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Opinion statement

Vitamin D has received widespread attention for its potential role in preventing cardio-
vascular disease (CVD) and type 2 diabetes mellitus. Several epidemiological studies
have suggested that individuals with low blood levels of vitamin D have increased risks
of heart disease, stroke, hypertension, and diabetes. Yet, the revised 2011 Institute of
Medicine report for intake of calcium and vitamin D, which was guided by skeletal
health alone, concluded that the evidence that vitamin D prevents CVD, diabetes, or
other cardiometabolic outcomes was inconsistent and inconclusive and did not meet
criteria for establishing a cause and effect relationship [1•, 2]. This finding was con-
sistent with an earlier systematic review conducted by the Agency for Healthcare Re-
search and Quality (AHRQ) in 2009 [3•]. Ongoing clinical trials seek to address the
effects of vitamin D supplementation on CVD and other nonskeletal outcomes.

Introduction
Vitamin D levels in the United States, prevalence
of Vitamin D deficiency, and current dietary
guidelines
Based on bone health, recommended dietary allowan-
ces (covering requirements of ≥97.5 % of the popula-
tion) for vitamin D are 600 IU/day for individuals
aged 1 to 70 years and 800 IU/day for those older than
70 years, corresponding to a serum 25-hydroxyvitamin
D [25(OH)D] level of 20 ng/mL or greater (≥50 nmol/
L) under conditions of minimal sun exposure [2].

Vitamin D is synthesized in the skin as a prohor-
mone in response to ultraviolet light and is also
absorbed from the gastrointestinal tract. Both sources

are activated in the liver to 25(OH)D and in the kid-
ney to 1,25-dihydroxyvitamin D [1,25(OH)2D]; the
25(OH)D level has a half-life of 2–3 weeks and is a
measure of vitamin D status [4]. Extra-renal activation
of vitamin D occurs in a number of tissues, which may
affect inflammation and innate immunity [5–9]. The
National Health and Nutrition Examination Survey
(NHANES) indicated that vitamin D “insufficiency”
exists in more than half of United States (US) mid-
dle-aged and older women [10] and more than a third
of similarly aged men [5, 11], although there has been
recent debate about what constitutes vitamin D defi-
ciency and sufficiency [12].



Despite lack of consensus on the definition and prev-
alence of vitamin D insufficiency in the US [1•, 2], some
estimates suggest nonetheless that at least one third of
middle-aged and older Americans have such insufficien-
cy [5, 13]. The elderly are particularly vulnerable, at least
in part due to reduced physical and outdoor activity [14–
19]. African-Americans are also particularly vulnerable, in
part because darkly pigmented skin is less able to synthe-
size vitaminD in response to solar radiation and because
blacks tend to have lower dietary and supplemental vita-
minD intakes thanwhites [20, 21].Obese individuals are
also at above-average risk, presumably because of de-
creased bioavailability of this fat-soluble vitamin [22–
24]. Given the aging population and rising obesity prev-
alence [25], low vitamin D status is an increasingly im-
portant public health issue.

Vitamin D and cardiovascular disease
There are gaps in knowledge in terms of understanding
the role of vitaminD in the preventionof CVD.Data from
laboratory studies, ecologic studies [26, 27], and epidemi-
ologic investigations [28–31] suggest a protective effect
for vitamin D against CVD. Mechanisms by which vita-
minDmayprevent these diseases are shown inFig. 1 [32].

The vitamin D receptor (VDR) is expressed in cells
throughout the vascular system. Many cell types, in-
cluding vascular smooth muscle cells, endothelial
cells, and cardiomyocytes, produce 1α-hydroxylase,
which converts 25(OH)D to calcitriol, the natural li-
gand of the VDR. Calcitriol has been shown to inhibit
vascular smooth muscle cell proliferation, regulate the
renin-angiotensin system, decrease coagulation, and
exhibit anti-inflammatory properties.

