
Articles
https://doi.org/10.1038/s42255-020-0178-9

1Québec Heart and Lung Research Institute, Laval University, Québec, Québec, Canada. 2Department of Biochemistry and Biomedical Sciences,  
Farncombe Family Digestive Health Research Institute and Centre for Metabolism Obesity and Diabetes Research, McMaster University, Hamilton, 
Ontario, Canada. 3Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 
Copenhagen, Denmark. 4Vaiomer, Labège, France. 5These authors contributed equally: Fernando F. Anhê, Benjamin Anderschou Holbech Jensen.  
✉e-mail: andre.marette@criucpq.ulaval.ca

T2D is highly prevalent and has an increasing incidence 
worldwide, which compromises life and health span and 
exerts enormous pressure on health systems1,2. Visceral 

obesity is a major risk factor for T2D as well as for impaired gly-
caemic control (that is, glucose intolerance or prediabetes) that 
precedes overt T2D2,3. Prediabetes is characterised by high blood 
insulin, low-grade inflammation, insulin resistance, and elevated 
fasting or postprandial blood glucose. The latter increases the risk 
of all-cause mortality2,3. However, the key driving elements that 
connect visceral fat accumulation to prediabetes and overt T2D  
are ill-defined.

The gut microbiota is recognised as a major environmental 
determinant of obesity and T2D, and gut dysbiosis plays a central 
role in the development of chronic low-grade inflammation and in 
the pathogenesis of insulin resistance4–8. Gut bacteria and their frag-
ments have been shown to translocate beyond the intestinal barrier, 
colonise and/or accumulate in the blood and extra-intestinal tis-
sues9,10, and trigger immunogenic pathways that can affect glucose 
homeostasis and other cardiometabolic outcomes11–13. Bacterial cell 
wall components, such as peptidoglycans and lipopolysaccharides 
(LPS), have been shown to alter immune and glucose homeostasis 
in both detrimental14–16 and beneficial17–19 ways, which suggests that 
bacterial translocation exerts a complex modulatory role in host 
metabolism. The way in which different body compartments accu-
mulate bacterial fragments, or allow selective bacterial colonisation, 
remains elusive. An understanding of microbial signatures of obe-
sity or T2D may reveal mechanisms of the chronic and compart-
mentalised inflammation that occurs during these diseases.

Although blood and tissue microbial profiles have been 
reported9,10, their inter-organ signatures and relationship with pre-
diabetes, glucose intolerance and T2D remain to be determined. 
In the present study we provide a comparative and contamination-
aware analysis of the microbial profile found in plasma, liver and in 
three different adipose tissue depots (that is, omental, mesenteric 
and subcutaneous) of individuals with obesity. We determined the 
tissue microbial profiles in participants who are obese and nor-
moglycaemic or obese and type 2 diabetetic. We found that T2D  
status dictated an extra-intestinal microbial signature, independent 
of obesity.

Results
Bacterial DNA abundance varies across different tissues in 
obese individuals. Biopsy samples from liver, mesenteric adipose 
tissue (MAT), omental adipose tissue (OAT), subcutaneous adi-
opse tissue (SAT) and plasma samples were collected from indi-
viduals with severe obesity during bariatric surgery procedures. 
Samples were processed along with a comprehensive set of nega-
tive controls and were used for 16S ribosomal RNA-based bacte-
rial quantification and taxonomic profiling (Fig. 1). Participants 
were 42 ± 9 years old and their average body mass index (BMI) 
was 50.5 kg m−2 (Table 1). Several patients presented some degree 
of liver steatosis (34.4% ± 28.1% steatosis) and dyslipidaemia, as 
revealed by circulating triglyceride levels (1.9 ± 0.75 mmol l−1) as 
well as total lipoprotein (4.5 ± 0.8 mmol l−1), high-density lipo-
protein (HDL) (1.2 ± 0.3 mmol l−1), and low-density lipoprotein 
(LDL) (2.5 ± 0.8 mmol l−1) cholesterol levels (Table 1). Mean fasting  
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blood glucose and glycated haemoglobin (HbA1c) levels were 
8.1 ± 3.7 mmol l−1 and 6.8 ± 1.6 %, respectively. Stratification 
according to diabetic status is presented in Table 1.

We found a similar number of 16S rRNA gene copies in both 
MAT and SAT. Conversely, 16S rRNA was found to be consider-
ably more abundant in the liver than in any other tissue, except for 
OAT (Fig. 2a). The 16S rRNA gene count was approximately 1,000-
fold higher in tissue samples than in negative controls, which sug-
gests that sample contamination would have been of low impact in 
these determinations. In plasma samples, however, the 16S rRNA 
gene count was closer to that which was found in negative controls  
(Fig. 2a). Lower 16S rRNA gene counts in plasma, as compared 
to whole blood and buffy coat samples, have been reported previ-
ously9. Our findings should therefore be interpreted with caution, 
and qualitative assessment of 16S rRNA sequences in plasma should 
be validated against negative controls on a case-by-case basis20,21. 
Overall, these data suggest tissue-specific bacterial compartmen-
talisation with preferential deposition of bacterial fragments and/
or bacterial colonisation in the liver and OAT, two major organs 
involved in metabolic control.

Metabolic tissues display specific bacterial DNA signatures. 
We next assessed, by 16S rRNA gene-based sequencing, bacte-
rial profiles in the plasma, hepatic, and adipose tissues of partici-
pants with obesity. Higher number of operational taxonomic units 
(OTUs) were found in the MAT as compared to liver and plasma 
(Fig. 2b). These differences, however, were lost when alpha diversity 
accounted for evenness (Fig. 2c).

