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Abstract
Cancer and its morbidities, such as cancer cachexia, constitute a major public health problem.

Although cancer cachexia has afflicted humanity for centuries, its underlying multifactorial

and complex physiopathology has hindered the understanding of its mechanism. During the

last few decades we have witnessed a dramatic increase in the understanding of cancer

cachexia pathophysiology. Anorexia and muscle and adipose tissue wasting are the main

features of cancer cachexia. These apparently independent symptoms have humoral factors

secreted by the tumor as a common cause. Importantly, the hypothalamus has emerged as an

organ that senses the peripheral signals emanating from the tumoral environment, and not

only elicits anorexia but also contributes to the development of muscle and adipose tissue

loss. Herein, we review the roles of factors secreted by the tumor and its effects on the

hypothalamus, muscle and adipose tissue, as well as highlighting the key targets that are

being exploited for cancer cachexia treatment.
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Introduction
The earliest report of significant weight loss dates back

to Hippocrates’ School of Medicine (about 460–377 BC).

Since that era, this syndrome has been recognized as a

condition associated with poor prognosis, justifying the

name cachexia, from the Greek kakos (i.e., bad) and hexis

(i.e., condition or appearance), or ‘bad condition’. It is

associated with many chronic or end-stage diseases such as

cancer, cardiac, respiratory, renal or hepatic failure and

infectious diseases, as well as aging (Doehner & Anker

2002). During human history, weight loss has always

been recognized as a marker in the perception of

control and damage in relation to health and disease.

Notably, a fit appearance is associated with willpower and

self-discipline, whilst the perception of potential harm

and loss of control is related to changing body states, such

as the development of obesity and especially cachexia

(Chamberlain 2004).
Patients’ and their families’ perception of muscle

wasting makes the disease visible and represents an

indication that death is closer (Hopkinson et al. 2006).

As cachexia goes on, wasting of skeletal muscle tissue

diminishes mobility and lethargy impairs concentration,

leading patients towards isolation and depression (Wata-

nabe & Bruera 1996, Stewart et al. 2006). Importantly,

cachexia not only affects the patient, but also their families,

caregivers, and healthcare professionals, who often experi-

ence emotions of fright and hopelessness as they try to

palliate symptoms by feeding the patients (Reid et al. 2009).

The emotional distress experienced by healthcare pro-

fessionals and nihilism regarding the effectiveness of

cachexia treatment frequently block conversation about

weight loss, which makes even the discussion of cachexia a

taboo (Booth et al. 1996, Parle et al. 1997, Churm et al.

2009). In this review, we will highlight the mechanistic
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foundation of cancer cachexia, the knowledge of which

has started to change the current nihilistic therapeutic

approach to this devastating condition.
Cancer cachexia

Cancer cachexia is defined as a multifactorial syndrome,

characterized by anorexia as well as diminished body

weight, loss of skeletal muscle, and atrophy of adipose

tissue (Fearon et al. 2011). Specifically, weight loss of

more than 5% in previously healthy individuals or more

than 2% in subjects with depletion of current body

weight (BMI less than 20 kg/m2) or in individuals with

reduced appendicular muscle index (males less than

7.26 kg/m2 and females less than 5.45 kg/m2) constitute

the diagnosis of cancer cachexia (Fearon et al. 2011).

Recently, it has been recognized that weight loss alone is

insufficient to express the complexity of cachexia, and two

other clinical characteristics have been incorporated into

its definition: It cannot be fully reversed by conventional

nutritional support and it leads to functional impairment

(Muscaritoli et al. 2010, Fearon et al. 2011). Its incidence

varies according to tumor type, from 31% in patients with

good-risk non-Hodgkin’s lymphoma to 87% in those

with gastric cancer in some series (Dewys et al. 1980,

Teunissen et al. 2007). Importantly, since cachexia is

accompanied by the incapacity for improvement of

nutritional status through supplements, it leads to frailty

and ultimately accounts for approximately 20% of cancer

deaths (Dewys et al. 1980, Ross et al. 2004, Bachmann et al.

2008, Fearon et al. 2011, 2013). The cachexia-mediated

increased mortality is probably due to lower response to

chemotherapy and worse toxicity in anti-cancer

treatment, besides higher susceptibility to infections and

other clinical complications (Costa & Donaldson 1979,

Andreyev et al. 1998, Nitenberg & Raynard 2000,

Arrieta et al. 2010).

