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SUMMARY

Exercise is an effective strategy for diabetes man-
agement but is limited by the phenomenon of exer-
cise resistance (i.e., the lack of or the adverse
response to exercise on metabolic health). Here, in
39 medication-naive men with prediabetes, we
found that exercise-induced alterations in the gut
microbiota correlated closely with improvements
in glucose homeostasis and insulin sensitivity
(clinicaltrials.gov entry NCT03240978). The micro-
biome of responders exhibited an enhanced capac-
ity for biosynthesis of short-chain fatty acids and
catabolism of branched-chain amino acids,
whereas those of non-responders were character-
ized by increased production of metabolically
detrimental compounds. Fecal microbial transplan-
tation from responders, but not non-responders,
mimicked the effects of exercise on alleviation of
insulin resistance in obesemice. Furthermore, a ma-
chine-learning algorithm integrating baseline micro-
bial signatures accurately predicted personalized
Context and Significance

Exercise is the most cost-effective lifestyle intervention for the
implementation is hindered by the phenomenon of exercise r
leagues show that the heterogeneous response to exercise in
sensitivity and glucose metabolism is linked to differential al
sponders exhibits enhanced capacity for the generation
branched-chain amino acids, whereas the microbiome of non
metabolically detrimental compounds. These results uncover
ators of the benefits of exercise.

C

glycemic response to exercise in an additional 30
subjects. These findings raise the possibility of
maximizing the benefits of exercise by targeting
the gut microbiota.

INTRODUCTION

Exercise is a cost-effective lifestyle intervention for the preven-

tion and treatment of obesity, type 2 diabetes (T2D) and its

complications, which are the leading causes of morbidity and

mortalityworldwide (Zheng et al., 2018). Despite thewell-recog-

nized benefits of exercise on metabolic homeostasis, the

biomarkers and molecular transducers conferring its pleotropic

effects remain poorly understood. Clinical implementation of

exercise for diabetes management is still in its infancy, in part

due to the high variability in physiological response to standard-

ized exercise regimen. A large proportion of individuals, ranging

from 7% to 69%, do not respond (non-responders) or

even respond adversely to exercise in terms of insulin sensitivity

and glucose homeostasis (Böhm et al., 2016). Though

genetic predispositions and epigenetic modifications have

been proposed to be potential contributors (Sparks, 2017),
prevention and treatment of diabetes. However, its clinical
esistance (i.e., non-response). Here, Aimin Xu and his col-
subjects with prediabetes with respect to changes in insulin
terations of the gut microbiota. The microbiome of the re-
of short-chain fatty acids and increased breakdown of
-responders is associated with an increased production of
the gut microbiota and their metabolites as important medi-
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neither the pathomechanisms nor potential predictors for the

heterogeneity of exercise responsiveness have been clarified

so far.

A growing body of evidence suggests that dysbiosis of gut mi-

crobiota plays an important role in the pathogenesis of insulin

resistance and T2D (Bouter et al., 2017) through multiple mecha-

nisms, including increased gut permeability and low-grade

endotoxemia, changes in production of short-chain fatty acids

(SCFAs) andbranched-chain amino acids (BCAAs), and perturba-

tion of bile acid metabolism (Utzschneider et al., 2016). Composi-

tional and functional changes of gut microbiota have been

observed in individuals with T2D and prediabetes (Allin et al.,

2018; Qin et al., 2012), whereas fecal microbial transplantation

from healthy donors into patients with metabolic syndrome re-

sults in increased microbial diversity and improved glycemic

control, as well as insulin sensitivity (Kootte et al., 2017).

Recently, a modulatory effect of exercise on gut microbiota in

both humans and animals has been observed. The microbiome

of professional athletes exhibits higher diversity and more favor-

able metabolic capacity compared to sedentary counterparts

(Barton et al., 2018; Clarke et al., 2014). Mice receiving exercise

training also display favorable changes in the composition of gut

microbiota, including reduced Bacteroidetes, but augmented

Firmicutes and Proteobacteria (Choi et al., 2013). However,

whether and how alterations in gut microbiota are functionally

involved in the metabolic benefits of exercise remain obscure.

To address the above questions, we conducted a well-

controlled exercise intervention in medication-naive overweight

men with prediabetes, followed by comprehensive metagenom-

ics and metabolomics analysis, and a functional interrogation in

mice using fecal microbial transplantation to explore the roles of

differentially shaped gut microbiota by exercise in glucose meta-

bolism and insulin sensitivity. Furthermore, we developed a

machine-learning algorithm that integrated baseline microbial

signatures and evaluated its predictive performance for personal-

ized exercise responsiveness in an independent validation cohort.

RESULTS AND DISCUSSION

Heterogeneous Glycemic Responses of Individuals with
Prediabetes to High-Intensity Training
Eligible participants were randomized to either sedentary control

or 12-week supervised exercise training (Figure S1), in which ex-

ercise responsiveness was further evaluated (Figure 1A). All par-

ticipants were recommended tomaintain their diet routine during

the study period, which was closely monitored to ensure that no

significant difference existed among all these subjects (Tables 1

and S1; Figure S2A).

After exercise intervention, a modest but significant reduc-

tion in body weight and adiposity, together with obvious im-
Figure 1. High Interpersonal Variability in the Improvement of Insulin S

(A) Schematic diagram of the study design.

(B–G) Boxplots (with median) showing the dynamic changes of (B) body weight a

exercise intervention, as well as (E) fasting glucose, (F) fasting insulin and (G) HOM

subject at different time points. #p < 0.05 and ###p < 0.001 by repeated-measure

***p < 0.001 by repeated-measures ANOVA within all subjects.

(H–M) The relative change of (H) body weight, (I) fat mass and (J) lean mass bod

12 weeks of exercise intervention. Data were shown as mean ± SEM. *p < 0.05
provements in insulin sensitivity, lipid profiles, cardiorespiratory

fitness, and levels of adipokines functionally related to insulin

sensitivity had been achieved in the whole exercise group (Table

S1). However, in contrast to a homogenous change in body com-

positions (Figures 1B–1D), a high interpersonal variability in the

alterations of fasting glucose, insulin, and the homeostaticmodel

assessment of insulin resistance (HOMA-IR) was observed (Fig-

ures 1E–1G), suggesting a highly heterogeneous response of the

cohort with respect to glucose homeostasis and insulin sensi-

tivity. Therefore, we further classified the participants into re-

sponders (n = 14) and non-responders (n = 6), depending on

whether they could demonstrate a decrease of HOMA-IR greater

than 2-fold technical error, which is a threshold for true physio-

logical adaptation (Álvarez et al., 2017; Hopkins, 2000). Notably,

despite a homogeneous baseline characteristic (Table 1) and a

similar degree of reduction in body weight and fat percentage

between these two sub-groups (Figures 1H–1J), responders

showed a remarkable 42.70% and 49.60% decrease in fasting

insulin and HOMA-IR index, respectively (Figures 1L and 1M),

as well as a striking 116.29% increase of Matsuda index (a

comprehensive evaluation of both hepatic and peripheral insulin

sensitivity derived from oral glucose tolerance test [DeFronzo

and Matsuda, 2010]), whereas no obvious improvement or

even deterioration in glucose homeostasis and insulin sensitivity

was observed in non-responders (Table 1; Figures 1K–1M).

Considering the important role of the gut microbiota in regulating

glucose homeostasis and insulin sensitivity, we next explored

whether it was involved in the heterogeneous metabolic effects

of exercise in our cohort.