To assess overall tissue-specific clustering of 16S rRNA sequences 
(beta diversity), we calculated generalised UniFrac distances, iden-
tified the dimensions that better explained variance and plotted 
on principal coordinate analysis (PCoA) scatterplots. A small, yet 
significant, tissue-specific clustering was displayed by 16S rRNA 
sequences and 14% of the variation was explained by PCoA1, which 
mainly accounted for the differences between MAT and the other 
tissues; tissue-specific clustering among liver, OAT, SAT and plasma 
explained 6.5% of the observed variation (Fig. 2d).

Analysis at phylum level revealed a dominance of Proteobacteria 
in the five tissues under study, followed by Firmicutes, Actinobacteria 
and Bacteroidetes (Fig. 2e). The MAT exhibited a more distinct 
bacterial profile at phylum level, marked by a higher presence of 

Fig. 1 | Workflow overview. Liver, three different adipose tissue depots (OAT, MAT and SAT) and plasma samples were collected from individuals with 
morbid obesity who had T2D (n = 20) and from those who had normoglycaemia (n = 20). DNA extraction and amplification procedures were carried out 
using optimised conditions for bacterial DNA detection in blood plasma and tissues. A comprehensive set of negative controls was tested to control for 
environmental sample contamination at major steps in the analysis: tissue collection, tissue manipulation, and DNA extraction and amplification. During 
tissue collection, tubes were kept open next to the operation field throughout the entire procedure (air–liver, air–OAT, and air–SAT). Contamination coming 
from tissue manipulation was controlled by another set of tubes that were kept open next to the operator throughout blood centrifugation and plasma 
collection (air–laboratory) as well as during tissue aliquoting (air–biobank). The chopping board used to aliquot tissues was sampled prior to tissue 
manipulation (swab–biobank). Water samples were used to control for labware, reagent and/or environmental contamination during DNA extraction  
(ext–water) and amplification steps for tissue 16S rRNA quantification by quantitative PCR (qPCR–water). After thorough validation of negative controls 
on a case-by-case basis, 16S quantification and sequencing data were used in the discovery of tissue-specific bacterial signatures linked to T2D.
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Bacteroidetes as compared to liver and SAT. This phylum also 
trended higher in the MAT versus OAT and MAT versus plasma 
comparisons (Fig. 2e). The MAT displayed a tendency towards 
lower relative abundance of Proteobacteria and significantly lower 
relative abundance of Actinobacteria when compared to the liver. 
Overall, these results indicate the presence of tissue-specific bac-
terial compartmentalisation with more pronounced differences in 
taxonomy found in the MAT.

To identify tissue-specific bacterial signatures at genus level, 
we first filtered all taxa that were not present in at least 20% of 
samples within each tissue and found 84 genera distributed across 
the five body sites under investigation (Extended Data Fig. 1). We 
next used the ALDEx2 software package to extract the genera with 
higher likelihood to constitute tissue-specific signatures and tested 
their specificity using a Kruskal–Wallis test with Dunn’s pairwise 
comparison followed by Bonferroni–Holm adjustment. Because no 
qualitative differences were observed among all groups of negative 
controls (Fig. 2b,c and Extended Data Fig. 2) we condensed them 
into a single group in the subsequent analyses.

Pseudomonas was the predominant genus that was found across 
all tissues. This group includes soil and water bacteria as well as 
potential human pathogens. We found a significantly higher relative 
abundance of Pseudomonas in tissues as compared to plasma and 
negative controls, but not between the latter two samples (Fig. 3a). 
Furthermore, we observed a preferential compartmentalisation of 
Arthrobacter and Ruminococcus in the liver (Fig. 3b,c). Arthrobacter 
is a genus of bacteria that is normally found in soil and water, whereas 
Ruminococcus is a known member of the human gut microbiota.  

Levels of Arthrobacter and Ruminococcus in negative control sam-
ples were significantly lower than those in liver samples, which indi-
cates a low incidence of environmental sample contamination.

Eight genera showed preferential compartmentalisation in adi-
pose tissues. Bacteroides showed a pronounced preference to MAT 
depots (Fig. 3d), whereas Faecalibacterium displayed a higher pro-
portion in the MAT versus SAT and MAT versus plasma, but not in 
the MAT versus liver and MAT versus OAT comparisons (Fig. 3e). 
Furthermore, Enterobacter showed higher deposition in the OAT 
and SAT (Fig. 3f). Bacteroides, Faecalibacterium and Enterobacter 
are probably dispersed from the gut microbiota, whereas OAT and 
SAT also showed higher presence of the following groups of envi-
ronmental bacteria: Burkholderia, Corynebacterium and Kluyvera 
(Fig. 3g–i). Moreover, the environmental bacterial genus Paracoccus 
showed a preferential distribution in the SAT (Fig. 3j), whereas 
Acinetobacter, another soil and water inhabitant, showed a similar 
distribution in all adipose tissues (Fig. 3k). All taxa with preferen-
tial compartmentalisation in adipose tissues displayed significantly 
higher relative abundance in tissue samples than in negative control 
samples, which corroborates the indication of low interference from 
sample contamination (Fig. 3d–k). This is also supported by at least 
a 1,000-fold increase in 16S rRNA gene copy number between tis-
sues and negative controls (Fig. 2a).