It is well known that anorexia alone is not able to

cause cachexia. This is one of the main characteristics

that distinguishes cachexia from starvation. In the

former, both adipose tissue and skeletal muscle mass are

depleted, while muscle mass is preserved during starvation

(Fearon 2011). It is noteworthy that starvation in

cancer patients, may be associated with upper digestive

obstruction or fistula, particularly in head and neck,

esophageal, gastric and pancreatic cancer patients, or

peritoneal carcinomatosis-induced multi-level abdominal

obstruction (Dechaphunkul et al. 2013). However, the

great majority of advanced-cancer patients, mainly those

with lung, hepatic or bone metastasis and lung, cervical or
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
DOI: 10.1530/JOE-15-0170 Printed in Great Britain
head and neck primary cancers, present a hypermetabolic

state that is characteristic of cachexia.

The physiopathology of cancer cachexia remains

unclear. Several cancer-related metabolic pathways induce

weight loss, muscle and adipose tissue wasting, anorexia,

anemia, and asthenia. The apparent causes of these

symptoms are energy imbalance (increased energy expen-

diture rate), negative protein balance (increased proteol-

ysis and decreased protein synthesis), and increased

lipolysis. Mechanistically, several factors such as increased

levels of hormones, cytokines and factors secreted by the

tumor as well as deregulation of control by the hypo-

thalamus of energy expenditure and hunger/satiety

promote cancer cachexia (Fig. 1).

In fact, cancer cachexia is characterized by maladap-

tive maintenance of inflammation. In contrast, acute

activation of the immune system in response to tissue

stress or infection serves as an adaptive response that is

essential to host survival (Ramos et al. 2004). These

responses include fever, headache, changes in the sleep–

wake cycle, anorexia, fatigue, and nausea referred to as

‘sickness behavior’ (Hart 1988, Elmquist et al. 1997). The

organismal advantages of these actions are demonstrated

by their wide expression among vertebrates and also

partial expression in some invertebrates (Kluger 1991).

For instance, force-feeding acutely infected animals is

associated with higher mortality, signifying short-term

anorexia as a host defense mechanism in infection and

tissue injury (Murray & Murray 1979). Additionally,

somnolence and fatigue diminish energy expenditure

during periods of caloric intake restriction (Hart 1988,

Saper & Breder 1992, 1994).
Molecular mechanisms of skeletal muscle
wasting

Cachexia-induced muscle atrophy occurs as a result of

both reduced protein synthesis at initiation and elonga-

tion steps and increased protein degradation. Muscle

wasting is the main cause of poor prognosis and low

quality of life. Skeletal muscle protein degradation

is promoted by ubiquitin–proteasome and autophagy–

lysosomal pathways, as well as the calcium-dependent

enzymes (calpains), which can be activated by the

proteolysis-inducing factor (PIF), myostatin, activin A

(ActA), and cytokines (Matzuk et al. 1994, Tisdale 2009,

Zhou et al. 2010, Johns et al. 2013).

PIF, a glycoprotein first isolated from the MAC16

tumor, has been detected in the urine of cancer patients

with cachexia (Todorov et al. 1996, Cariuk et al. 1997).
Published by Bioscientifica Ltd.
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Figure 1

Tumor-secreted factors promote central- and peripheral-mediated cancer

cachexia. Tumor growth results in the secretion of pro-inflammatory

factors that promote cachexia by signaling anorexia, muscle wasting, and

white adipose tissue (WAT) atrophy. In particular, treatment with ghrelin

and parathyroid hormone-related protein (PTHrP) alleviates anorexia in

the hypothalamus. Tumors also secrete both the proteolysis-inducing factor

(PIF) and activin, which leads to skeletal muscle degradation and

sarcopenia. Tumor-secreted zinc-alpha2-glycoprotein (ZAG) induces

lipid oxidation and WAT loss. IFN, interferon; IL, interleukin;

TNF, tumor necrosis factor.
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Specifically, patients bearing a vast range of cancers, such

as pancreatic, breast, ovary, lung, and colon and rectum,

present increased circulating levels of PIF (Cariuk et al.

