six isoforms of this receptor have been
identified [12,13]. These have been divided into long, short, and so-
luble isoforms [12]. The long-form mediates the cellular actions of
leptin whereas the short-form is responsible for the transport of leptin
across the blood brain barrier and cell membranes. The soluble form is
found bound to leptin in the circulation [14–16]. Leptin binding to the
long-form receptor activates one of five signalling pathways, depending
on the target cell. These pathways include the (i) Janus kinase-signal
transducer and activator of transcription (JAKSTAT) found in the hy-
pothalamus, (ii) mitogen-activated protein kinase (MAPK) e.g. in
monocytes and precursor osteoblasts, (iii) 5′adenosine monophosphate-
activated protein kinase (AMPK) in the skeletal muscle and hypotha-
lamus, (iv) mammalian target of rapamycin (mTOR) in intestinal epi-
thelial cells, and (v) phosphoinositide 3-kinase (PI3K) found in the
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liver, pancreas, testes and some parts of the central nervous system,
including the hypothalamus [16–18].

Apart from its role in the regulation of food intake and body weight,
leptin has been shown to also have important roles in neuroendocrine,
immune and reproductive functions [19]. The actions of leptin are
mediated either through the central nervous system or directly on the
peripheral tissues, as leptin receptors are found throughout the central
nervous system and peripheral tissues. In view of its involvement in
numerous physiological functions, leptin is now considered by many as
a pleiotropic factor. For more information on the physiology of leptin,
readers are referred to the following recent review [20].

2. Leptin in reproduction

Leptin’s role in reproduction was first suspected from observations
in leptin-deficient ob/ob mice. These mice are usually infertile, al-
though some reproductive capability is present in some young ob/ob
males. Leptin treatment restores fertility in these mice [21]. Besides,
mice with leptin deficiency have ovaries and testes that are smaller
compared with those in age-matched wild-type mice [22]. Seminiferous
tubules of leptin-deficient mice show fewer sperm than those of their
wild-type littermates. Leydig cells of leptin-deficient mice are also
smaller and with less cytoplasmic content [21].

Obese humans with mutations in the leptin receptor or leptin gene
also have reproductive dysfunction [23]. Two types of leptin signalling
deficiencies have been reported in humans; mutations in leptin and
leptin receptor genes. Obesity and infertility are associated with both of
these mutations.

It has now become apparent that leptin has an important physio-
logical role in reproduction and its deficiency leads to severe re-
productive dysfunction. It increases the release of gonadotropins [24]
but the precise mechanism for this remains uncertain. GnRH neurons do
not express leptin receptors. Stimulation of gonadotropins by leptin
must therefore involve some other indirect pathway/s. For this, the
roles of kisspeptin neurons, the premammillary nucleus (PMN) and
hypothalamic neuropeptides, including pro-opiomelanocortin (POMC)
and cocaine-and-amphetamine-regulated transcript (CART) have been
hypothesised [25]. Leptin receptors have also been identified on go-
nadotropes in the anterior pituitary [26]. Anyone of these pathways
might be involved in leptin-stimulated increase in gonadotropin re-
lease.

3. Leptin in reproductive dysfunction in obese male

Despite its importance in the initiation and regulation of re-
production, there is accumulating evidence implicating elevated levels
of leptin in reproductive dysfunction. High leptin levels may, in fact, be
responsible for the reproductive dysfunction reported in obese hy-
perleptinaemic males and females. Although transgenic skinny female
mice that overexpress leptin show signs of early sexual maturation,
these mice also show early reproductive senescence. Thus it seems that,
apart from advancing the onset of puberty, the hyperleptinemia also
appears to promote early reproductive failure [27].

The role of leptin in obesity-related subfertility and infertility is
becoming more evident in recent years. A number of reports from
human studies point to the involvement of leptin in obesity-related
male reproductive dysfunction. For example, obesity is three times
more likely in sub-fertile men than in male partners of couples with
idiopathic or female factor infertility [28]. Low sperm concentration,
low number of motile sperm and even oligospermia are also frequently
found in males with high BMI where leptin levels are also high [28,29].
Men with BMI of> 35 kg/m2 have lower total sperm count and a
higher fraction of sperm with DNA damage than normal-weight men
[30]. Sperm DNA fragmentation Index has been found to correlate
positively with BMI [28]. A case-control study on 42 obese and non-
obese men found that obese men, in addition to having high leptin

levels, low sperm concentrations, higher sperm DNA fragmentation,
also had higher sperm mitochondrial membrane potential than that in
normal-weight men [31].