A Modest but Distinguishable Change of Gut Microbiota
by Exercise Intervention in All Participants
We performed shotgun metagenome sequencing of fecal sam-

ples collected before and after the 12-week exercise regimen

and generated 176G of high-quality sequencing data with an

average of 29 million paired-end reads per sample. In contrast

to the observation in murine models (Evans et al., 2014), no

significant difference in alpha or beta diversity between the mi-

crobiome before and after exercise was observed (Figures

S2B–S2D), possibly due to a more diversified environment in hu-

mans. Furthermore, we performed a compositional analysis and

found that the relative abundances of 6 species, belonging to

Firmicutes, Bacteroidetes, and Proteobacteria, respectively,

were significantly altered after exercise (Figure 2A). Moreover,

species falling into the Bacteroides genus and Clostridiales

order, most of which are involved in the production of SCFAs, un-

derwent a significant strain-level genomic variation by exercise

(Figure 2B). Importantly, none of the alterations observed above

could be detected in sedentary controls sharing similar meta-

bolic characteristics (Table S1; Figure S3). Co-abundance
ensitivity

nd (C) fat mass and (D) lean mass body compositions at 0, 6, and 12 weeks of

A-IR at 0, 4, 8, and 12 weeks of exercise, respectively. Lines connect the same

s ANOVA within Responders or non-responders; and *p < 0.05, **p < 0.01 and

y compositions, (K) fasting glucose, (L) fasting insulin, and (M) HOMA-IR over

by repeated-measures two-way ANOVA.
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Table 1. Changes in Clinical Parameters of Prediabetic Individuals in Response to 12-Week Exercise Intervention

Characteristics

0-Week 12-Week p Valuec

Responders Non-responders p Valuea Responders Non-responders p Valueb

Between Group

Difference in

Relative Change

Age (years) 43.29 ± 3.27 36.00 ± 4.55 0.228 – – – –

BMI 28.78 ± 1.08 29.82 ± 1.75 0.603 28.65 ± 1.09 29.66 ± 1.78 0.850 0.613

Fat mass% 36.13 ± 1.33 35.78 ± 1.22 0.878 33.82 ± 1.22 33.53 ± 1.22 0.888 0.882

Lean mass% 60.98 ± 1.24 61.57 ± 1.10 0.776 63.26 ± 1.11 63.67 ± 1.09 0.856 0.799

WHR 0.95 ± 0.02 0.94 ± 0.01 0.730 0.93 ± 0.02 0.92 ± 0.01 0.761 0.702

Fasting glucose (mM) 5.65 ± 0.09 5.51 ± 0.13 0.426 4.95 ± 0.11 5.08 ± 0.21 0.311 0.980

2-h glucose (mM) 8.24 ± 0.33 8.46 ± 0.81 0.757 6.15 ± 0.39 6.64 ± 0.45 0.520 0.578

Fasting insulin (mU/mL) 10.37 ± 1.31 16.12 ± 6.67 0.522 5.70 ± 0.77 17.04 ± 6.26 3.84E�04 0.030

Matsuda index 5.83 ± 1.09 3.24 ± 0.78 0.097 11.01 ± 1.91 3.81 ± 0.78 0.002 0.017

Triglycerides (mM) 2.30 ± 0.21 2.41 ± 0.30 0.690 1.91 ± 0.19 1.86 ± 0.21 0.859 0.807

Total cholesterol (mM) 5.26 ± 0.31 5.60 ± 0.27 0.524 4.76 ± 0.26 5.49 ± 0.24 0.103 0.247

HDL-c (mM) 1.19 ± 0.05 1.10 ± 0.08 0.374 1.19 ± 0.06 1.26 ± 0.06 0.460 0.938

LDL-c (mM) 3.43 ± 0.27 3.81 ± 0.23 0.406 3.11 ± 0.22 3.71 ± 0.20 0.133 0.212

Systolic blood pressure

(MmHg)

130.54 ± 4.74 131.33 ± 5.84 0.923 128.31 ± 4.47 128.50 ± 2.67 0.956 0.944

Diastolic blood pressure

(MmHg)

80.00 ± 2.71 81.33 ± 2.04 0.759 78.08 ± 2.77 75.83 ± 3.94 0.452 0.912

Resting heart rate (bpm) 75.00 ± 2.02 83.00 ± 4.91 0.087 70.46 ± 1.92 80.83 ± 3.65 0.081 0.024

VO2 Max (mL/kg/min) 25.27 ± 1.30 26.83 ± 1.38 0.485 31.42 ± 1.20 31.03 ± 1.85 0.861 0.755

Leg press (kg) 239.23 ± 11.79 226.67 ± 15.85 0.547 282.69 ± 17.97 270.83 ± 14.52 0.894 0.608

Chest press (kg) 32.46 ± 2.17 34.40 ± 3.41 0.642 38.92 ± 2.30 39.50 ± 2.97 0.886 0.546

hs-CRP (mg/L) 3.68 ± 0.46 3.39 ± 0.94 0.565 2.53 ± 0.32 2.59 ± 0.67 0.461 0.880

FGF21 (pg/mL) 380.95 ± 80.34 349.46 ± 79.59 0.921 235.78 ± 42.35 260.34 ± 55.79 0.746 0.843

Adiponectin (mg/mL) 7.15 ± 1.12 5.38 ± 0.84 0.417 10.46 ± 1.85 7.17 ± 1.20 0.595 0.375

Leptin (ng/mL) 12.50 ± 2.05 12.55 ± 1.58 0.611 8.98 ± 1.65 8.93 ± 1.93 0.781 0.694

Total energy (Kcal/d) 1,694.74 ± 59.99 1,567.84 ± 82.97 0.250 1,685.20 ± 51.93 1,585.59 ± 79.62 0.308 0.137

Carbohydrate (g) 270.21 ± 8.94 256.26 ± 11.69 0.386 266.96 ± 9.64 244.04 ± 10.55 0.178 0.177

% of Energy intake 64.43 ± 1.42 64.33 ± 1.26 0.968 63.86 ± 0.93 62.83 ± 2.81 0.659 0.708

Protein (g) 70.51 ± 3.57 69.01 ± 4.52 0.813 70.24 ± 2.30 71.81 ± 4.65 0.738 0.933

% of Energy intake 16.64 ± 0.46 17.50 ± 0.67 0.318 16.36 ± 0.25 17.33 ± 0.67 0.104 0.147

Fat (g) 35.76 ± 3.00 33.31 ± 2.86 0.629 39.86 ± 2.63 37.43 ± 5.80 0.663 0.490

% of Energy intake 18.93 ± 1.17 18.17 ± 1.22 0.704 20.07 ± 0.99 19.83 ± 2.81 0.920 0.747

Fiber (g) 9.30 ± 0.85 8.23 ± 1.32 0.500 9.25 ± 0.56 8.10 ± 0.54 0.235 0.238

BMI, body mass index; HDL-c, high-density lipoprotein cholesterol; hs-CRP, high-sensitive C-reactive protein; LDL-c, low-density lipoprotein choles-

terol; WHR, waist-hip ratio. Responders (n = 14) and Non-responders (n = 6). Data are shown as means ± SEM.
aDetermined by independent Student’s t test.
bDetermined by ANCOVA model controlling for baseline measurements.
cDetermined by repeated-measures two-way ANOVA.
network analysis further showed that species not necessarily

sharing taxonomic similarities may co-occur when adapting to

exercise intervention, as evidenced by increased network den-

sity and enhanced interactions centralizing around the signifi-

cantly altered species, such as Alistipes putredinis (Figure 2C).

In addition, the number of positive connections among those

butyrate-producing genera within Firmicutes was obviously pro-

moted, the decreased abundance of which is reported to be

associated with obesity and T2D (Forslund et al., 2015). Further-

more, a few inter-phylum connections, such as between Bacter-
80 Cell Metabolism 31, 77–91, January 7, 2020
oides (Bacteroidetes) andClostridium (Firmicutes) had also been

identified (Figure 2C), suggesting an enhanced community inter-

action after exercise intervention.

Differential Alterations of Gut Microbiota between
Exercise Responders and Non-responders
As there was a high interpersonal variability in the alteration of gut

microbiota (Figures S4A–S4C), we next interrogated whether the

heterogeneous responses to exercise in glucose homeostasis

and insulin sensitivity were related to differential changes in gut
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microbiota between responders and non-responders. Similar to

the observation in thewhole exercise group, no remarkable differ-

ence in either alpha or beta diversity before and after exercise

were identified in responders or non-responders (Figures S4D–

S4L). However, we observed a significant segregation of dynamic

alterations of gut microbiota between the two sub-groups (Fig-

ure 2D). Compared to responders, the microbial profiles of

non-responders after 12-week exercise training shared more

similarity with those of the sedentary controls (p < 0.001 for com-

parison of between-group weighted UniFrac distance), suggest-

ing a maladaptation of gut microbiota in non-responders.