1997). Importantly, the isolation of this protein and

subsequent injection into mice induced severe and

prompt body-weight loss (Tisdale 2003). In striking

contrast, it has been reported that PIF is not related to

either survival or muscle wasting in patients with

advanced cancers (Wieland et al. 2007). Mechanistically,

PIF not only promotes protein degradation by increasing

mRNA levels of ubiquitin-carrier protein and proteasome

subunits (Tisdale 2003), but also inhibits protein synthesis

through activation of the RNA-dependent protein kinase

(PKR) (Eley & Tisdale 2007). The latter effect is dependent

on eukaryotic initiation factor 2 alpha-subunit (eIF2a)

phosphorylation, which suppresses protein synthesis by

the eIF2 complex (Eley & Tisdale 2007, Eley et al. 2010).

Interestingly, PKR also induces muscle protein

degradation by activating the transcription factor nuclear

factor kB (NF-kB). Nuclear accumulation of NF-kB

increases the expression of the muscle-specific ubiquitin

E3 ligases, and RING-finger protein 1 (MuRF1) as well as
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
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some proteasome subunits upregulating the ubiquitin–

proteasome proteolytic mechanism and therefore

promoting skeletal muscle breakdown (Bodine et al.

2001, Argilés et al. 2014). PIF also induces transitory

formation of reactive oxygen species (ROS) through

activation of NADPH oxidase by protein kinase C

(Fan et al. 1990, Smith et al. 2004). Since ROS induce

NF-kB nuclear translocation (Schreck et al. 1991), this

pathway also contributes to increasing the expression of

MuRF1 in skeletal muscle (Li et al. 2003, Cai et al. 2004,

Yu et al. 2008).

Myostatin and activins are members of the transform-

ing growth factor B family, which promote muscle wasting

in certain models of cachexia, including cancer cachexia

(Carlson et al. 1999, Ma et al. 2003, Zhou et al. 2010, Chen

et al. 2014). Transgenic mice that lack myostatin, as well as

cattle with mutations that reduce the expression of

myostatin, show an increased muscle mass phenotype

(McPherron & Lee 1997, McPherron et al. 1997), whilst

recombinant viral overexpression of activins results in

muscle wasting and fibrosis (Chen et al. 2014). Myostatin

and activins share the same receptor, activin type 2
Published by Bioscientifica Ltd.
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receptor B (ActR2B), whose antagonism potently reverses

cancer-induced cachexia (Xia & Schneyer 2009, Zhou et al.

2010). Interestingly, circulating serum levels of ActA,

which has been demonstrated to be secreted by cancer

cells, are elevated in cancer cachectic patients (Zhou et al.

2010, Loumaye et al. 2015). Mechanistically, myostatin

and activins trigger skeletal muscle protein breakdown

by upregulating MuRF1 and MAFbx/Atrogin1, as well as

decreasing protein synthesis via inhibition of the Akt/

mTOR pathway (Chen et al. 2014, Gallot et al. 2014).

Activation of this pathway inhibits the activity of the

transcriptional factor Forkhead box O (FoxO), which

is a major regulator of MuRF1 and MAFbx/Atrogin1

expression. Accordingly, the use of a RNA oligonucleotide

to block FoxO1 or dominant-negative FoxO3 attenuates

loss of skeletal muscle mass in a model of cachexia by

suppressing MAFbx/Atrogin1 transcription (Sandri et al.

2004, 2006).

Increasing evidence indicates that cytokines play a

pivotal role in promoting skeletal muscle atrophy. It is

well established that tumor necrosis factor (TNF) is a key

cytokine that induces skeletal muscle wasting. For

instance, CHO cells that overexpress TNF promote

muscle wasting in mice (Oliff et al. 1987, Acharyya et al.