We identified several genera with specific compartmentalisa-
tion in plasma. Of these, Rhodoferax and Polaromonas were the 
only genera that were statistically more abundant in plasma than 
in negative control samples (Fig. 3l,m). Legionella, Escherichia–
Shigella, Flavobacterium, Mucilaginibacter, and Pedobacter all 

Table 1 | Sample characteristics

Cohort Non-diabetic Diabetic

Mean s.d. Mean s.d. Mean s.d. P value q value

Sample size 40 20 20

Men 10 5 5

Women 30 15 15

Age 42 9 41 9 42 9 0.5418a 0.90189

Weight (kg) 140 26 139 24 141 29 0.8403a 0.90899

Height (cm) 166 8 166 7 166 9 0.9680a 0.90899

BMI 50.5 8.4 50.2 7.9 50.9 9.1 0.8150b 0.90899

Waist circumference (cm) 139.6 14.5 136.5 12.6 142.8 15.8 0.1695a 0.51359

Hip circumference (cm) 148.4 15.6 149.6 15.2 147.2 16.2 0.4731b 0.90189

Waist–hip ratio 0.9 0.1 0.92 0.09 0.97 0.07 0.0504a 0.22907

Steatosis (%) 34.4 28.1 34.0 29.4 34.8 27.5 0.9307b 0.90899

Steatosis grade 1.5 0.9 1.5 0.9 1.5 0.9 0.9158b 0.90899

HbA1c (%) 6.8 1.6 5.5 0.4 8.1 1.2 <0.0001b 0.00091

Fasting glucose (mmol l−1) 8.1 3.7 5.3 0.5 10.9 3.5 <0.0001b 0.00091

Total cholesterol (mmol l−1) 4.5 0.8 4.7 0.8 4.3 0.8 0.0893a 0.32469

HDL cholesterol (mmol l−1) 1.2 0.3 1.2 0.2 1.1 0.3 0.6140a 0.90899

LDL cholesterol (mmol l−1) 2.5 0.8 2.8 0.7 2.2 0.7 0.0160a 0.09696

Triglycerides (mmol l−1) 1.9 0.9 1.7 0.7 2.1 1.1 0.3870b 0.87946

Total_chol to HDL_chol ratio 4.1 1.2 4.3 1.4 3.9 0.9 0.5457b 0.90189

AST (U l−1) 35.1 21.9 36.5 25.6 33.7 17.9 0.6585b 0.90899

ALT (U l−1) 27.1 13.0 27.8 12.7 26.4 13.9 0.8622b 0.90899

NASH 1.4 1.0 1.4 1.0 1.4 0.9 >0.9999b 0.90899

Fibrosis 0.8 0.9 0.6 0.6 1.0 1.0 0.2968b 0.77083
aUnpaired two-sided t-test, for comparisons that passed Shapiro–Wilk normality test bMann–Whitney two-sided U test, for comparisons that did not pass the Shapiro–Wilk normality test Two-stage linear 
step-up procedure of Benjamini, Krieger and Yekutieli, with q < 1%. n = 20 per group, except for alanine aminotransaminase (ALT) and aspartate aminotransaminase (AST) for which diabetic, n = 12 and 
non-diabetic, n = 13. NASH, nonalcoholic steatohepatitis.
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Fig. 2 | Bacterial distribution across body sites. a, 16S rRNA gene counts. b, Observed OTUs. c, Shannon index in the liver, three different adipose tissue depots 
(OAT, MAT and SAT) and plasma of participants with obesity. Negative controls were tested to control for environmental sample contamination at major 
steps in the analysis: tissue collection (air–liver, air–OAT, air–SAT), tissue manipulation (air–laboratory, air–biobank and swab–biobank) and DNA extraction 
or amplification (ext–water, qPCR–water). In panels a–c and e, groups were compared using a Kruskal–Wallis one-way ANOVA followed by Dunn’s test for 
pairwise comparison and P value adjustment using the Bonferroni–Holm method. Box plots depict the first and the third quartile with the median represented by 
a vertical line within the box; the whiskers extend from the first and third quartiles to the highest and lowest observation, respectively, not exceeding 1.5 × IQR. 
d, PCoA on generalised UniFrac distances. PERMANOVA, with subsequent Bonferroni–Holm P value adjustment, was used to assign statistical significance 
to the differences between clusters of 16S rRNA sequences. e, Phylum distribution in different tissues: Bonferroni–Holm adjusted P values are shown only for 
phyla that passed the analysis of variance (Kruskal–Wallis) test. The numbers of independent biological samples analysed in panel a were: liver (n = 39), MAT 
(n = 40), OAT (n = 40), SAT (n = 40), plasma (n = 39), air–liver (n = 3), air–OAT (n = 2) and air–SAT (n = 3), and in panels b and c were: liver (n = 40), MAT 
(n = 40), OAT (n = 39), SAT (n = 39), plasma (n = 39), air–liver (n = 3), air–OAT (n = 2) and air–SAT (n = 3). In panels d and e the numbers of independent 
biological replicates tested were: liver (n = 40), MAT (n = 40), OAT (n = 39), SAT (n = 39) and plasma (n = 39).The numbers of technical replicates tested in 
panels a–c were: air–laboratory (n = 3), air–biobank (n = 3), swab–biobank (n = 3), ext–water (n = 6) and qPCR–water (n = 3). Each circle represents a sample. All 
statistical tests were two-sided, and differences were considered to be statistically significant at P < 0.05.
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Fig. 3 | Tissue-specific bacterial signatures. Taxa that were not present in at least 20% of samples within each tissue were removed from analysis. 
ALDEx2 was used to extract the genera with higher likelihood to constitute tissue-specific signatures. a–u, The relative abundance of each genus was then 
compared between different tissue depots (liver, OAT, MAT, SAT and plasma) of obese individuals and negative controls (NC) by using a Kruskal–Wallis 
test with Dunn’s pairwise comparison followed by Bonferroni–Holm adjustment. Box plots depict the first and the third quartile of relative abundances 
with the median represented by a vertical line within the box; the whiskers extend from the first and third quartiles to the highest and lowest observation, 
respectively, not exceeding 1.5 × IQR. The numbers of independent biological replicates tested were: liver (n = 39), MAT (n = 40), OAT (n = 40), SAT 
(n = 40), plasma (n = 39) and NC (n = 23). Adjusted P values for pairwise comparison are shown below each plot. Each circle represents a sample. All 
statistical tests were two-sided, and differences were considered to be statistically significant at P < 0.05.
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showed relative abundance in plasma comparable to that in negative 
controls (Fig. 3n–r), which suggests that signatures that are found 
in plasma should be taken with more caution than those obtained 
from tissues. We observed some degree of variation in the pres-
ence of Streptococcus, Sphingomonas, and Massilia across body sites. 
However, pairwise comparisons did not indicate significant tissue-
specificity for these taxa (Fig. 3s–u).