Notably, we observed that the significant decrease of Bacter-

oides xylanisolvens and increase of Streptococcus mitis group

found in all participants only occurred in responders, but not

non-responders. Contrary to an increase of Alistipes putredinis

in the whole group, this bacterium was found to be reduced in re-

sponders (Figure 2E; Table S2). In addition, responders were

characterized by a 3.5-fold increase of Lanchospiraceae bacte-

rium (a butyrate-producer), whereas non-responders were

featured by nearly a 70% decrease in Ruminococcus gnavus,

which has been reported to alleviate growth and metabolic im-

pairments caused by transplanting microbiota from undernour-

ished donors (Blanton et al., 2016). Moreover, Alistipes shahii,

previously reported to be associated with inflammation and

enriched in obese Japanese (Andoh et al., 2016), decreased by

43% in responders, but increased by 3.88-fold in non-responders

(Figure 2E). When taking the growth dynamics of bacteria into

consideration, responders were characterized by a decreased

replication rate of Prevotella copri, a main bacterium responsible

for the production of BCAAs and a contributor to insulin resis-

tance (Pedersen et al., 2016), as well as an increased growth

rate of several species in Bacteroides genus, most of which are

propionate producers (Rivière et al., 2016) (Table S3). Collectively,

these findings suggest that exercise intervention exerts differen-

tial modulatory effects on microbial compositions in responders

and non-responders.

Associations of Taxonomic Alterations with Changes in
Clinical Parameters Induced by Exercise Intervention
We next performed partial correlation analysis to investigate

whether exercise-induced compositional changes in microbiota

were associated with improvements in clinical parameters inde-

pendent of body weight, fat mass, and visceral fat. We found that

after adjustment for body weight and adiposity, associations

between alterations of microbial species and improvements in

insulin sensitivity-related indexes and a cluster of other meta-

bolic features remained significant (Figure 3). At the community
Figure 2. Exercise Promotes Differential Alteration of Gut Microbiota i

(A and B) Alterations of gut microbiota in response to exercise intervention in a

species and (B) strain-level genomic variations before and after exercise intervent

rank test. Green and orange indicate low and high relative abundance in (A) and

(C) Co-abundance network before and after exercise intervention in all participan

of >0.6 or <�0.6 between species present in at least 60% samples. The nodes are

positive correlations at baseline and after exercise, respectively. Gray edges ind

(D and E) Participants were further classified into responders (R, blue) and non-re

metric multidimensional scaling analysis plot of taxonomic variation induced by e

R and NR. (E) Significantly altered species (p < 0.05) caused by exercise interven

microbial abundance after exercise to those at baseline and the log fold change
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level, alteration in the gutmicrobiota was significantly associated

with the percentage reduction of HOMA-IR (p < 0.01, ADONIS).

Among the 19 species significantly correlated with the improve-

ments of glucose homeostasis and insulin sensitivity, Rumino-

coccus gnavus, Alistipes shahii, Streptococcus mitis group,

Eubacterium hallii, and Escherichia coli showed the strongest as-

sociations (Figure 3). Consistently, most of these species were

also found to be differentially altered between responders and

non-responders (Figure 2E). Taken together, the above findings

imply that distinct changes of these species may underlie the

difference in the improvement of glycemic homeostasis in

response to a standard exercise regimen.

Exercise Promotes Divergent Functional Shifts in Gut
Microbiome between Exercise Responders and Non-
responders
To further understand how exercise-induced changes of gut mi-

crobiota modulate host metabolism, we annotated microbial

genes to Kyoto Encyclopedia of Genes and Genomes (KEGG)

orthology (KOs). In total, 214 KOs were significantly increased,

whereas 14 KOs were decreased after 12-week exercise training,

most of which fall into the ‘‘carbohydrate metabolism’’ and

‘‘amino acid metabolism’’ functional pathways. Moreover, a total

of 10 pathways were found to be significantly altered by exercise

training, such as ‘‘methane metabolism’’ and ‘‘carbon meta-

bolism.’’ Notably, exercise responders and non-responders ex-

hibited a clear segregation of microbial functional variations (Fig-

ure 4A) and divergent pathway enrichment (Figure 4B). Consistent

with an enhanced coordination and communication within themi-

crobial community (Figure S5), responders were dominated by

genes involved in quorum sensing, a regulatory system that al-

lows bacteria to share information about density and to adjust

gene expression accordingly (Miller and Bassler, 2001). In line

with the findings in professional athletes (Barton et al., 2018),

pathways involved in DNA replication and amino acidmetabolism

were preferentially enhanced in responders. Moreover, distinct

responses with respect to glycan biosynthesis and lipid meta-

bolism also existed between the two subgroups (Figure 4B).

Interestingly, although genes participating in several pathways

belonging to microbial proteolysis were enriched in both sub-

groups, amino acid fermentation was shifted to production of

colonic gases or metabolically detrimental compounds in non-re-

sponders, but to biosynthesis of SCFAs in responders (Figure 4C).

Abundances of genes involved in the production of phenolic

derivatives (indole and p-cresol) and sulfate from aromatic

and sulfur-containing amino acids (SAAs) respectively were

selectively augmented in non-responders, providing ample
n Responders and Non-responders

ll participants. Significant changes in (A) the relative abundances of bacterial

ion in all participants. *p < 0.05, **p < 0.01 and ***p < 0.001 byWilcoxon signed-

low and high Jaccard distance in (B) respectively.

ts. The edges indicate statistically significant (p < 0.05) Spearman correlations

colored based on their affiliated phyla. Orange dashed and blue edges indicate

icate negative correlations.

sponders (NR, red) based on the relative improvement of HOMA-IR. (D) Non-

xercise training in R and NR, respectively. p = 0.008 by ADONIS test between

tion in R and NR, respectively. Fold change was defined as the ratio of relative

s were set to zero if not statistically significant. #FDR < 0.25.



Figure 3. Exercise-Induced Alterations of Microbial Species Are Closely Associated with Improvements of Clinical Indices Independent of

Body Weight and Adiposity

Heatmap of the Spearman’s correlation coefficients between changes in different clinical indices and taxonomic alterations caused by exercise intervention after

adjustment for body weight, fat mass, and waist-to-hip ratio. +p < 0.05, *FDR < 0.1, and **FDR < 0.05. Yellow and purple in the far left column indicate increased

and decreased relative abundance, respectively. Only species with significant correlations (at least one based on FDR or two based on raw p value) were shown.
substrates for the formation of indoxyl sulfate andp-Cresyl sulfate

(toxic metabolites which promote oxidative stress and inflamma-

tion (Vanholder et al., 2014)). Additionally, capacities for produc-

tion of glutamate and SAAs were also significantly elevated

specifically in the microbiome of non-responders (Figure 4C,

lower panel). Given the inhibitory effects of these metabolites

on colonocyte mitochondrial bioenergetic activity (Andriamihaja

et al., 2015), adipose tissue lipolysis and antioxidant defense

system (Bunyan et al., 1976; Stone et al., 2014), such changes

might attenuate the ameliorative effects of exercise on insulin

resistance. In contrast, genes participating in the catabolism of

BCAAs, the rise of which promote insulin resistance (Newgard

et al., 2009), were significantly increased only in responders.

Moreover, genes encoding enzymes responsible for the degrada-
tion of amino acids that maintain insulin sensitivity, such as

glycine (the decrease of which usually occurs before clinical man-

ifestations of T2D [Adeva-Andany et al., 2018]), were highly abun-

dant in non-responders. However, based on significantly higher

abundance of L-threonine ammonia-lyase (K01754), it appeared

that glycine was transformed into 2-oxobutanoate, a substrate

for propionate biosynthesis in responders. Similarly, higher abun-

dance of L-ornithine ammonia-lyase (K01750) in non-responders

and acylamide amidohydrolase (K01426) in responders respec-

tively indicate that arginine was transformed into proline (a detri-

mental end product) in non-responders, but into g-aminobutyric

acid (GABA, a modulator of glucose homeostasis [Purwana

et al., 2014]) in responders (Figure 4C), suggesting a more favor-

able utilization of amino acids in those who enjoyed a better
Cell Metabolism 31, 77–91, January 7, 2020 83



Figure 4. Exercise Promotes Distinct Functional Shifts of Gut Microbiota and Microbial Metabolites in Responders and Non-responders

(A) NMDS analysis plot of functional alterations caused by exercise intervention in responders (R, Blue) and non-responders (NR, Red), respectively. p = 0.011 by

ADONIS test between R and NR.