2004). In contrast, inhibition of TNF with a chimeric TNF

receptor prevented muscle wasting in mice bearing a

TNF-producing tumor (Teng et al. 1993). More recently,

TNF-induced atrophy was demonstrated to be mediated

by the induction of MAFbx/Atrogin1 in muscle by the

attenuation of FoxO activation (Wang et al. 2014) as well

as by increasing MuRF1 (Sishi & Engelbrecht 2011). TNF

also suppresses the PI3K/Akt pathway (Sishi & Engelbrecht

2011). Interestingly, inhibitor of nuclear factor kappa B

kinase subunit beta (IKKb) conditional knockout mice

present hyperphosphorylation of Akt. Conversely, Akt

inhibition leads to muscle atrophy, indicating the

existence of crosstalk between the IKKb/NF-kB and

PI3K/Akt pathways, which control muscle degradation

(Mourkioti et al. 2006). Recently, a new member of the

TNF superfamily has been described, TNF-like weak

inducer of apoptosis (TWEAK), which promotes cachexia

by a mechanism similar to that of TNF, i.e., by activating

NF-kB and promoting augmented expression of MuRF1,

which targets components of the thick filaments (Dogra

et al. 2007, Mittal et al. 2010, Kumar et al. 2012).

Increasing levels of interleukin 6 (IL6) also correlate

with development of cachexia. Accordingly, treatment

with an IL6 receptor antagonist, or MABs to murine IL6,

was able to suppress key cachexia parameters (Strassmann

et al. 1992, Enomoto et al. 2004, Zaki et al. 2004).
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
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However, IL6 alone is not enough to promote cachexia

syndrome (Soda et al. 1994, 1995). Interestingly, increased

IL6 levels are correlated with poor prognosis in patients

with advanced cancer (Suh et al. 2013), and are associated

with increased weight loss, morbidity, and mortality in

patients with lung cancer (Bayliss et al. 2011). Despite the

absence of solid results in cancer cachectic patients,

interferon gamma MAB reversed wasting syndrome in a

cachexia animal model, indicating a role for this cytokine

in cachexia syndrome (Matthys et al. 1991).
Molecular mechanisms of adipose tissue loss

Although the mechanisms behind muscle wasting have

been extensively studied, much less is known about factors

that promote adipose tissue loss in cancer cachectic

patients. The fact that viable cancer cells do not induce

weight loss, particularly adipose tissue wasting, indicates

that tumor-secreted factors could be the cause of fat

atrophy (Costa & Holland 1962). The search for these

factors led to the discovery of a lipid-mobilizing factor,

which was purified from the urine of cachectic individuals

(Masuno et al. 1981, 1984, Taylor et al. 1992, McDevitt

et al. 1995).

Over the last decade, zinc-alpha2-glycoprotein (ZAG)

has been characterized as an adipokine, which induces

lipid mobilization and is upregulated in cancer cachexia

(Bing et al. 2004, 2010, Bao et al. 2005). Mechanistically,

the lipolytic effect of ZAG is mediated by activation of

B3-adrenoceptors (Russell et al. 2002), which, through

AMPc pathway activation in a GTP-dependent manner,

leads to hormone sensitive lipase (HSL) activation and

glycerol release (Hirai et al. 1998). Accordingly, both

genetically-obese (ob/ob) mice and outbred NMRI mice

treated with human ZAG display decreased body weight,

with pronounced carcass fat loss, without change in

body water or nonfat mass, and neither changes in

food nor water intake (Hirai et al. 1998, Russell et al.

2004). Moreover, mice bearing xenografts of a tumor cell

line that overexpress ZAG display dramatic weight loss

(Hale 2002). ZAG also induces lipid utilization, increasing

fat oxidation (Russell & Tisdale 2002, 2010), due to

upregulation of mitochondrial uncoupling protein 1

(UCP1) mRNA in brown adipose tissue (BAT) (Bing et al.

2002, Russell et al. 2004), mediated by ZAG binding and

activation of B3-adrenoreceptor in adipocytes (Russell

et al. 2002).

In addition to tumor-derived ZAG effects, inflam-

matory mediators, such as TNF, modulate white adipose

tissue (WAT) homeostasis. Importantly, TNF inhibits
Published by Bioscientifica Ltd.
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lipoprotein lipase activity (Price et al. 1986), and increases

HSL mRNA expression (Tisdale 2004, Agustsson et al.

2007). Additionally, TNF has been shown to inhibit

glucose transport, by reducing glucose transporter 4

protein and mRNA levels, decreasing substrates for

lipogenesis (Hauner et al. 1995). TNF-induced lipolysis is

mediated by activation of MAPK kinase, ERK and elevation

of intracellular AMPc by decreasing the expression of

cyclic-nucleotide phosphodiesterase 3B (Zhang et al.