Observational and ecological studies
Ecological studies have suggested higher CVD mortality
during thewinter and in regionswith less solar ultraviolet
B radiation exposure. Some, but not all, observational
studies suggest an inverse association between 25(OH)
D levels and clinical CVD events. The Agency for Health-
care Research andQuality (AHRQ) report identified four
relevant observational studies. The Framingham Off-
spring Study [29] and the Health Professionals Follow-
up Study [28] found significant inverse associations be-
tween 25(OH)D levels and incident CVD events. Howev-
er, a closer look at the former study indicated that the
relationship between 25(OH)D and CVD was nonlinear
and reached a plateau between 20 and 30 ng/mL, with a
suggestion of slightly increased risk at higher 25(OH)D
levels. In addition, the Third National Health and Nutri-

tion Examination Survey (NHANES III) found no signif-
icant association between serum 25(OH)D and CVD
mortality, although persons in the lowest quartile had a
26 % increase in total mortality [33]. The NHANES III
analysis suggested a similar U-shaped relationship for
25(OH)D, with increased total mortality not only at
low (G20 ng/mL) but also at high (950 ng/mL) levels.
Other observational studies have shown mixed results
[34]. Although the observational evidence is suggestive
of increased risks associated with low levels of serum
25(OH)D, confounding by obesity and behavioral fac-
tors cannot be excluded. Although measures of serum
25(OH)D are considered usefulmarkers of vitaminD ex-
posure, correlation between these levels and health out-
comes in observational studies do not prove causation.
Possible confounders exist such as obesity (due to depo-
sition primarily in adipose tissue), sun exposure, physical
activity (correlated with time outdoors), and nutritional
status. Other factors such as ethnicity, skin pigmentation,
and medications also may affect serum 25(OH)D levels.

Randomized trials
There is a paucity of randomized controlled trials of vita-
min D and CVD events and absence of any trials with
CVD as the primary prespecified outcome [2, 3•]. A British
trial that tested 100,000 IU of vitaminD3 or placebo every
4 months (equivalent to ~833 IU/day) for up to 5 years,
with CVD as a secondary outcome, showed null results.
In a small 1-year Australian trial, vitamin D (1,000 IU/
day) added to calcium supplementation versus calcium
alone was associated with a nonsignificantly lower risk
of ischemic heart disease events and no difference in the
risk of stroke. When data from these two trials were com-
bined, the pooled relative risk (RR) for CVD was 0.90
(95%CI, 0.77–1.05) for vitaminD [34]. The recently pub-
lished Randomised Evaluation of Calcium or Vitamin D
(RECORD) trial showed no effects of vitamin D on all-
cause and vascular-disease mortality, but tested only
800 IU of vitamin D daily [35, 36].

Postmenopausal womenwere randomly assigned to a
daily combination of calcium (1,000 mg) and low-dose
vitamin D3 (400 IU) or to placebo and followed for a
mean of 7 years. It was found that the intervention did
not reduce risk for cancer, coronary heart disease, or stroke
[37, 38], but its effect on blood levels of 25(OH)D, the
major circulating vitamin D metabolite, was small. In a
pooled analysis of three trials of combination calcium
plus vitamin D versus placebo, including the Women’s
Health Initiative (WHI), the RR for CVD was 1.04
(95 % CI, 0.92–1.18) [34]. Thus, the conclusion of both
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the Institute ofMedicine (IOM)Committee [2] and recent
systematic reviews [3•, 34] was that the evidence was in-
consistent and insufficient to prove a cause and effect re-
lationship between vitamin D and CVD. Thus far, there
have been no completed prospective randomized trials
of vitamin D and incident CVD at doses adequate to pro-
duce meaningful changes in 25(OH)D levels or designed
to assess CVD as a primary prespecified outcome.

Vitamin D and CVD risk factors
There is evolving data about the possible relationship of
vitamin Dwith CVD risk factors, some of which are sum-
marized in this section. Figure 2 summarizes hypothe-
sized mechanisms underlying the interrelationships
among vitaminDdeficiency and several CVD risk factors.

Vitamin D and inflammation
Vitamin D may attenuate inflammation. VDR signaling
inhibits proliferation of T cells [39, 40] and transcription
of inflammatory cytokines [41, 42]. 1,25(OH)2D inhib-
its lymphocyte proliferation and production of antibod-
ies and lymphokines. Vitamin D may induce an
inhibitory effect of lipopolysaccharide (LPS)-driven
monokine production [43]. Combined with VDR-medi-
ated inhibition of dendritic cell maturation [44–47], vi-

tamin D in T cells suppresses T helper 1 (Th1)-driven
inflammatory responses, while promoting a Th2 regula-
tory phenotype [48]. In two cohorts, 25(OH)D levels
were inversely associated with C-reactive protein (CRP)
[49] and interleukin6 (IL6) [30, 50],while another study
found suppressionof tumor necrosis factor (TNF)-α con-
centrations [51]. Vitamin D treatment reduced disease
severity in patients with rheumatoid arthritis [52, 53],
psoriasis [54–56], and scleroderma [57]. Two trials ana-
lyzed vitamin D therapy on CRP in special populations
[58, 59] with mixed results: the first study showed no
effects on CRP or fibrinogenwith vitamin D supplemen-
tation in elderly individuals [58]. The latter showed a
50 % reduction in CRP in participants with kidney dis-
easewhen given a vitaminD analogue [59]. Clarification
of conflicting data regarding vitamin D and inflamma-
tion is needed.