Tissue-specific taxa differ between individuals with and without 
type 2 diabetes independently of obesity. Individuals were subse-
quently assigned to groups according to their fasting blood glucose 
values. The anthropometric and metabolic parameters of individu-
als with T2D and individuals without diabetes (non-diabetic, ND) 
are presented in Table 1. No differences in body features and mark-
ers of dyslipidaemia were found among groups, whereas individuals 
with T2D presented significantly higher fasting blood glucose and 
glycated haemoglobin levels as compared to individuals without 
diabetes (Table 1).

No differences in 16S rRNA gene counts were found within 
each tissue when comparing participants with T2D versus par-
ticipants without diabetes (Fig. 4a). However, we identified a 
numerical increase in observed OTUs in the MAT of individuals 
without diabetes versus that of patients with T2D (Fig. 4b), which 
became significant when evenness was considered (by means of 
the Shannon diversity index), and which supports the existence of 
a more evenly distributed microbiota in the MAT of individuals 
without diabetes than in patients with T2D (Fig. 4c). These data 
point towards bacterial diversity in the MAT being linked to better 
blood glucose control, which might mirror higher bacterial diver-
sity in the gut microbiota of individuals without diabetes, as has 
been reported previously22.

We next analysed beta diversity across different body sites of 
patients with T2D versus individuals without diabetes. PCoA 
analysis on generalised UniFrac distances revealed no diabe-
tes state-driven clustering across different tissues (Fig. 4d–h). 
We applied linear discriminant analysis effect size (LEfSe) to 
explore the taxa that better discriminated bacterial popula-
tions within each body site and between disease states. Most 
taxa that were shown to significantly discriminate between 
patients with T2D and individuals without diabetes were found 
in the MAT (Fig. 4j). Although the MAT of individuals with 
T2D showed higher levels of Enterobacteriaceae, it showed lower 
abundance of certain Firmicutes (that is, Faecalibacterium and 
Romboutsia), Bacteroidetes (that is, Odoribacter and Alistipes) 
and Deltaproteobacteria (that is, Bilophila) than did the MAT of 
individuals without diabetes (Fig. 4j). Our findings corroborate 
previous reports that link the family Enterobacteriaceae to poor 
glycaemic control23,24 and Faecalibacterium22,24,25, Odoribacter26 and 
Alistipes22,24,27 to leanness and positive metabolic outcomes, which 
suggests that these taxa can find a niche in the MAT to modulate 
glucose homeostasis in the host. Bilophila is a genus that contains 
bile acid-resistant bacteria that are generally linked to obesity28; 
however, its effect on blood glucose regulation without the con-
founding factor of obesity is largely unknown. Our data suggest 
that compartmentalisation of certain Bilophila species in the MAT 
may positively contribute to blood glucose control independently 
of obesity. Two families of water and soil bacteria, Marinifilaceae 
and Xanthobacteriaceae, were enriched in the MAT of individuals 
without diabetes (Fig. 4j), which suggests that environmental bac-
teria—and/or their fragments—that are present in food and water 
can accumulate in the MAT and may affect blood glucose regu-
lation. This observation is well-aligned with a recent report that 
investigated the positive impact on gut immunity and host metabo-
lism of a related environmental bacterium29.

We identified some bacteria that are commonly found in water 
and soil and that have distinct distributions in the liver, OAT 

and SAT of patients with T2D and individuals without diabetes. 
Aquabacterium and Moraxellaceae were enriched in the liver of 
patients with T2D and individuals without diabetes, respectively 
(Fig. 4i). The OAT of individuals without diabetes showed higher 
levels of Arthrobacter and Burkholderiaceae (Fig. 4k). In the 
SAT, Sphingomonas were enriched in patients with T2D, whereas 
Caulobacter and bacteria of the family 67–14 were more abundant 
in samples from individuals without diabetes (Fig. 4l).