(legend continued on next page)
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metabolic flexibility. Furthermore, exercise intervention led to

differential changes in saccharolytic fermentation in the two sub-

groups (Figure 4C). Genes involved in propionate biosynthesis

from glycolytic products, were significantly increased only in re-

sponders, whereas genes responsible for the biosynthesis of

butyrate were selectively attenuated in non-responders. Taken

together, these data demonstrate that differential capacity for

carbohydrate fermentation and amino acid catabolism shaped

by exercise might contribute to the difference in the amelioration

of insulin resistance in the two subgroups.

Distinct Sets ofMicrobial Metabolites between Exercise
Responders and Non-responders
As the fecal metabolome provides a functional readout of micro-

bial activity and can be used as an intermediate phenotype medi-

ating host-microbiome interaction (Zierer et al., 2018), we next

performed targeted metabolomics analysis of fecal samples to

interrogate whether exercise-induced changes in gene abun-

dance of gut microbiota led to distinct alterations of microbial

metabolites in the two subgroups. This analysis showed that

the trend of changes in the metabolites of amino acid catabolism

and carbohydrate fermentation was largely consistent with the

altered patterns of genes encoding the metabolic enzymes (Fig-

ures 4C and 4D). Specifically, abundances of amino acids that

hamper insulin sensitivity, such as BCAAs and aromatic amino

acids (AAAs, especially tryptophan), were significantly decreased

by exercise intervention only in responders, which was in line with

the selective enhancement of the capacity for BCAAs and AAAs

degradation. Additionally, in agreement with the metagenomics

data that linked the functional repertoire to increased capacity

for biosynthesis of SCFAs and GABA in responders, fecal abun-

dances of propionate and GABA were significantly increased in

responders, but showed an opposite trend of changes in non-re-

sponders by 12-week exercise intervention. On the other hand,

consistent with an enhanced capacity for the synthesis of

glutamate but impaired capacity for its conversion into GABA in

non-responders (Figure 4C), a significant increase of glutamate

but decrease of GABA occurred selectively in non-responders af-

ter exercise intervention (Figure 4D). Consistent with the alter-

ations in fecal metabolites, increased circulating levels of SCFAs,

but decreased concentrations of BCAAs and AAAs were

observed only in responders after exercise intervention, whereas

the circulating levels of these metabolites in non-responders

displayed an opposite trend of changes (Table S4). Taken

together, differential alterations of these microbial metabolites

may underlie the distinct metabolic responses to exercise inter-

vention in responders and non-responders.

Considering the differential alterations between responders

and non-responders at taxonomic and metabolomics levels by

exercise intervention, we next interrogated whether subtle differ-
(B) Significantly altered pathways (p<0.05) induced by exercise intervention in R

pathway class in the KEGG pathway maps. The log fold changes were set to ze

(C) Illustration of distinct carbohydrate and amino acids fermentation in R and NR

indicate significant alterations selectively in R and NR respectively. *p < 0.05, **p

(D) Heatmap showing the microbial metabolites in fecal samples from R and NR

indicate higher abundance.

(E and F) The receiver operating characteristic (ROC) curves and area under cu

responders and non-responders in (E) discovery and (F) validation cohort.
ences in baseline microbial signatures could account for the

divergent changes and whether it could be integrated into an al-

gorithm to predict the individualized exercise responsiveness.

To this end, a random forest algorithm integrating baseline

microbial features was first developed in the discovery cohort

and achieved an area under the receiver operating characteristic

(ROC) curve (AUC) of 0.880 (Figure 4E). The most informative

features contributing to this classifier included Bacteroides xyla-

nisolvens, Bacteroides cellulosilyticus, and GABA (Figure S6),

whose abundances were significantly different between re-

sponders and non-responders at baseline, suggesting that in

response to a standard exercise regimen, subtle differences in

microbial signature might initiate distinct metabolic cascades.

Second, the performance of this model was further evaluated

in an independent validation cohort of 30 medication-naive indi-

viduals with prediabetes sharing similar characteristics with

those in the discovery cohort (Table S5). Participants in this vali-

dation cohort were subjected to the same training protocol as

those in the discovery cohort and had a similar non-response

rate to exercise with respect to improvement in insulin sensitivity

(30% in the discovery cohort and 33.3% in the validation cohort,

respectively). Notably, the classification model, derived solely

using the discovery cohort, achieved an AUC value of 0.747 (Fig-

ure 4F) for the discrimination between responders and non-re-

sponders in this independent validation cohort.

Exercise-Conditioned Microbiota from Responders
Ameliorate Glucose Intolerance and Insulin Resistance
in Obese Mice
To further examine the causal relationship between differentially

shaped microbiota and changes in glucose metabolism and in-

sulin sensitivity by exercise intervention, conventional antibi-

otics-treated mice were transplanted with microbiota from two

responders and two non-responders collected at both baseline

and after exercise intervention (Figure 5A). A number of microbial

species, such as Alistipes shahii, Alistipes putredinis and

Ruminococcus gnavus, demonstrated a similar trend of changes

between recipient mice and human donors (Figure S7). Mice

colonized with microbiota from responders and non-responders

after exercise displayed a similar trend of changes in body

composition, oxygen consumption, and respiratory exchange

ratio compared to those receiving microbiota from the same do-

nors taken at baseline (Figures 5B–5D). On the other hand, signif-

icant reductions in glucose and insulin levels, as well as obvious

improvements in glucose disposal during glucose and insulin

tolerance tests were observed only in mice transplanted with mi-

crobiota from responders, but not non-responders after exercise

training (Figures 5E–5I). Moreover, hyperinsulinemic-euglycemic

clamp analysis showed remarkable increases in glucose infusion

rate (as measured by the amount of exogenous glucose required
and NR, respectively. The bars were colored based on the 1st level affiliated

ro if not statistically significant. #FDR < 0.15.

(upper) and the relative changes of corresponding KOs (lower). Blue and red

< 0.01, and ***p < 0.001 by Wilcoxon rank-sum test between R and NR.

before and after exercise intervention. The colors changing from blue to red

rve (AUC) of the microbiome-based algorithm for the discrimination between
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Figure 5. Transplantation of Human Fecal Microbiota intoMiceMimics the Effect of Exercise onGlucose Homeostasis and Insulin Sensitivity

(A) Schematic diagram showing the study design for fecal microbial transplantation.

(B) Relative changes of body compositions.

(C and D) Recipient mice were subjected to indirect calorimetry analysis for the determination of (C) oxygen consumption and (D) respiratory exchange ratio after

4 weeks of microbial colonization.

(E and F) Glucose (E) and insulin (F) levels at both fasting and fed status.

(G and H) Glucose tolerance test (G) and insulin tolerance test (H) with area under the curve (AUC).

(I) Insulin concentration after an oral glucose load.

(J–M) Hyperinsulinemic-euglycemic clamping studies were performed in recipient mice after 4 weeks of microbial colonization. (J) glucose infusion rate, (K)

hepatic glucose production (HGP) under basal and insulin-stimulated conditions, (L) percent suppression of HGP by insulin, and (M) glucose uptake in soleus

muscle (left) and epididymal adipose tissue (right).

Data were expressed asmean ± SEM (n = 6mice/group). *p < 0.05, **p < 0.01, and ***p < 0.001 between R-FMT-0w and R-FMT-12w; #p < 0.05 betweenNR-FMT-

0w and NR-FMT-12w by unpaired Student’s t test. Dots with different colors represent individual mice receiving FMT from different human donors.
for maintaining euglycemia) as well as in insulin-stimulated sup-

pression of hepatic glucose production and glucose uptake in

soleus muscle and epididymal adipose tissue in mice colonized

with microbiota from responder donors after exercise compared

to those receiving microbiota from the same donors collected at

baseline (Figures 5J–5M). In contrast, these parameters re-

mained unchanged in mice gavaged with microbiota from exer-

cise non-responders. Collectively, these findings suggest that

gut microbiota from responders confers the metabolic benefits

of exercise on glucose homeostasis and insulin sensitization in

peripheral tissues.

In linewith the distinct sets ofmicrobialmetabolites observed in

humans, mice receiving fecal microbial transplantation (FMT)

from responders after exercise demonstrated a significantly

increased abundance of circulating SCFAs, but decreased levels
86 Cell Metabolism 31, 77–91, January 7, 2020
of BCAAs and AAAs compared to those receiving FMT from the

same donors collected at baseline, whereas opposite changes

in these metabolites were observed in mice gavaged with micro-

biota from non-responders after exercise in comparison to those

colonized with microbiota from the same donors collected at

baseline (Table S6). Furthermore, supplementation with BCAAs

dampened the beneficial effects of FMT from exercise re-

sponders on the alleviation of glucose dysregulation and insulin

resistance (Figures 6A–6F), whereas replenishment with SCFAs

in mice colonized with microbiota from non-responders partially

rescued the non-responsiveness in glucose homeostasis and in-

sulin sensitivity (Figures 6G–6L). Taken together, these findings

further support the biological relevance of these differentially

altered microbial metabolites in the heterogeneous responses

to exercise intervention.