Vitamin D and blood pressure
Vitamin D may affect the renin-angiotensin system [60]
and exert beneficial effects on vascular smooth muscle
cells [5, 61], the endothelium [62–66], and cardiomyo-
cytes [67]. VDR knockout mice have elevated circulating
levels of renin and angiotensin II and develop hyperten-
sion [60]. A similar phenotype occurs inmice lacking the

Figure 1. Mechanisms by which vitamin D may impact CVD. CVD cardiovascular disease; PG prostaglandin; COX-2 cyclooxyge-
nase-2; CRP C-reactive protein; IL-6 interleukin-6; IL-10 interleukin-10; TNF-α tumor necrosis factor-α; MMP-9 matrix metal-
loproteinase-9; RAAS renin-angiotensin-aldosterone system. (Adapted from Manson et al. [98•].)
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1α-hydroxylase gene [68]. Injection of mice with 1,25
(OH)2D analogues suppresses renin production in vivo
[69] and negatively regulates the expression of the angio-
tensinogen gene [70, 71]. Small human studies have
reported cross-sectional associations between vitamin D
and renin activity [72, 73]. A recent trial of vitaminD sup-
plementation showed a 14 mmHg decrease in systolic
blood pressure (SBP) in patients with type 2 diabetes
[74]. However, blood pressure findings in other random-
ized trials have been inconsistent [2, 75].

Vitamin D and insulin resistance
VitaminDdeficiency is associatedwith impaired glucose
tolerance and reduced insulin turnover and insulin sen-
sitivity [76–79]. Furthermore, vitamin D repletion
improves glucose clearance in vitamin D–deficient ani-
mals independent of other nutritional factors [76]. Hu-
man studies also support the association between
vitamin D and insulin sensitivity. Chiu et al. [80]
reported a positive correlation between 25(OH)D and
insulin sensitivity indices in healthy volunteers after
multivariate analyses that included potential covariates
of age, sex, ethnicity, body mass index, waist-hip ratio,
SBP, diastolic blood pressure, and season. Among
5,677 adults inNew Zealand, 25(OH)D levels were low-
er among individuals diagnosed with impaired glucose

tolerance compared to control patients after matching
for age, sex, and ethnicity [81]. In the Framingham Off-
spring Study, plasma 25(OH)D levels in the lowest com-
pared to highest tertile were associated with a 1.6 %
higher fasting plasma glucose, a 9.8 % higher fasting in-
sulin, and a 12.7 % higher HOMA-IR index (homeosta-
sis model assessment of insulin resistance) [82]. In a
prospective study among 524 adults, baseline 25(OH)
D levels were inversely associated with fasting insulin
and HOMA-IR 10 years later [83].

Vitamin D and type 2 diabetes
The role of calcitriol in the synthesis and secretion of in-
sulin and regulation of calcium trafficking in beta islet
cells, and its effects on insulin action, have been estab-
lished in both rodent models and cell culture [2]. Al-
though some observational studies have shown an
inverse relationship between higher vitamin D intake
or serum 25(OH)D and risk of type 2 diabetes, a system-
atic review and meta-analysis [84] with a large body of
observational evidence and six intervention studies with
vitamin D supplementation found generally neutral
results. Studies published after the IOM report [2] have
shownmixed results; therewas either a higher risk of pre-
diabetes in individuals (NHANES III) with 25(OH)D lev-
els below18ng/mL [85] or no associationbetween serum