In the plasma of patients with T2D, we found a more pro-
nounced deposition of two genera from the Enterobacteriaceae 
family—Escherichia–Shigella and Serratia—as well as a higher 
presence of Neisseriaceae than was found in individuals without 
diabetes (Fig. 4m). These findings are in line with higher levels 
of Enterobacteriaceae being a strong predictor of higher glycae-
mic load after a meal23. Furthermore, Escherichia–Shigella has 
been linked to insulin resistance8 and has been shown to be the 
sole taxon that is enriched in patients with T2D when account-
ing for the confounding factors of obesity and glucose-lowering 
treatments24. Our findings add to this previous knowledge as they 
show that live and/or fragmented Escherichia–Shigella, as well as 
other Enterobacteriaceae, can access and build up in the circu-
latory compartment potentially affecting glucose homeostasis. 
Although these three taxa showed similar relative abundances in 
plasma and negative controls (Extended Data Fig. 3i), when fac-
toring in 16S rRNA gene counts Escherichia–Shigella, Serratia 
as well as their family Enterobacteriaceae showed higher counts 
than were observed in negative controls (P = 0.06; Extended 
Data Fig. 3j). Although this suggests that sample contamination 
may have accounted for some 16S rRNA sequences having been 
annotated as Escherichia–Shigella, Serratia and potentially other 
Enterobacteriaceae, disease-specific signatures for these taxa that 
are identified in plasma strongly point to a credible biological phe-
nomenon (Extended Data Fig. 3p–r).

Discussion
Bacterial translocation and tissue deposition are subjects of intense 
debate20, with environmental and processing contamination known 
to constitute a potential confounding factor30–32. Here, we included 
extensive sets of controls at each tissue and sequencing manipulation 
step, from operating room to biobanking, exposure to laboratory 
air and 16S rRNA gene sequencing, followed by rigorous statisti-
cal testing to mitigate the risk of reporting false-positive results. 
We provide evidence of compartmentalised bacterial colonisation 
and/or fragment deposition in extra-intestinal tissues, with higher 
16S rRNA gene counts found in the liver and OAT, as compared to 
those found in the MAT, SAT and plasma of individuals with mor-
bid obesity. In addition, tissue-specific bacterial signatures revealed 
a more pronounced relative abundance of gut colonisers in the 
MAT. This profile is consistent with the anatomical route followed 
by bacteria through the gut–liver axis and with translocation of gut 
bacteria past the intestinal barrier to the neighbouring adipose tis-
sue in the mesentery, which is extensively patrolled by gut-residing  
immune cells33.

In agreement with previous reports, our results show that the 
relative abundance of taxa in the tissues is potentially confounded 
by sample contamination in a taxon-specific manner and should be 
analysed on a case-by-case basis20. It is important to stress that rela-
tive abundance does not account for the absolute quantity of taxa. 
This is particularly relevant when negative controls are compared to 
other tissues, as the latter showed approximately 1,000 times more 
copies of the 16S rRNA gene than the former (Fig. 2a). For this rea-
son, sample contamination is potentially a more important issue 
for plasma samples in our data set. However, as shown by rigorous 
statistical tests, tissue-specific, as well as diabetes state-specific, bac-
terial deposition—even in plasma—is not random, and contami-
nation would be unlikely to favour one tissue or disease state over 
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Fig. 4 | Tissue bacterial profile in participants with normoglycaemia or type 2 diabetes. a–c, 16S rRNA gene counts (a), observed OTUs (b) and Shannon 
index (c) within different tissues of patients with T2D and individuals without diabetes (ND). In panels a–c, groups were compared using a Kruskal–Wallis 
one-way ANOVA followed by Dunn’s test for pairwise comparison and P value adjustment using the Bonferroni–Holm method. Box plots depict the first 
and the third quartile with the median represented by a vertical line within the box; the whiskers extend from the first and third quartiles to the highest and 
lowest observation, respectively, not exceeding 1.5 × IQR. d–h, PCoA on generalised UniFrac distances found within tissues and between disease states 
(T2D versus ND). PERMANOVA, with subsequent Bonferroni–Holm P value adjustment, was used to assign statistical significance to the differences 
between clusters of 16S rRNA sequences depicted in each panel. LEfSe effect size was used to calculate the taxa that better discriminated between 
disease states and within tissue, and these were plotted in cladograms (i–m). The numbers of independent biological replicates tested were: panel a, liver 
T2D (n = 19), liver ND (n = 20), MAT T2D (n = 20), MAT ND (n = 20), OAT T2D (n = 20), OAT ND (n = 20), SAT T2D (n = 20), SAT ND (n = 20), plasma 
T2D (n = 19) and plasma ND (n = 20); panels b–m, liver T2D (n = 20), liver ND (n = 20), MAT T2D (n = 20), MAT ND (n = 20), OAT T2D (n = 19), OAT 
ND (n = 20), SAT T2D (n = 19), SAT ND (n = 20), plasma T2D (n = 19) and plasma ND (n = 20). Each square, circle and triangle represents a sample. All 
statistical tests were two-sided, and differences were considered to be statistically significant at P < 0.05.
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another. In fact, diabetes state-driven bacterial deposition in plasma 
was found to be significantly lower than that of negative controls 
when data were corrected by 16S rRNA gene load, which further 
supports the biological relevance of our findings. Furthermore, 
Escherichia–Shigella was shown to be enriched in the plasma of 
patients with diabetes, which is in agreement with several previ-
ous studies that reported higher levels of Escherichia–Shigella in the  
faeces of individuals with dysglycaemia8,23,24.