Figure 6. Supplementation with BCAAs Dampens the Metabolic Benefits of Microbiota from Responders while Replenishment with SCFAs

Partially Restores the Effects of Microbiota from Non-responders on Insulin Sensitivity

(A–F) Supplementation of BCAAs in mice receiving FMT from responder donors. (A) Schematic diagrams of the study design. (B) Relative changes of body

compositions. (C) Glucose and (D) insulin levels at both fasting and fed status. (E) Glucose tolerance test and (F) insulin tolerance test with AUC. *p < 0.05,

**p < 0.01 between R-FMT + water and R-FMT + BCAAs; #p < 0.05, ##p < 0.01, and ###p < 0.001 when compared with PBS-FMT + water.

(G–L) Supplementation of SCFAs in mice receiving FMT from non-responder donors. (G) Schematic diagrams of the study design. (H) Relative changes of body

compositions. (I) Glucose and (J) insulin levels at both fasting and fed status. (K) Glucose tolerance test and (L) insulin tolerance test with AUC. *p < 0.05, **p < 0.01

and ***p < 0.001 between NR-FMT + water and NR-FMT + SCFAs; #p < 0.05, ##p < 0.01, and ###p < 0.001 when compared with PBS-FMT + water.

Data were expressed as mean ± SEM (n = 6 mice/group). Significance was calculated by ANOVA followed by Turkey’s multiple comparison tests. Dots with

different colors represent individual mice receiving FMT from different human donors.
In this well-controlled interventional study conducted in medi-

cation-naı̈ve individuals with prediabetes, we showed that gut

microbiota was an important mediator conferring the effect of

exercise on glucose metabolism and insulin sensitivity. The

high interpersonal variability in the adaptive changes upon exer-

cise intervention was attributed to divergent functional alter-

ations of gut microbiota, leading to production of distinct sets

of microbial metabolites. These findings were further strength-

ened by animal studies showing that exercise-induced differen-

tial changes in glucose homeostasis, insulin sensitivity, and

metabolites in responders and non-responders can be trans-

ferred into mice by FMT.

Despite the overall metabolic benefits of exercise intervention,

�30% of our prediabetic participants responded poorly to exer-

cise in terms of improvement in glycemic control and insulin

sensitivity, a portion comparable to previous studies with similar

designs (Böhm et al., 2016). Although heterogeneous degrees of

adaptive changes in response to exercise intervention have been

observed in many clinical studies, the underlying pathophysi-
ology remains elusive. In this regard, our present study uncov-

ered a maladaptation of the gut microbiota as an important

pathomechanism for exercise resistance to glycemic control

and insulin sensitization. This notion was supported by our find-

ings that (1) there was a clear segregation in compositional and

functional changes of gut microbiota between responders and

non-responders in response to exercise intervention, accompa-

nied by distinct alterations of microbial metabolites; and (2) colo-

nization of mice with microbiota from non-responders led to no

change in glycemic control and insulin sensitivity, in contrast to

the substantial improvement in mice gavaged with microbiota

from responders. Notably, mice transplanted with microbiota

from responders and non-responders exhibited a similar degree

of body weight reduction, despite divergent changes in glucose

metabolism and insulin sensitivity. These data were in line with

our clinical observation that exercise-associated weight loss in

all participants was homogenous and modest (�2%), which

did not reach the threshold required for improvement of meta-

bolic functions in overweight and/or obese individuals with
Cell Metabolism 31, 77–91, January 7, 2020 87



insulin resistance (Magkos et al., 2016). These findings, together

with the fact that the correlations between alterations of microbi-

al species (such as Alistipes shaii and Streptococcusmitis group)

and improvement of insulin sensitivity remain significant after

adjustment for body weight and adiposity, suggest that gut mi-

crobiota mediates the effect of exercise on glucose metabolism

independent of body weight and fat mass reduction.

As a promising probiotic, multiple health-promoting effects of

Akkermansia muciniphila have been widely reported in both

cross-sectional studies (Cani and de Vos, 2017) and clinical trials

(Depommier et al., 2019). Interestingly, the relative abundance of

A. muciniphila was found to be decreased after exercise training

but remained consistently higher in responders throughout the

study period (Figure 2E; Table S2). Despite its metabolic bene-

fits, such a reduction was consistent with the observation in a

calorie restriction trial in obese adults (Dao et al., 2016), raising

the possibility that as a synergistic ecosystem, decreased rela-

tive abundance of A. muciniphilamight be an adaptive response

to exercise intervention, which in turn contributes to the expan-

sion of other beneficial species and ultimately acts in concert to

promote metabolic health. However, at current stage we cannot

exclude the possibility that the paradoxical reduction was due to

the differences in methodologies employed for metagenomic

analysis (Nielsen et al., 2014) or the lack of absolute quantifica-

tion with microbial load, which has been reported to influence

the observed alterations in microbiota (Vandeputte et al., 2017).

Despite a modest alteration at taxonomic levels, significant

changes at functional levels were identified through the integra-

tion of metagenomics and metabolomics. Consistently, several

reports have found that amild alteration inmicrobial composition

is sufficient to drive significant functional changes (Bercik et al.,

2011; Li et al., 2009). Our findings further reinforce the notion that

the functional capacity of gut microbiota can be significantly

altered without major shifts in its community structure, and that

changes in host phenotype are dependent on the metabolic ca-

pacity andmetabolites of themicrobiome, instead of the compo-

sition per se. More importantly, we identified shifts in microbial

fermentation preference as an underlying cause for the divergent

response of glycemic control and insulin sensitivity to exercise

intervention.

SCFAs are a major class of microbial metabolites that play a

critical role in host metabolism and immunity through both local

and systemic actions onmultiple targets (Koh et al., 2016). Intrigu-

ingly, elevated abundance ofEubacteriumhallii andCoprococcus

comes selectively in themicrobiome of responders weremirrored

by enhanced capacity for biosynthesis of SCFAs from both car-

bohydrate and amino acids in responders, which was decreased

in non-responders after exercise intervention. Several animal

studies have consistently demonstrated the metabolic benefits

of butyrate or propionate treatment in energy expenditure and

glucose homeostasis (De Vadder et al., 2014; Lin et al., 2012).

In humans, propionate supplementation for 7 weeks reduced

fasting glucose and increased insulin secretion during glucose

tolerance test (Venter et al., 1990). Mechanistically, SCFAs (espe-

cially propionate) have been shown to induce the secretion of

Peptide YY and glucagon-like peptide-1 (GLP-1), two enteroen-

docrine hormones critical for energy balance and glucose

homeostasis (Psichas et al., 2015). Consistently, two recent inter-

ventional trials suggest that the metabolic benefits of dietary
88 Cell Metabolism 31, 77–91, January 7, 2020
fibers on insulin resistance and T2D are attributed to increased

microbial production of SCFAs and elevated GLP-1 secretion

(Upadhyaya et al., 2016; Zhao et al., 2018). Additionally, the

glucose-lowering effect of the anti-diabetic drug metformin is

alsomediated in part by increasedmicrobial biosynthesis of buty-

rate and propionate (Wu et al., 2017). Therefore, fermentation into

SCFAsmay represent a common pathwaywhereby dietary, phar-

macological, and exercise interventions exert metabolic benefits

through modulation of gut microbiota.

In both rodents and humans, responders were characterized

by reduced level of BCAAs, a well-established mediator of insulin

resistance mainly by activation of the mammalian target of rapa-

mycin complex-1 signaling pathway (Yoon, 2016). High levels of

BCAAs, together with AAAs, are reported to be independent

biomarkers for insulin resistance and diabetes (Guasch-Ferré

et al., 2016). Conversely, improved insulin sensitivity resulting

from Mediterranean diet intervention (Ruiz-Canela et al., 2018)

and bariatric surgery (Lips et al., 2014) in obese and insulin resis-

tant individuals was accompanied by a decrease of BCAAs.