Figure 2. Hypothesized mechanisms underlying the interrelationships among vitamin D deficiency, cardiovascular disease risk
factors such as insulin resistance, hypertension, and diabetes. 25(OH)D 25-hydroxyvitamin D; 1,25(OH)2D 1,25-dihydroxy-
cholecalciferol/calcitriol; VDR vitamin D receptor; Ca2+ calcium; PTH parathyroid hormone; IL interleukin; TNF tumor necrosis
factor; RAAS renin-angiotensin-aldosterone system; LDL low-density lipoprotein.
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25(OH)D and risk of type 2 diabetes in a Canadian pop-
ulation or in the WHI. Randomized trials of vitamin D
supplementation and risk of type 2 diabetes have had in-
consistent results. In theRECORD trial, therewasno effect
of 800 IU/day of vitamin D3 supplementation (with or
without 1,000mg of calcium carbonate) on incident dia-
betes over 2 to 5 years (fracture was the primary outcome
variable and diabetes outcomes were self-reported) [85].

In separate studies of vitamin D supplementation
with 4,000 IU/day or 120,000 IU every 2 weeks in over-
weight South Asianwomen and obesemen, respectively,
insulin sensitivity significantly improved comparedwith
placebo [86]. However, another study in overweight
adults in Germany found no relationship between vita-
min D supplementation (3,300 IU/day) with glucose
metabolism during weight loss [87]. In a post hoc anal-
ysis of a trial testing the effects of 3 years of supplemen-
tation with 700 IU of vitamin D and 500 mg of calcium
daily on bone health, individuals with impaired fasting
glucose were found to have a lower increase in fasting
glucose levels and less insulin resistance compared with
placebo controls [88]. In patients with established type 2
diabetes, vitamin D has not been shown to improve in-
sulin resistance or glucose metabolism [2]. Thus, the
overall evidence from clinical trials and observational re-
search [2, 3•, 84, 85, 89] is insufficient to establish a
causal relationship between vitamin D supplementation
and type 2 diabetes prevention.

Vitamin D and statin-induced myalgias
There is also evidence for the relationship of vitamin D
deficiency to statin myopathy [90–92]. One study [92]
reported resolution of myalgia after restoring vitamin
D levels in vitamin D–deficient individuals. The authors
speculated that patients with concurrent vitamin D defi-
ciency may reflect a reversible interaction between vita-
min D deficiency and statins on skeletal muscle. It has
been hypothesized that a potential mechanism may be

via the induction of cytochrome P450 (CYP) enzymes
by vitamin D, as vitamin D is known to activate CYP3A4
[93, 94], whichmay help in themetabolismof certain sta-
tins [95]. In addition, hydroxylated vitamin D derivatives
may also possess 3-hydroxy-3-methyl-glutaryl-Coenzme
A(HMG-CoA) reductaseactivity [96].However,data from
the Treating to New Targets (TNT) trial have suggested no
relationship between vitamin D levels and statin-induced
myalgias [97]. These data remain hypothesis-generating
andno large scale randomizeddata exist yet in this regard.

Summary
There is biological plausibility for a role of vitamin D
in the prevention of CVD and diabetes, but less so
than would be anticipated relative to the current pop-
ularity of the supplement in the US. There is currently
insufficient data to inform nutritional requirements.
No large-scale randomized trials have been completed
with CVD or diabetes as the primary prespecified out-
comes. Although the observational evidence is sugges-
tive of increased risks associated with low levels of
serum 25(OH)D, confounding by obesity and behav-
ioral factors cannot be excluded. More research is
needed to elucidate whether higher intakes of vitamin
D (between the recommended dietary allowance and
the tolerable upper intake level) or serum 25(OH)D
levels in the range of 20 to 50 ng/mL influence CVD
or diabetes risk. New randomized trials assessing the
role of supplementation with vitamin D in CVD and
type 2 diabetes prevention are in progress, such as
the V i t amin D and Omega -3 t r i a l (V ITAL ,
NCT01169259), the Vitamin D, Insulin Resistance
and Cardiovascular Disease trial (NCT00736632),
and the Vitamin D Supplementation and Metabolism
in Vitamin D Deficient Elderly trial (NCT01145703).
Because of the involvement of the authors of this
chapter in the first trial, the next section briefly
describes the design of the ongoing VITAL trial [98•].