Our results find support in previous studies that report bacte-
rial colonisation in blood and tissues in healthy and disease sta
tes9,10,12,13, and further suggest that environmental bacteria, which 
are likely to be present in food and water, may cross the gut bar-
rier to accumulate in the blood and organs. Most environmental 
bacteria that are increasingly found to be present in patients with 
T2D can be linked to widespread nosocomial infections that are 
often distributed via hospital water supplies. Because patients 
with diabetes are usually more frequently hospitalised than their 
counterparts without diabetes, they are at greater risk of con-
tracting infections and therefore may acquire part of their tissue 
microbiota during such visits. Hyperglycaemia decreases barrier 
function34 and individuals with T2D may therefore represent a 
particularly vulnerable group who may be susceptible to transloca-
tion of ingested bacteria. We also reason that environmental bac-
teria may by-pass the immunological filter in the gut more easily 
than gut commensals, as the latter contribute to the maturation of 
immune responses in the host from early life. It is also possible that 
enteric immune cells that reside in the lamina propria may enable 
processed bacteria sampled from the lumen to initiate immune 
responses, which may also contribute to the entrance of bacteria 
(and/or their components) into the system and, which presum-
ably, and more importantly, may affect bacterial deposition in the 
MAT. Altered immunity35 and gut microbial dysbiosis are typical 
obesity-related traits that act in concert to produce compartmen-
talised responses that ultimately dictate metabolic outcomes in the 
host36,37. These findings support the hypothesis that environmental 
bacteria can reach specific niches at various body sites and poten-
tially influence glycaemic control. However, we acknowledge that 
we cannot fully exclude the presence of spurious contamination 
from environmental taxa, especially in plasma samples, despite the 
rigorous methodological and statistical approaches used here. For 
this reason, more studies are warranted to confirm the biological 
relevance of these findings.

We cannot determine whether the identified 16S rRNA 
gene sequences came from live, senescent or fragmented bacte-
ria. Schierwagen et  al. were able to cultivate Staphylococcus and 
Acinetobacter (a group of environmental bacteria) using blood sam-
ples, which matched their findings by 16S rRNA gene sequencing 
and is in line with the numerous studies that identify living bacteria 
in the blood of healthy individuals by culture methods and micros-
copy38. However, given the chemical and mechanical stress that is 
inherent to digestion, and the fact that these patients did not display 
sepsis or any sign of bacterial infection, we speculate that the major-
ity of the 16S rRNA sequences annotated in this study were from 
fragmented bacteria, which would facilitate translocation past the 
leaky gut barrier of participants with obesity.

In summary, we have provided contamination-aware evidence 
for distinct microbial signatures in multiple body sites of the same 
individual and found tissue- as well as T2D-specific bacterial com-
partmentalisation in individuals that are morbidly obese but are 
matched for BMI. Further studies are warranted to identify physio-
logical traits that predispose to bacterial translocation and to inves-
tigate to what extent live bacteria or bacterial components that are 
found in metabolically relevant tissues promote or respond to T2D 
status. It would be of major interest to identify bacteria or bacte-
rial components that preserve glucose regulation in individuals with 
both normoglycaemia and morbid obesity.

Methods
Participants. Tissue samples were obtained from the biobank of the Institut 
Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval 
(IUCPQ) according to institutionally approved management procedures. Ethical 
approval was granted by the Canadian Institute of Health and Research, policy no. 
2017-2746 21386. All participants provided written informed consent. Biological 
samples were harvested from a right flank trocar incision (SAT), greater omentum 
(OAT) and mesentery from transverse colon (MAT), in addition to blood and 
liver biopsies. All samples were harvested at the beginning of the surgery under 
aseptic conditions. Upon sampling, specimens were immediately flash frozen in 
the operating room and were subsequently stored at −80 °C. Patients received 
antibiotic prophylaxis at the time of anaesthesia induction (2 g of IV cefazolin 
for patients between 80 and 120 kg and 3 g for patients above 120 kg). The cohort 
included 10 men and 30 women, which reflects the proportion of each sex in the 
IUCPQ bariatric practice. A total of n = 20 participants (5 men and 15 women) 
had normal glucose tolerance described by a HbA1c below 5.7% or fasting plasma 
glucose below 6.1 mM, whereas n = 20 participants (5 men and 15 women) had 
T2D, with fasting plasma glucose above 7.0 mM or HbA1c ≥ 6.5 %. These groups 
were matched for key metabolic biometrics (Table 1).

Waist and hip circumferences were measured at the umbilical and upper thigh 
level, respectively. Cholesterol and triglyceride levels were measured using an 
automated enzymatic method in both plasma and HDL, which were obtained by 
precipitation of apolipoprotein B-containing lipoproteins. LDL cholesterol levels 
were calculated. Plasma glucose level was measured by the hexokinase method 
(Gluco-quant Glucose HK in haemolysate on Roche automated clinical chemistry 
analysers, Roche Diagnostics). HbA1c level was measured in fasting whole blood 
samples obtained prior to surgery using the Tina-quant 2nd generation assay on 
the Cobas Integra 400 plus automated analyser (Roche Diagnostics). ALT and 
AST were measured by standard procedures using a Dimension Vista system, Flex 
reagent cartridge (Siemens). Steatohepatitis grading and staging was performed 
from liver slides stained with haematoxylin and eosin, periodic acid–Schiff–
diastase and Masson's trichrome according to the classification proposed by 
Brunt et al.39. All individuals received medications as illustrated in Supplementary 
Table 1. To mitigate experimental confounders from treatment-mediated traits 
in microbial profiles40, individuals were further selected on the basis of diverse 
medical use.