2002). MAPK and JNK activation lead to peroxisome

proliferator-activated receptor gamma (PPARY) phos-

phorylation, inhibiting pre-adipocyte differentiation

(Hu et al. 1996). It has also been observed that TNF

decreases the protein levels of perilipins A and B at the

surface of lipid droplets in 3T3L1 adipocytes, inducing

lipolysis. Furthermore, overexpression of perilipins by

adenovirus infection blocks this effect (Souza et al. 1998).

In cancer cachexia, TNF increases monocyte chemoat-

tractant protein 1 expression in adipocytes, attracting

monocytes to the adipose tissue, resulting in inflam-

mation (Machado et al. 2004). The infiltrating macro-

phages are responsible for increasing TNF production,

and also IL6 and IL1 beta, generating a vicious cycle of

macrophage recruitment and cytokine production.
Neuroendocrine regulation of food intake and
anorexia

The hypothalamus is the master key for the control of

energy homeostasis. Importantly, it is in this CNS area that

hundreds of signals converge, including hormones,

nutrients, and cytokines, to integrate the complex

energy expenditure/food intake balance physiology

(Schwartz et al. 2000, Laviano et al. 2008, 2012, Blanco

Martı́nez de Morentin et al. 2011, Pimentel et al. 2014).

The hypothalamus is subdivided into functional areas

that fine tune the energy balance by sending signals that

coordinately increase food intake and suppress energy

expenditure or vice versa. Historically, it was loss-of-

function experiments, performed in the 1930’s, that

provided the proof of concept that the CNS is crucial to

the regulation of energy balance. The results of these

initial studies revealed that different cerebral regions could

control energy balance, in particular it was verified that

CNS lesions performed in macaques and cats lead to

deregulation of food intake and loss of thermogenesis

control (Ranson et al. 1938). However, it was only in

the 1950’s that the hypothalamus was established as a

crucial organ for this control. Specifically, lesions in

the ventromedial region of the hypothalamus of rats
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
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induce hyperphagia, while lateral hypothalamus lesions

promote anorexia (Anand & Brobeck 1951, Miller 1957,

Hervey 1959).

The hypothalamus is constituted by neurons that

coordinately secrete anorexigenic (cocaine- and

amphetamine-regulated transcript (CART) and pro-opio-

melanocortin (POMC)) or orexigenic (agouti-related

protein (AgRP) and neuropeptide Y (NPY)) NPs to control

food intake. These NPs are produced mainly in the arcuate

(ARC) nucleus and paraventricular nucleus (PVN), but also

in the ventromedial hypothalamus (VMH) (Schwartz et al.

2000, Lage et al. 2008, Pimentel et al. 2013). The VMH

contains neurons that promote increased energy expendi-

ture (Schwartz et al. 2000, Blanco Martı́nez de Morentin

et al. 2011, Pimentel et al. 2013, Martı́nez et al. 2014).

Consistent with a VMH tonic pro-anorexigenic effect,

VMH-specific injection of colchicine (a neuronal blocker)

into anorectic rats increased food intake (Varma et al. 2000,

Laviano et al. 2002). Moreover, certain areas of the brain,

such as the nucleus of the solitary tract (NST) have also been

implicated in the control of appetite. Accordingly, there is

an increase in NST neuron c-Fos activity after i.c.v. IL1B

injection (DeBoer et al. 2009).

Several lines of evidence indicate that the melano-

cortin system has a key role in hypothalamus dysfunction

in cancer cachexia. This system is mainly composed

of POMC neurons that secrete aMSH and exert their

anorexigenic effects on neurons that contain the melano-

cortin 4 receptor (MC4R; Balthasar et al. 2005, Cone 2005,

Silva et al. 2014). It is noteworthy that mouse

neuronal cells express both POMC and CART in the

same neurons, while CART is not found in perikarya and

axons of human POMC neurons (Menyhért et al. 2007).

Interestingly, MC4R-, but not MC3R-knockout mice, are

resistant to cachexia (Marks et al. 2001, 2003). Accor-

dingly, the administration of MC4R antagonists directly

to the hypothalamus ameliorates cancer-associated

and chronic-kidney-disease-associated cachexia and

attenuates the anorexigenic actions of the sphingosine 1

phosphate (Wisse et al. 2001, Markison et al. 2005, Cheung

et al. 2007, DeBoer et al. 2008, Silva et al. 2014).