Enhanced microbial biosynthesis of BCAAs by Prevotella copri

was suggested to be an important contributor to its elevated

circulating levels in insulin resistant individuals (Pedersen et al.,

2016). As one of the preferred amino acid substrates of colonic

bacteria, genes involved in BCAAs catabolism are also harbored

by a cluster of microbial species (Kazakov et al., 2009). In this

connection, our findings showed that exercise-induced decrease

of BCAAs preferentially in responders was attributed to a com-

bined effect on reduced replication rate of Prevotella copri and

promotion of genes involved in the degradation of BCAAs.

In contrast to the increase of beneficial microbial fermentation

products in responders, a cluster ofmetabolically detrimental me-

tabolites, including glutamate, AAAs, proline, and p-cresol, all of

which are reported to be elevated in insulin resistant individuals

(Guasch-Ferré et al., 2016; Liu et al., 2017; Nakamura et al.,

2014), were accumulated only in non-responders after exercise

intervention. Particularly, glutamate is able to induce obesity and

insulin resistance in rodents possibly by impairing lipolysis (Bun-

yan et al., 1976). Reduced abundance of Bacteroides thetaiotao-

micron (a bacterium responsible for the catabolism of glutamate),

together with an elevated glutamate in the circulation has been re-

ported recently in obese Chinese, which can be reversed by

sleeve gastrectomy accompanied with an alleviation of hypergly-

cemia and insulin resistance (Liu et al., 2017). Moreover, several

microbial species, such asBacteroides species can convert gluta-

mate into GABA, which is able to increase glucose tolerance and

insulin sensitivity by suppressingmetabolic endotoxemia and pro-

tecting pancreatic b cells (Purwana et al., 2014; Tian et al., 2011).

Consistently, our data showed that elevated glutamate in non-re-

sponders was accompanied by a decreased level of GABA after

exercise intervention, suggesting that impaired microbial conver-

sion of glutamate into GABA may underlie the failure of non-re-

sponders to exercise-induced improvement in glucose homeo-

stasis and insulin sensitivity.

Although there was no obvious difference in baselinemicrobial

structures between responders and non-responders, we were

able to establish a model based on the microbiome signatures

before exercise to accurately predict the exercise outcomes

with respect to glycemic control and insulin sensitivity, raising

the possibility of screening for individuals with high likelihood



of exercise resistance using gut microbiota, so that personalized

adjustments can be implemented in time to maximize the effi-

cacy of exercise intervention. Interestingly, personal microbiome

signatures have recently shown to be a reliable predictor for

the high inter-individual variability in postprandial glucose

after identical meals (Zeevi et al., 2015), and also for the

efficacy of barley kernel-based bread intervention on glycemic

control (Kovatcheva-Datchary et al., 2015). Taken together,

these findings uncover the diversity of gut microbiota as a key

determinant for the variability of glycemic control after dietary

and exercise intervention. However, how exercise imposes

such a differential impact on the composition and function of

gut microbiota remains unclear and warrants further investiga-

tion. We speculate that exercise may amplify subtle difference

of gut microbiota at baseline by remodeling the intestinal micro-

environment (such as inflammatory and oxidative status and

local immunity) critical for microbial growth and interaction,

which ultimately lead to a divergent response of glycemic control

to exercise intervention.

In conclusion, our study uncovers gut microbiota and its meta-

bolism as key molecular transducers to the heterogeneous adap-

tion to exercise intervention on glucose metabolism and insulin

sensitivity.Thisfinding, togetherwithourdemonstrationof thepre-

dictive value of baseline microbial signatures for individualized

responsiveness to exercise, may facilitate clinical implementation

of personalized lifestyle intervention for diabetes management.

Limitations of Study
The main limitation of the current study is a relatively small sam-

ple size and rigid inclusion criteria for our study participants,

which constrains the applicability of this result (Richter et al.,

2010). Though limited only to Chinese males, these results

demonstrate the adequacy of this non-invasive proxy measure-

ment in the prediction of exercise responsiveness. Considering

the regional and ethnic variations in gut microbiota (Deschasaux

et al., 2018; He et al., 2018), the wide applicability of our findings

and prediction model needs further validation in larger and more

diverse populations.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Study Participants
This study was approved by the Institutional Review Board of the University of Hong Kong/Hospital Authority Hong Kong West

Cluster (UW 15-370) and was in accordance with the principles of the Declaration of Helsinki. Written informed consents were

obtained from all participants. Complete clinical trial registration is deposited at ClinicalTrials.gov (NCT03240978). Detailed inclusion

and exclusion criteria were as follows:

Inclusion criteria were: (i) non-smoking and male Chinese aged between 20 and 60 years; (ii) weight stable (<5% weight

change over last 3 months) and overweight/obese as defined by Asian criteria BMI>23 kg/m2; (iii) pre-diabetes as defined by

impaired glucose tolerance (7.8 mmol/L % 2-h blood glucose % 11.0 mmol/L after a 75-g oral glucose challenge) and/or

impaired fasting glucose (5.6 mmol/L% fasting blood glucose% 6.9 mmol/L) following the American Diabetes Association practice

guidelines; (iv) absence of any systemic, metabolic and cardiovascular diseases, as well as infections within the previous month; and

(v) absence of any diet or medication that might interfere with glucose homoeostasis and gut microbiota, especially antibiotics and

probiotics.
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Exclusion criteria were: (i) acute illness or current evidence of acute or chronic inflammatory or infective diseases; (ii) any neuro-

logical, musculoskeletal or cardio-respiratory conditions, which will put them at risk during exercise or inhibit their ability to adapt to

an exercise program; (iii) participation in regular exercise and/or diet programmore than 2 times per week in the latest 3 months prior

to recruitment; and (iv) mental illness rendering them unable to understand the nature, scope, and possible consequences of

the study.

Mouse Model
All the animal experiments were approved by the Committee on the Use of Live Animals for Teaching and Research of the University

of HongKong (CULATRNo. 4361-17). Healthy C57BL/6Jmalemice (8-weeks old) were housed in groups of threemice per cage, with

free access to food and water under a strict 12-h light/dark cycle at a controlled temperature (23�C±2�C).

METHOD DETAILS

Subject Recruitment and General Design
Overweight/obese subjects were recruited from our local community through flyers and advertisement. Oral glucose tolerance test

(OGTT) was used to screen for potential participants whomet the inclusion criterion of prediabetes (Figure S1). Eligible subjects were

randomly assigned to exercise or sedentary group with a computer-generated randomization list prepared by an independent stat-

istician blinded from study design. Aside from exercise training, all participants recruited were instructed to continue their normal

routine and not make any changes to their habitual physical activity and diet. One-to-one interview with a validated questionnaire

including nutritional intakes and physical activity was conducted every month to assess their adherence. Fecal samples were

collected at baseline and 12 weeks after exercise training while fasting plasma samples were collected every 4 weeks. All examina-

tions were conducted at 48-72 h from the final exercise session to control for the acute effects of exercise.

High-Intensity Exercise Training Protocol
The 12-week exercise program consisted of three sessions per week on non-consecutive days at the Active Health Clinic, Centre for

Sports and Exercise, The University of Hong Kong, supervised by certified exercise specialists in a one-to-one manner. Compliance

in the exercise session was highly encouraged and participants were required to take part in at least 85% of all the exercise sessions

for inclusion into the analysis for responsiveness. The exercise program consisted of a combination of aerobic and strength training,

which was selected for its superior effectiveness in the alleviation of insulin resistance (Sigal et al., 2007). The 70-min high-intensity

combined aerobic and resistance interval training sessions consisted of a 10 min warm-up, followed by rotating participants through

the three 10-min stations of high-intensity treadmill intervals, high-intensity resistance and calisthenics exercises intervals, and high-

intensity stationary bike intervals, with 3-4 min recovery between stations. Each training session ended up with 10-15 min of cool-

down and stretching exercises. Participants wore a wireless heart rate telemetry sensor (Polar H7 heart rate sensor, Polar Electro

Oy, Kempele, Finland) throughout the exercise sessions to monitor their heart rate (HR) and to ensure that they were working at

the appropriate intensity level. The intensity was adjusted according to the real-time HR telemetry and the subjects were encouraged

to work at 80-95% HRmax. The treadmill interval station consisted of 3-4 bouts of 2 min running at 85-95% max aerobic capacity

(VO2max) separated by 30-45s intervals of active recovery at 50% VO2max, during which speed and incline were changed to adjust

intensity in accordance with individualized progression. The stationary bike station comprised 4-5 bouts of 45-60s cycling efforts at

90-95%work peak interspersed with 60-75s active recovery at 30%work peak, during which resistance and cadence were adjusted

according to individualized progression. The station of resistance and calisthenics exercises intervals was made up of 2-3 sets of

several types of high intensity exercises such as squats, kettlebell swings, planks and burpees, with 30s rest between each set.