The lower sperm concentration observed in obese men has in the
past been attributed either to increased testicular temperature sec-
ondary to the extra fat in the lower abdomen, scrotal areas and thighs
or to hormonal disturbances associated with obesity [32]. Circulating
testosterone levels are lower in obese males [33]. Obese males when
stimulated with human chorionic gonadotropin (hCG) show a higher
17-hydroxyprogesterone (17-OHP)/testosterone ratio compared with
that in control lean individuals, indicating a dysfunction in the con-
version of 17-OHP to testosterone in the Leydig cells of obese men [34].
The reason for this is not clear and whether leptin influences this
conversion requires to be investigated further.

One other factor that is also often considered contributing to sperm
dysfunction in the obese is inflammation. Chronic low-grade in-
flammation is associated with obesity, particularly involving the white
adipose tissue (WAT) [35]. The precise trigger or factor responsible for
the inflammation of WAT is unknown although hypoxia, endoplasmic
reticulum stress, excess saturated fatty acids and stretching of the adi-
pocytes have been implicated. Inflamed WAT increases its secretion of
pro-inflammatory adipokines, which are then believed to trigger low-
grade systemic inflammation, including in the testes. Apart from leptin,
the other adipokines released from WAT are adiponectin, apelin, che-
merin, resistin, vaspin, fibroblast growth factor 21 (FGF21), bone
morphogenetic protein (BMP)-4, BMP-7, retinol-binding protein 4
(RBP4), dipeptidyl peptidase 4 (DPP-4), tumour necrosis factor-alpha
(TNF-α), IL-6, MCP-1 and progranulin [36,37]. Of these, leptin, TNF-α
and IL-6 are considered pro-inflammatory, while adiponectin is con-
sidered anti-inflammatory. The level of adiponectin incidentally cor-
relates negatively with BMI and its serum levels are low in obese in-
dividuals. Raised levels of leptin, TNF-α and IL-6 together with lower
levels of adiponectin predispose to an inflammatory state. It, however,
remains to be established if the increased levels of these pro-in-
flammatory adipokines in circulation cause inflammation in the testes.
If they do, then the neutrophil activation that occurs in inflammation
will increase the liberation of reactive oxygen species. This will result in
oxidative stress contributing to the reported abnormalities in the semen
of obese males.

Whilst higher testicular temperature, low testosterone level, and
inflammation may be responsible for the low sperm quality in obese
individuals, recent evidence suggests that there might be more than just
these three factors involved. Adipokines released from the enlarged,
distended and distressed adipocytes may also be contributing to sperm
abnormalities. Male Wistar rats fed a high-fat diet had increased body
weight, raised serum leptin levels and lower sperm motility when
compared with those of normal weight rats. Normal weight male Wistar
rats treated with leptin for 42 days were found to have decreased fer-
tility potential and increased preimplantation embryo loss after artifi-
cial insemination in utero [38].