Ongoing research
The Vitamin D and Omega-3 (VITAL) trial

VITAL is one of the ongoing trials seeking to address the role of vitamin D and
marine omega-3 fatty acids in the primary prevention of cancer and CVD. It is a
randomized, double-blind, placebo-controlled clinical trial among 20,000 US
men and women without cancer or CVD at baseline, who are selected on age
only (men aged≥50 years andwomen aged≥55 years), with an oversampling of
blacks. Blacks are at higher risk of vitaminDdeficiency and are also at higher risk
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for certain cancers (e.g., prostate cancer) [99] and cardiovascular events (e.g.,
stroke) [21], aswell asmortality fromCVD [21], so it is critical to test the effect of
vitaminD supplementation in this group. In a 2×2 factorial design, participants
will be randomized to vitamin D3 (cholecalciferol; 2,000 IU/day) with or
without marine omega-3 fatty acids (Omacor® fish oil [GlaxoSmithKline,
London, UK], EPA + DHA, 1 g/d) supplements (or placebos) independently.
The mean treatment period will be 5 years.

Intervention

With regard to the vitamin D3 dose of 2,000 IU/day, careful review of the
literature suggested that this dose provides the best balance of efficacy
and safety. We sought to obtain a large-enough difference in vitamin D
status between the treatment and placebo groups to detect benefits for
the primary end points of cancer and CVD. VITAL was designed in 2008,
when the recommended dietary intakes (RDA) set by the IOM, were
400 IU/day for adults aged 50–70 years and 600 IU/day for adults aged
over 70 years [100]. In 2011, the IOM released RDAs for these age groups
of 600 IU/day and 800 IU/day, respectively [2]. These RDAs correspond
to a serum 25(OH)D level of 50 nmol/L and are sufficient for the
maintenance of bone health in at least 97.5 % of the North American
population. Nevertheless, accumulating data suggest that vitamin D
intakes above these RDAs may be necessary for maximal health benefits.
In a review of studies of serum 25(OH)D in relation to various out-
comes, including colorectal cancer, falls, fractures, physical functioning,
and dental health, Bischoff-Ferrari et al. [101] found that advantageous
25(OH)D levels began at 75 nmol/L, and optimal levels were between
90 and 100 nmol/L. The average older individual requires an oral vita-
min D3 intake of at least 800–1,000 IU/day to achieve a serum 25(OH)D
of 75 nmol/L [102]. Among postmenopausal women in the Women’s
Health Initiative, 400 IU/day of vitamin D3 was estimated to have raised
median plasma 25(OH)D from 42.3 to only 54.1 nmol/L [37, 103]. In
addition, a study by Aloia et al. [104] showed a nonlinear dose–response
relation between serum 25(OH)D and vitamin D intake, with the rate of
increase in serum levels slowing at higher levels of intake. Extrapolation
of the Women’s Health Initiative data, along with consideration of the
Aloia et al. [104] findings, suggest that 2,000 IU of vitamin D3 would be
required to reach the postulated optimal value of 90 nmol/L in the active
vitamin D group in VITAL. The difference in achieved 25(OH)D levels
between the active treatment and placebo groups is expected to be ap-
proximately 50 nmol/L. A secondary arm will test omega-3 fatty acids on
the same outcomes.

Study design

Baseline blood samples will be collected in at least 80 % of participants
(n=16,000), with follow-up blood collection in about 6,000 partici-
pants. A summary of the study design is provided in Fig. 3 (adapted from
Manson et al. [98•]).
Follow-up questionnaires every 6 months will assess treatment compli-
ance (plasma biomarker measures also will assess compliance in a ran-
dom sample of participants), use of nonstudy drugs or supplements,

Vitamin D and Cardiovascular Disease Danik and Manson 419



occurrence of end points, and cancer and vascular risk factors. End points
will be confirmed by medical record review by a committee of physicians
blinded to treatment assignment and deaths will be ascertained through
the National Death Index-Plus and other sources. Ancillary studies, in-
cluding clinic visits for in-depth phenotyping of 1,000 participants, will
make use of the randomized design to investigate whether these agents
affect risk for diabetes and glucose intolerance; hypertension; cognitive
decline; depression; osteoporosis and fracture; physical disability and
falls; asthma and other respiratory diseases; infections; and rheumatoid
arthritis, systemic lupus erythematosus, thyroid diseases, and other au-
toimmune disorders, among others.

Conclusions

Despite biological plausibility for a role of vitamin D in the prevention of
CVD and diabetes, randomized trial data need to be completed before there
is sufficient data to inform nutritional requirements. Other emerging hy-
potheses such as the potential relationship between circulating vitamin D
levels and statin-induced myalgias require further corroboration.
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