The intensity of this resistance and calisthenics intervals was progressed during the 12-week training to keep the exercises chal-

lenging and also to provide adequate work to rest ratio to stimulate high intensity interval training-based resistance intervals.

Collection of Dietary and Clinical Data
Dietary data were collected by means of food frequency questionnaire administered by a nutritionist. The daily food categories and

nutrient intakes were calculated by dietary software based on the China Food Composition Database, which are regularly updated

with commonly consumed foods and changes in nutrient compositions. After overnight fasting for approximately 10-12 h, blood sam-

ples were collected and stored at -80�C until analysis. 75-g OGTTwas conducted after 10-12 h overnight fasting at baseline and after

12-week training. Blood samples were taken for the determination of plasma glucose and insulin levels at 0, 60 and 120 min after

taking the 75 g glucose solution (TRELAN-G75, Ajinomoto Pharmaceutical Co. Ltd., Tokyo, Japan). Glucose, serum lipid profiles,

including triglycerides (TG), total cholesterol (TC), high-density lipoprotein (HDL) cholesterol, and low-density lipoprotein (LDL)

cholesterol, were determined with standard laboratory techniques on a Hitachi 717 Analyzer (Roche Diagnostics, Germany). Serum

insulin, adiponectin, FGF21, leptin and hsCRP levels were measured with ELISA kits. Insulin resistance index (HOMA-IR) (Wallace

et al., 2004) was calculated using homeostasis model assessment methods, defined as fasting insulin (mU/mL)3fasting glucose

(mmol/L)/22.5, and Matsuda index (DeFronzo and Matsuda, 2010) was calculated based on the results of OGTT, defined as

10000/(G03I03Gmean3Imean)
1/2, where G and I represents plasma glucose (mmol/L) and insulin (mU/mL), and ‘‘0’’ and ‘‘mean’’

indicate fasting and mean value during the OGTT, respectively. Body composition was assessed by whole-body dual-energy

x-ray absorptiometry (DXA) scans (Explorer S/N 91075, Hologic Inc., Waltham, MA, USA). Strength and cardiovascular physical
Cell Metabolism 31, 77–91.e1–e5, January 7, 2020 e2



assessments were conducted at both baseline and within one week after the 12-week intervention. Maximal voluntary muscle

strength (chest press and leg press) was assessed using the 1-RM method (Keiser A-300, Keiser Corp., Fresno, CA, USA) following

the manufacturer’s instructions. An integrative cardiorespiratory fitness test using the Balke treadmill protocol was carried out on a

motor driven, electronically controlled treadmill (TrackMaster, Full Vision Inc., Newton, KS, USA) to assess the maximal oxygen up-

takes before and after exercise intervention.

Definition of Responders and Non-responders
The distribution of exercise responsiveness in our cohort exhibits a two-sided shape, ranging from high responders to adverse

responders with respect to changes in insulin sensitivity (data not shown). According to previous interventional surveys, the inter-

individual variability in response was evaluated by technical error (TE), a parameter that captures the totality of the variance among

laboratories or laboratory technicians and the normal day-to-day biological variation of a trait. It is defined as the within-subject stan-

dard deviation as derived from repeated measures (or assays) over a given period of time (Hopkins, 2000). A change greater than 2

times the TE means that there is a high probability that this response is a true physiological adaptation rather than a technical and/or

biological variability. Therefore, non-response to exercise intervention was defined as a failure to demonstrate a decrease of HOMA-

IR (levels at 12-week against those at 0-week) that was greater than 2-fold TE from zero (Álvarez et al., 2017).

Fecal DNA Extraction and Sequencing
Fecal samples were either frozen immediately at -80�C or briefly stored by participants in -20�C freezers before being transported to

our laboratory within 12 hours on ice. Fecal genomic DNA from both human subjects and mice receiving fecal microbial transplan-

tation from human donors was extracted as described (Qin et al., 2012). All samples were sequenced on the Illumina HiSeq 4000

platform (Illumina, San Diego, California, USA; Paired-end; insert size, 350 bp; read length, 150 bp) by BGI (Hong Kong S.A.R., China).

Targeted Metabolomics Profiling
Targetedmetabolomics profiling of fecal and plasma samples of both human andmicewere performed byMetabo-Profile (Shanghai,

China). The fecal and plasma samples were prepared as described previously (Zhao et al., 2017). Briefly, 100 ml plasma samples were

extracted with cold methanol for protein precipitation before lyophilization. For fecal samples, 10 mg of lyophilized feces were ho-

mogenized with 1M NaOH and methanol respectively and the resulting supernatants were combined together. Re-dissolved plasma

samples (1M NaOH mixed with methanol and pyridine) and aqueous fecal samples were subjected to derivatization with methyl

chloroformate (MCF, HPLC grade, Sigma-Aldrich, Stockholm, Sweden) on a MultiPurpose Sample PrepStation 2 (MPS2, Gerstel,

Germany), followed bymixing with internal standards. Subsequently, the derivatized samples in the chloroform phase were collected

and randomly analyzed by a gas chromatography coupled to time-of-flight mass spectrometer (GC/TOFMS) (Pegasus HT, Leco

Corp, USA) equipped with a (5%-phenyl)-methylpolysiloxane capillary column (Rxi-5MS, 30 m 3 0.25 mm i.d., 0.25 mm film thick-

ness; Agilent) as described (Zhao et al., 2017). All the standards were obtained from Sigma-Aldrich (Stockholm, Sweden). The quality

control samples were prepared following the same procedures as the test samples andwere injected every 14 test samples to ensure

reproducibility. Raw data from GC/TOFMS analysis were exported to ChromaTOF software (v4.50, Leco Co., CA, USA) and sub-

jected to preprocessing as described (Zhao et al., 2017). Individual compound identification was performed by comparing both

MS similarity and Kovats RI distance with reference standards in the alkyl chloroformate derivate library, with a similarity score cutoff

of over 70%. Multivariate analysis of fecal metabolomics profiles and visualization were performed by MetaboAnalyst 4.0. Metabo-

lites falling into AAAs (including L-tyrosine, L-phenylalanine, and L-tryptophan), SAAs (including methionine and homocysteine),

BCAAs (including L-isoleucine, L-leucine, and L-valine), and SCFAs (including acetate, butyrate, and propionate) were shown

both individually and collectively as a category.

Fecal Microbial Transplantation in Mice
500 mg of fresh stools obtained from donors before and after 12-week exercise intervention were suspended in 5 mL of PBS buffer

containing 0.5 g/L cysteine as reducing agent. Two donors from exercise responders and non-responders respectively were

randomly selected from each subgroup to perform fecal microbial transplantation. Stool samples from each individual were not

pooled, and fecal slurry from each donor was transferred into 3 conventional antibiotics-treated mice with an antibiotic cocktail

(ampicillin 1g/L, metronidazole 1g/L, neomycin 1g/L and vancomycin 0.5 g/L) as previously described (Hoyles et al., 2018). Mice

were randomized to receive fecal slurry from the same responder donors or non-responder donors collected at both baseline and

after exercise training. After a 4-day wash-out period to eliminate antibiotics, mice were gavaged once daily for three consecutive

days in the first week of colonization, and during the remaining threeweeks, fecal slurries were introduced every other day to reinforce

colonization. For BCAAs replenishment, they were added in drinking water (1.5 mg/kg.bw per day, weight ratio, isoleucine: leucine:

valine= 0.8:1.5:1) during the 4-week FMT period. Mice receiving FMT from responders after exercise with sterile tap water and mice

receiving sterile PBS were included as controls. For supplementation with SCFAs, butyrate at 40 mM and propionate at 25.9 mM

were added in drinking water during the 4-week FMT period. Mice receiving FMT from non-responders after exercise with pH and

sodium-matched water and mice receiving sterile PBS were included as controls. All the mice were fed with high fat diet (40%

kcal fat) for 6 weeks to induce obesity before and during the 4-week period of colonization. Stool samples were collected before

gavage and at the end of the experiment, and immediately stored at -80�C until further analysis. Body composition was assessed

by the Minispec LF90 body composition analyzer (Bruker, Billerica, MA) every week. Glucose and insulin levels at both fasting
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and fed status, intraperitoneal and oral glucose tolerance (GTT), as well as insulin tolerance tests (ITT) were performed after 4 weeks

of fecal transplantation as previously described (Hui et al., 2015). For GTT, mice were fasted for 14 h (from 19:00 PM to 9:00 AM), and

for ITT, mice were fasted for 6 h (from 9:00 AM to 15:00 PM).