Although adipocytes produce numerous adipokines, apart from
leptin little is known about the impact of the others on sperm function
and reproduction [25]. Even for leptin, its role in reproductive dys-
function in obese humans remains undetermined. There are no reports
directly investigating the effects of leptin on human reproduction per se.
The only evidence from human observations that links leptin to re-
productive dysfunction is the reported correlation between leptin and
BMI and that between BMI and altered semen parameters. Direct evi-
dence linking leptin with reproductive dysfunction is mainly from an-
imal studies, which first appeared about a decade ago. In these studies,
it was noted that when normal weight Sprague-Dawley rats were given
once daily intraperitoneal injections of leptin, in doses ranging from 5
to 60 μg kg−1 body weight for 6 weeks, they had significantly lower
sperm count and higher fraction of sperm with abnormal morphology
than those in normal-weight non-treated rats [24,39–41]. In addition,
these leptin-treated rats also had lower seminiferous tubular epithelial
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height and diameter than those in normal age-matched control rats. The
precise mechanism responsible for these effects is still uncertain al-
though leptin-induced oxidative stress is implicated. Evidence of in-
creased levels of reactive oxygen species (ROS) [39], increased levels of
8-hydroxy-2-deoxyguanosine (8-OHdG) (a marker of DNA damage due
to oxidative stress), increased sperm DNA fragmentation and apoptosis
[40,42], and impaired histone-to-protamine transition [43] following
leptin treatment in rats has been documented. Incidentally, leptin has
been shown to induce ROS formation in phagocytic and non-phagocytic
cells [44] and in cells of the renal tubules by activating nicotinamide
adenine dinucleotide phosphate (NADPH) oxidase [45]. Given the
available evidence, it is conceivable that leptin may increase sperm
damage by generating ROS in the seminiferous tubular cells or in the
epididymis. The increased oxidative stress that is also observed in obese
men might, in fact, be due to the high levels of leptin present in these
men [46]. It must, however, be added here that although it is widely
accepted that elevated levels of reactive oxygen species (ROS) are a
major cause of male infertility, there are some men who are still fertile
despite having high seminal ROS levels. This is attributed to their
ability to greatly increase the expression of several antioxidant proteins
and an effective proteasomal system for the degradation of defective
proteins in seminal plasma and spermatozoa [47]. That oxidative stress
might indeed be involved following leptin treatment is also supported
by findings that melatonin, a powerful antioxidant, prevents these ad-
verse effects when administered concurrently with leptin [42].

4. Possible mechanism of leptin induced reproductive dysfunction

Although there are no reports on human experimental studies in-
vestigating the role of leptin in male reproductive dysfunction, but
when the abnormalities reported in the semen of obese males are taken
together with data from studies in leptin treated mice and rats, there
clearly emerges a link between leptin and obesity-related reproductive
dysfunction in males. It seems that the low sperm count together with
the high fraction of abnormal sperm and the high DNA Fragmentation
Index reported in obese men may be due to the presence of persistently
high leptin levels in these men. The effect of leptin most likely involves
a direct action of leptin on sperm and the reproductive organs
[24,48,49] involving leptin-induced increases in oxidative stress. This
could result from a direct action of leptin on the testes itself, causing an
increase in the production of reactive oxygen species (ROS). As leptin
has proinflammatory tendencies, it is possible that it might also be
causing inflammation within the testes and consequently oxidative
stress. The oxidative stress that follows inflammation could then cause
damage to the sperm and the seminiferous tubular cells leading to their
subsequent loss through apoptosis. That leptin might indeed be directly
increasing oxidative stress is supported by the findings of significant
down-regulation of antioxidant enzyme gene expression and up-reg-
ulation of respiratory chain gene expressions in leptin treated rats [42].
In addition, studies in vitro on human Sertoli cells show that leptin di-
rectly disturbs the metabolism of these cells, which could increase the
production of ROS causing either a decrease in nutritional support of
spermatogenesis or apoptosis of these cells [50,51].

ROS’s impact on sperm function can either be positive or negative;
depending on the concentration, location, length of exposure, exposure
to environmental factors such as temperature, the presence of ions,
proteins, and ROS scavengers [52]. At physiological levels, ROS plays
significant roles in sperm maturation, capacitation and acrosome re-
action [53]. At pathological levels, ROS impairs testicular germ cell
proliferation, negatively impact sperm plasma membrane fluidity, im-
pair sperm motility and increase sperm DNA damage [52]. Infertile men
with high ROS levels tend to have more sperm with abnormal mor-
phology [54]. ROS has also been associated with increased apoptosis in
sperm samples [55]. The somewhat higher susceptibility of sperma-
tozoa to ROS attack is because sperm have less cytoplasm than somatic
cells. They also have limited intrinsic antioxidant capability and a cell

membrane that is rich in polyunsaturated fatty acids [56].
While high leptin levels evidently increase oxidative stress in the

testes and sperm, the precise mechanisms and pathways responsible for
this remain to be established. Of the five pathways associated with the
action of leptin, those related to oxidative stress are AMPK, PI3K,
MAPK, and mTOR pathways. These pathways have well-established
roles in the mode of action of leptin [57]. Microarray analysis of the
testes from leptin-treated Sprague-Dawley rats in our laboratory
showed a 2-fold upregulation in the expression of genes of proteins
associated with these pathways, particularly those of the PI3K pathway
(unpublished data). In addition, the adverse effects of leptin on sperm
are inhibited by LY294002 (a PI3K pathway inhibitor) but not by
dorsomorphin (an AMPK inhibitor) [41]. This clearly indicates the role
of the PI3K pathway in leptin-induced adverse effects on sperm.