DNA extraction. DNA was extracted from plasma (200 µl), liver (28–78 mg 
depending on the sample), MAT (46–103 mg), OAT (28–85 mg) and SAT (45–
157 mg) using an optimised blood and tissue-specific technique that was carefully 
designed to minimise any risk of contamination between samples or from the 
experimenters. DNA was extracted using a Silica based column after three rounds 
of mechanical lysis for 30 s at 30 Hz in a bead beater (TissueLyser, Qiagen) with 
0.1 mm glass beads (MoBio, Qiagen) to increase the yield of bacterial DNA. Total 
genomic DNA was collected in 50 µl of molecular grade water. The quality and 
quantity of extracted DNA were monitored by gel electrophoresis (1% w/w agarose 
in 0.5× TBE buffer) and NanoDrop 2000 UV spectrophotometer (Thermo Fisher 
Scientific). All DNA extracts were stored at −20 °C until further processing.

Bacterial quantification by quantitative PCR. Real-time PCR amplification 
was performed using 16S universal primers that target the V3–V4 region of the 
bacterial 16S ribosomal gene: primers EUBF 5′-TCCTACGGGAGGCAGCAGT-3′ 
and EUBR 5′-GGACTACCAGGGTATCTAATCCTGTT-3′. The qPCR step 
was performed in triplicate on a VIIA 7 PCR system (Life Technologies) using 
SYBR Green technology and the specificity of all qPCR products was assessed by 
systematic analysis of a post-PCR dissociation curve performed between 60 °C 
and 95 °C. The absolute number of copies of the 16S rRNA gene was determined 
by comparison with a quantitative standard curve generated by serial dilution of 
plasmid standards. Total 16S rRNA gene count was normalised by mg of tissue  
or ml of plasma.

16S rRNA gene-based analysis. The V3–V4 hypervariable regions of the 
16S rRNA gene (467 bp on the Escherichia coli reference genome) were 
amplified from the DNA extracts during the first PCR step using universal 
primer Vaiomer 1F (CTTTCCCTACACGACGCTCTTCCGATCT–
TCCTACGGGAGGCAGCAGT, partial P5 adapter–primer) and universal 
primer Vaiomer 1R (GGAGTTCAGACGTGTGCTCTTCCGATCT–
GGACTACCAGGGTATCTAATCCTGTT, partial P7 adapter–primer), which are 
fusion primers based on the qPCR primers. The first PCR reaction was carried out 
on a Veriti Thermal Cycler (Life Technologies) as follows: an initial denaturation 
step (94 °C for 10 min), 35 cycles of amplification (94 °C for 1 min, 68 °C for 1 min 
and 72 °C for 1 min) and a final elongation step at 72 °C for 10 min. Amplicons 
were then purified using the magnetic beads Agencourt AMPure XP for PCR 
Purification (Beckman Coulter).

Sample multiplexing was performed using tailor-made 6-bp unique 
index sequences, which were added during the second PCR step at 
the same time as the second part of the P5 or P7 adapters used for the 
sequencing step on the MiSeq flow cells with the forward primer Vaiomer 2F 
(AATGATACGGCGACCACCGAGATCTACACT–CTTTCCCTACACGAC, 

Nature Metabolism | www.nature.com/natmetab

http://www.nature.com/natmetab


ArticlesNature Metabolism

partial P5 adapter–primer targeting primer 1F) and reverse primer 
Vaiomer 2R (CAAGCAGAAGACGGCATACGAGAT–index–GTGACT–
GGAGTTCAGACGTGT, partial P7 adapter including index–primer targeting 
primer 1R). This second PCR step was performed on 50–200 ng of purified 
amplicons from the first PCR. The PCR reaction was carried out on a Veriti 
Thermal Cycler (Life Technologies) and was run as follows: an initial denaturation 
step (94 °C for 10 min), 12 cycles of amplification (94 °C for 1 min, 65 °C for 1 min 
and 72 °C for 1 min) and a final elongation step at 72 °C for 10 min. Amplicons 
were purified as described for the first PCR round. All libraries were pooled in 
the same quantity in order to generate an equivalent number of raw reads with 
each library. The detection of the sequencing fragments was performed using 
MiSeq Illumina technology with 2 × 300 paired-end MiSeq kit v3. The targeted 
metagenomic sequences were analysed using a bioinformatics pipeline based on 
‘find, rapidly, OTUs with Galaxy solution’ (FROGS) guidelines41. In brief, after 
demultiplexing of barcoded Illumina paired reads, single read sequences were 
cleaned and paired into longer fragments for each sample independently. OTUs 
were produced with single-linkage clustering and taxonomic assignment was 
performed to determine community profiles. The following filters were applied: 
first, the last 30 bases of reads R1 and the last 60 bases of reads R2 were removed; 
second, amplicons with a length of <350 nt or a length of >490 nt were removed 
and third, OTUs with abundance lower than 0.005% and that appeared less than 
twice in the entire dataset were removed.