MC4R is also expressed in orexigenic neurons and

these neurons are inhibited by a MSH decreasing

NPY/AgRP release (Laviano et al. 2008). Injection of a

melanocortin receptor antagonist attenuates radiation-

mediated anorexia and cachexia, when compared with

non-irradiated mice, in an AgRP-dependent manner

(Joppa et al. 2007). Interestingly, treatment with megestrol

acetate (MA), a drug approved by the FDA for cancer

cachexia, alleviates anorexia due to increased
Published by Bioscientifica Ltd.
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hypothalamic NPY expression (McCarthy et al. 1994),

which is decreased in anorectic cancer patients (Jatoi et al.

2001). Taken together, these findings indicate that

decreased activity of NPY/AgRP neurons occurs synergis-

tically to the hyperstimulation of POMC neuronal cells

and that the melanocortin system is critical for neuro-

endocrine-axis-mediated cancer cachexia.

In addition to the melanocortin system, other

neuronal circuits have been found to be dysfunctional in

cancer cachexia. Among these, hypothalamic serotoni-

nergic and dopaminergic systems are the most studied.

Consistent with an anorexigenic effect of the serotoniner-

gic system, 5HT1B-receptor is upregulated in PVN and

supraoptic nuclei of tumor-bearing rats (Makarenko et al.

2005) and VMH-specific serotoninergic system blockade

ameliorates appetite in anorexic rats (Laviano et al. 1996).

On the other hand, consistent with a dual effect of the

dopaminergic system in cancer cachexia, VMH-specific

dopamine 1 receptor antagonist leads to decreased

appetite and, in contrast, dopamine 2 receptor antagonist

administration increases food intake in tumor-bearing

rodents (Sato et al. 2001). Much less is known about the

glutamatergic neural circuit in the genesis of cancer

cachexia, but the increased activity of this system is

associated with anorexia. Consistent with this, a reduction

of vagal/glutamatergic neurotransmission with metabo-

tropic glutamate receptor antagonist (I(C)-AP3) alleviates

inflammation-LPS-driven anorexia, cachexia and febrile

states (Weiland et al. 2006).
Cancer cachexia molecular signals that
modulate the hypothalamus

It is beyond the scope of this review to report on the

innumerous signals that control energy homeostasis,

but these associated with cancer cachexia will be covered.

It is well established that pro-inflammatory cytokines

released from tumors promote cancer progression and

anorexia (Laviano et al. 2003, Seruga et al. 2008).

The results of initial studies have revealed that VMH-

specific injection of IL1 receptor antagonist attenuates

anorexia in tumor-bearing rats (Laviano et al. 1995, 2000).

Moreover, s.c. injection of the TNF inhibitor improved

food intake, with increased meal number and size in

anorectic rats (Torelli et al. 1999). Accordingly, tumor-

bearing rodents and cancer patients display higher IL1B

and TNF levels in cerebrospinal fluid (CSF; Opara et al.

1995a,b, Protas et al. 2011).

Mechanistically, cytokines induce anorexia by activat-

ing neuronal cells expressing POMC in the ARC nucleus of
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
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the hypothalamus, which increases the central melanocor-

tin system timbre (Lawrence & Rothwell 2001, Reyes &

Sawchenko 2002, Scarlett et al. 2007). Consistent with this

model, the useofa selective antagonist ofMC4R was enough

to attenuate the anorexigenic effects of IL1B (Joppa et al.

2005). These data indicate that cytokines are CSF soluble

factors critical to hypothalamus-mediated anorexia.

In addition to pro-inflammatory cytokines, other

molecules have been implicated in cancer cachexia, such as

ghrelin and parathyroid hormone-related protein (PTHrP).

Although cachectic patients present high levels of

circulating ghrelin (Shimizu et al. 2003, Garcia et al. 2005),

treatment with ghrelin (s.c.) improves food consumption

in both rodents (DeBoer et al. 2007, Lage et al. 2008,

Fujitsuka et al. 2011) and cancer patients (Neary et al. 2004).

These findings indicate that hyperghrelinemia is a com-

pensatory mechanism that fails to overcome the cancer-

cachexia-induced decreased ghrelin signaling in the hypo-

thalamus (Fujitsuka et al. 2011). The orexigenic ghrelin

effects are mediated by the hypothalamus, where this

hormone suppresses the expression of IL1R and POMC, and

increases AgRP and NPY expression (DeBoer et al. 2007).