Hyperinuslinemic-Euglycemic Clamp
Hyperinsulinemic-euglycemic clamp was performed as described previously (Hui et al., 2017). Briefly, mice were catheterized for

4 days before the experiment and fasted for 6 h before given a 5 mCi bolus of [3-3H] glucose at t=-90 min at the day of experiment.

[3-3H] glucose was infused at 0.05 mCi/min for 90 min. Basal glucose production was determined from blood samples at t=-10 and

0 min. The clamp began at t=0 with a continuous infusion of human insulin at 10 mU/kg/min (Humulin R, Eli Lilly) after a bolus. [3-3H]

glucose infusion was increased to 0.1mCi/min for the remaining part of the experiment and euglycemia wasmaintained bymeasuring

blood glucose every 10min from t=0min. A 10mCi bolus of 2[14C] deoxyglucose (2[14C] DG) was given at t=75min and blood samples

were taken every 10 min from t=90 min to 120 min to determine [3-3H] glucose and 2[14C] DG levels. Finally, at 120 min, mice were

sacrificed, and the soleus muscle, epididymal adipose tissue and liver were isolated and subjected to radioactivity analysis by scin-

tillation counter (Beckman Coulter). In all experiments, the accumulation of 2[14C] DG-6-phosphate was normalized to tissue weight.

Hepatic glucose production and tissue glucose uptake were calculated as described (Kraegen et al., 1985; Steele et al., 1956).

Indirect Calorimetry
Whole-body oxygen consumption of mice was measured using the comprehensive laboratory animal monitoring system (CLAMS,

Columbus Instrument) as described (Huang et al., 2017). Briefly, mice were housed singly in CLAMS cages and acclimated for

48 h before data were recorded every 18 or 22 min for another 48 h with temperature at 24�C and light on between 07:00 AM and

19:00 PM.

QUANTIFICATION AND STATISTICAL ANALYSIS

Metagenomics Analysis
Quality Control and Taxonomy Profiling

The average sequencing throughput for each sample was around 35 million reads. Human-derived reads were removed using bwa

mem against human reference genome (ucsc.hg19), while adaptors, low quality reads, bases or PCR duplicates were filtered as pre-

viously described (Li et al., 2016). After quality control and filtering, 29million reads per sample on averagewere remained and used in

downstream analyses. MetaPhlAn2 was employed for community taxonomy profiling at different taxonomic levels (Truong et al.,

2015). R package vegan was used to calculate the alpha diversity (Shannon index) in each sample based on the relative abundance

of each genus. To deduce the community diversity between samples, we used the UniFrac distance (unweighted and weighted)

calculated by Phyloseq (McMurdie and Holmes, 2013). Taxonomic variation at community level was further calculated from fold

changes between microbial relative abundance at 12-week against those at 0-week. Before deriving fold changes, the zero values

were first additively smoothed by the minimal non-zero abundance among all observed measurements. The log-transformed fold

change profiles were then used to calculate Spearman correlation-based dissimilarity measures, which were further used in

Non-metric Multidimensional Scaling Analysis to illustrate the differential variation between responders and non-responders.

Metagenomic data from mice receiving fecal microbiota transplantation were processed in the same way (except that mice-derived

reads were removed by bwamem against mouse reference genome ucsc.mm10) for better consistency during comparison between

human and mice taxonomic profiles.

Co-abundance Network Analysis

Co-abundance network analysis was conducted for samples before and after 12-week exercise respectively, using pairwise

Spearman correlations between species present in at least 60% of samples and only the significant correlations (P<0.05) larger

than 0.6 or smaller than -0.6 were used for network construction. The two networks built (before and after exercise intervention,

respectively) were merged together to facilitate direct comparison and was further visualized in R with igraph package.

De Novo Assembly and Functional Annotation

The paired end reads were assembled using IDBA-UD (Peng et al., 2012) with k-mer size ranging from 20 to 150 bp. Contigs less than

300 bps were discarded from further analysis. The proportion of total mappable reads (to the corresponding assembly at the

threshold of 95% identity) was over 72% (82% on average) for all the samples. MetaGeneMark (Zhu et al., 2010) was adopted to

predict the CoDing Sequence regions in the assembled metagenome contigs using default parameters. The functional annotation

to Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthology (KO) was performed through the combinatorial use of DIAMOND

(Buchfink et al., 2015) and KOBAS 2.0 annotate program (Xie et al., 2011). Bray-Curtis dissimilarity was used to evaluate functional

diversity between samples. Pathway abundances were estimated by summing up the abundances of all genes present in the cor-

responding pathways (KEGG accessed in Aug 2017). Differentially altered KEGG pathways were identified using Wilcoxon signed

rank test.

Strain-Level Analysis and Replication Rates

The stain-level gene content profiles were obtained by applying MIDAS (Nayfach et al., 2016) to the filtered reads with parameters

‘‘run_midas.py genes –s very-sensitive –species_cov 1’’. For each of the species with higher than 50% prevalence (i.e. present in

more than 20 samples), pairwise Jaccard distances between subjects were calculated before and after exercise intervention, based
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on strain-level gene-content profiles. For highly prevalent species, bacterial replication rates were estimated using iRep algorithm

(Brown et al., 2016) in default setting, with genome sequences from MIDAS database.

Statistical Analysis
All statistical analyseswere performedwith R software, unless otherwise stated. A power of 95%was obtained using pwr package for

this study, on the basis of 20 individuals, with paired design, 5% significance, and an estimated effect size of 0.85 for exercise in

improving glucose tolerance. Participants’ baseline characteristics and outcomes were expressed as mean ± SEM. The normal

distribution assumption was tested with Q-Q plots and variables that were non-normally distributed (BMI, fasting insulin, HOMA-

IR, Matsuda Index, triglyceride and hsCRP) were log-transformed before further analysis. The group comparison of baseline

measurements was conducted with independent Student’s t-test. Change from baseline within each group or between groups

was evaluated by repeated-measures ANOVA. Difference between groups after intervention was evaluated by ANCOVA model

controlling for the baseline measurements. The metagenomics data were not normally distributed and unless otherwise indicated,

two-tailed Wilcoxon rank-sum tests or Wilcoxon signed-rank tests were used throughout the human study, for unpaired and paired

samples respectively and adjusted by Benjamini-Hochberg correction whenmultiple comparisons was applied. Multivariate analysis

ADONIS test was performed using R vegan package for 1000 permutations. Spearman’s correlations between changes in microbial

species and improvements in clinical indices were calculated based on species present in at least 20%of samples. Benjamini-Hoch-

berg procedure with a cutoff of 0.1 was applied to all Spearman’s correlations. Partial correlations were used when adjusting for the

effect of body weight and adiposity. The profiles of fecal microbial species (MetaPhlAn2-derived relative abundances) and metab-

olomics at baseline were used to build a random forest model for predicting exercise responsiveness, with R caret package. A total of

29 differentially abundant features between responders and non-responders at baseline (P<0.1, by Wilcoxon rank-sum test),

including 14 species and 15 metabolites (Figure S6), were used for model construction, with 5-repeated 10-fold cross validation

and up-sampling strategy to account for the imbalance in the two classes (Ananthakrishnan et al., 2017). The AUC of the ROC curve

was used as the main indicator of model performance. The generalization of our random forest model was further tested in an inde-

pendent validation cohort. For animal studies, sample size was estimated from previous studies and no statistical test had been used

to predetermine the sample size. In animal studies, all analyses were performed by GraphPad Prism 7.0. Comparison between

groups was performed using ANOVA followed by Turkey’s multiple comparison tests or Student’s t-test.

DATA AND CODE AVAILABILITY

Metagenomic sequencing data for all samples have been deposited in NCBI Sequencing Read Archive under BioProject ID:

PRJNA454826.
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