Assessment of potential sample contamination. Samples with low bacterial 
biomass, such as tissues and plasma, are highly susceptible to potential 
contamination from environment and reagents31,32 and therefore to false-positive 
results. To account for this challenge, we included a comprehensive set of negative 
controls to test for environmental sample contamination at major steps in the 
analysis (Fig. 1). In short, during tissue collection, tubes were kept open next 
to the operation field throughout the entire procedure (air–liver, air–OAT, and 
air–SAT). Contamination that derived from tissue manipulation was controlled 
by an additional set of tubes kept open next to the operator throughout blood 
centrifugation and plasma collection (air–lab) as well as during tissue aliquoting 
(air–biobank). The cutting board that was used to aliquot tissue samples was 
sampled prior to tissue manipulation (swab–biobank). Water samples were used 
to control for labware, reagent and/or environmental contamination during 
DNA extraction (ext–water) and during amplification steps for tissue 16S rRNA 
quantification (qPCR–water). After thorough validation of negative controls on a 
case-by-case basis, 16S rRNA quantification and sequencing data were used for the 
discovery of tissue-specific bacterial signatures linked to T2D.

Statistical analyses. Participant anthropometric and metabolic features were 
compared using an unpaired t-test or Mann-Whitney U test for parametric and 
non-parametric data sets, respectively, and adjusted for multiple comparisons by 
the two-stage linear step-up procedure of Benjamini, Krieger and Yekutieli, with q 
< 1%. Normality was calculated using the Shapiro–Wilk test. For 16S rRNA gene 
quantification and alpha diversity plots we applied the Kruskal–Wallis one-way 
analysis of variance (ANOVA) followed by Dunn’s test for pairwise comparison 
and P value adjustment using the Bonferroni–Holm method. Permutational 
multivariate analysis of variance (PERMANOVA), with subsequent Bonferroni–
Holm P value adjustment, was used to assign statistical significance to the 
differences between clusters of 16S rRNA sequences that were visualised in PCoA 
scatterplots. For 16S rRNA sequencing data that compare different tissues of all 
individuals, we filtered all taxa that were not present in at least 20% of samples 
within each body site and applied ALDEx2 to extract the taxa that were more likely 
to constitute tissue-specific bacterial signatures. This method is optimised for 
sparse and spurious data with multiple zeros, a general characteristic for samples 
with low bacterial biomass. To validate these findings against negative controls 
we then performed Kruskal–Wallis tests with Dunn’s pairwise comparison and 
Bonferroni–Holm P value adjustment. LEfSe was performed to characterise the 
tissue-specific taxonomic features that best discriminated patients with diabetes 
versus individuals with normoglycaemia. In brief, a non-parametric factorial 
Kruskal–Wallis sum-rank test was first applied to detect taxa with significant 
differential abundance. Biological significance was subsequently investigated using 
a set of pairwise tests among subclasses using the unpaired Wilcoxon rank-sum 
test. As a last step, linear discriminant analysis was used to estimate the effect size 
of each differentially abundant feature.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Sequencing data was deposited to the European Nucleotide Archive, https://
www.ebi.ac.uk/ena, with accession number: PRJEB36477. Secondary accession: 
ERP119674.
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Extended Data Fig. 1 | Genera distribution in the liver, plasma and mesenteric, omental and subcutaneous adipose tissue of obese subjects. Filtered 
genera were plotted in a heatmap whereby genus abundance is depicted for each sample within each tissue analyzed. Dendograms on the left of heatmaps 
are based on correlations of abundance profile.

Nature Metabolism | www.nature.com/natmetab

http://www.nature.com/natmetab


Articles Nature MetabolismArticles Nature Metabolism

Extended Data Fig. 2 | Principal Coordinate Analysis on generalized UniFrac distances of 16S sequences from negative controls. Permutational 
multivariate analysis of variance (PERMANOVA), with subsequent Bonferroni-Holm P adjustment, was used to assign statistical significance to the 
differences between clusters of 16S sequences. The number of independent biological samples tested was: Air-Liver (n=3), Air-OAT (n=2), Air-SAT 
(n=3). The number of technical replicates tested was: Air-Lab (n=3), Air-Biobank (n=3), Swab-Biobank (n=3), Ext-Wa (n=6). Each dot represents a 
sample. All statistical testes were two-sided, and differences were considered statistically significant at P<0.05.
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Extended Data Fig. 3 | see figure caption on next page.
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Extended Data Fig. 3 | Validation with negative controls of tissue-specific taxa different between participants who were normoglycemic or type 2 
diabetic. Tissue-specific bacterial targets found to discriminate between disease state were identified by LefSe analysis. The relative abundance of these 
taxa (at family and genus level) in liver (a, b), mesenteric (MAT – c, d), omental (OAT – e, f) and subcutaneous (SAT – g, h) adipose tissue and plasma  
(i, j) was analyzed, without accounting for disease state distribution, against negative controls (NCs) using Mann-Whitney U test. P values are indicated at 
the top of each graph. Left side panels show the relative abundance of taxa, whereas right side panels depict relative abundance normalized by 16S rRNA 
gene count (that is, relative abundance x 16S count). Box plots depict the first and the third quartile with the median represented by a vertical line within 
the box; the whiskers extend from the first and third quartiles to the highest and lowest observation, respectively, not exceeding 1.5 x IQR. Each circle 
(Non-diabetic, ND) and triangle (Type 2 Diabetic, T2D) represents a sample, and their tissue-specific dispersion is presented using a log10 scale. The 
number of independent biological replicates tested was: Liver (n=39), MAT (n=40), OAT (n=40), SAT (n=40), Plasma (n=39), NC (n=23). All statistical 
tests were two-sided, and differences were considered statistically significant at P<0.05.
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