Higher DNA fragmentation and indices of apoptosis are reported in
seminiferous tubules of leptin treated rats. The expression of genes of
apoptosis-inducing factor (AIF), high temperature requirement protein
A2 (HTRA2) and cathepsin D (Ctsd), factors involved in caspase-in-
dependent cell death, are significantly upregulated following leptin
treatment [42]. Pro-survival and pro-death signals generated in re-
sponse to multiple intracellular stress conditions converge into a mi-
tochondrion-centred control mechanism. Lethal signals, including an
attack by free radicals, cause permeabilization of the mitochondrial
outer membrane [58]. The loss of mitochondrial transmembrane po-
tential results in the release, into the cytosol, of AIF and HTRA2. These
are normally confined within the mitochondrial intermembrane space.
AIF is an active cell killer when released into the cytosol. From here it
translocates into the nucleus and triggers peripheral chromatin con-
densation, DNA fragmentation and eventually cell death. [59]. Mi-
tochondria are the main sources of superoxide in the cell [60]. The
superoxide is rapidly converted into hydrogen peroxide by superoxide
dismutase present in the mitochondria. Leptin modulates mitochondrial
energy dynamics [50,51,61] and is associated with mitochondrial
dysfunction in a number of cells including cardiomyocytes [62]. Dys-
function in the mitochondria secondary to high leptin levels could re-
sult in increased leakage of free radicals from the mitochondria, re-
sulting in oxidative stress. This could indeed be the basis for most of the
leptin-induced adverse effects on sperm.

5. Conclusion

The similarities between findings of low sperm count, increased
sperm abnormalities, and oxidative stress reported in obese men and
those reported in normal-weight rats given daily injections of leptin
seem to point to leptin as a link between obesity and reproductive
dysfunction. It seems that while leptin deficiency results in delayed
puberty and poor functional development of the reproductive tract in
males and females, high leptin levels in males meanwhile lead to low
sperm count, increased sperm DNA fragmentation and increased pro-
duction of morphologically abnormal sperm secondary to increased
oxidative stress. Fig. 1 briefly summarises the hypothesised mechanism
of leptin-induced adverse effects on sperm and male reproductive tis-
sues. Binding of leptin to its receptors activates the PI3K pathway in the
testes, which then disrupts mitochondrial function in the seminiferous
tubular cells and the developing sperm. This disruption leads to dis-
turbed energy metabolism and increased release of ROS from the mi-
tochondria. The altered energy metabolism may be responsible for
decreased sperm motility. Leptin at the same time decreases the ex-
pression of antioxidant enzymes, which together with increased ROS
production results in oxidative stress. The activation of the PI3K
pathway also disrupts the histone to protamine transition in the sperm
during spermiogenesis. The higher histone to protamine ratio exposes
the sperm DNA to attack from free radicals resulting in increased DNA
fragmentation and apoptosis. This then leads to a decrease in sperm
count and/or an increase in the formation of morphologically abnormal
sperm. In addition, free radical attack on seminiferous tubular cells also
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triggers apoptosis in them resulting in decreased seminiferous tubule
height and diameter. Damage to the cytoskeleton of the sperm fol-
lowing a free radical attack could account for the increased fraction of
sperm with abnormal morphology and apoptosis.

It seems that although leptin is necessary for normal reproductive
function, but when present in excess it has detrimental effects on the
male reproductive system and has to be seriously considered as a link
between obesity and infertility in males. Developing ways to reduce the
negative impact of leptin on the reproductive system could help reduce
the reproductive dysfunction observed in obese individuals.
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