Ghrelin-mediated attenuation of cachexia is reproduced in

different models, interestingly in fasting, denervation and

chronic-kidney-disease-mediated cachexia, ghrelin treat-

ment attenuated muscle protein degradationdue, at least in

part, to the inhibition of actinomyosin cleavage (DeBoer

et al. 2008, Porporato et al. 2013).

The results of recent studies have indicated that

tumors release PTHrP, which not only decreases food

intake but also promotes muscle wasting (Asakawa et al.

2010, Kir et al. 2014). The results of these studies indicate

that blocking PTHrP may be an effective strategy for

treating cancer cachexia. Mechanistically, PTHrP activates

hypothalamic urocortins 2/3 via vagal afferent pathways

and inhibition of gastric emptying (Asakawa et al. 2010).

Importantly, PTPHrP neutralization is enough to suppress

B-adrenergic timbre, which attenuates energy expenditure

and muscle mass loss in anorectic mice (Kir et al. 2014).

Although the intracellular mechanisms that promote

hypothalamic-hormone-mediated anorexia are still

unclear, the activation of hypothalamic AMP-activated

protein kinase (AMPK) is a crucial event. AMPK is a key

mediator of energy balance that modulates food intake

and energy expenditure (Blanco Martı́nez de Morentin

et al. 2011, Hardie 2015). The results of recent studies

indicate that AMPK senses a multitude of nutritional and

hormonal signals such as berberine, omega 3 fatty acids,

glucose, alpha lipoic acid and leucine, insulin, leptin,

thyroid hormones, and inflammatory mediators (Kahn
Published by Bioscientifica Ltd.
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et al. 2005, Ropelle et al. 2007, 2008a,b, Lage et al. 2008,

Steinberg et al. 2009, López et al. 2010, Pimentel et al. 2013,

Santos et al. 2013, Zhang et al. 2014). Likewise, activation

of AMPK not only blunts cancer-induced reduction of food

intake, but also attenuates inflammation and prolongs the

survival of tumor-bearing rats (Ropelle et al. 2007).
Neuroendocrine regulation of
cachexia-induced thermogenesis and
skeletal muscle sarcopenia

The hypothalamus not only promotes anorexia but also

contributes to the development of other cancer cachexia

symptoms, such as increased thermogenesis and skeletal

muscle sarcopenia (Fig. 2). Interestingly, cancer-associated

cachexia increases energy expenditure, an effect mainly

mediated by the BAT and coordinated by the hypothalamus

(Brooks et al. 1981, Bianchi et al. 1989, Tsoli et al. 2012,

Kir et al. 2014). This organ senses the increased

levels of TNF, the tyrotropin-releasing hormone, and

the corticotropin-releasing hormone to promote heat

production via a B3-adrenergic neuronal circuit (Arruda

et al. 2011).
Figure 2

The hypothalamus is at the crossroads of cancer cachexia’s main features.

Pro-anorexigenic factors are integrated in discrete nuclei of the

hypothalamus. The ventromedial nucleus (VMH) promotes heat production

in brown adipose tissue (BAT) and may mediate white adipose browning

via the B3 adrenergic system. The paraventricular nucleus (PVN) and

http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
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Recently, cachexia has been found to be associated

with the conversion of white adipose cells into beige

cells, a process described as ‘browning’ (Kir et al. 2014,

Nedergaard & Cannon 2014, Petruzzelli et al. 2014). Beige

cells display abundant levels of UCP1, which reduces the

mitochondrial electrochemical gradient to promote

thermogenesis. Mechanistically, it has been suggested

that cancer cachexia-induced browning is also mediated

by an increase in B-adrenergic tonus (Cao et al. 2011, Kir

et al. 2014, Petruzzelli et al. 2014). Unfortunately, it is

not known whether the CNS is implicated in WAT

browning regulation during cancer cachexia. Since several

obesity studies have identified the hypothalamus as an

important regulator of browning (Cao et al. 2011, Baboota

et al. 2014, Beiroa et al. 2014, Owen et al. 2014, Ruan et al.

2014, Dodd et al. 2015), future studies to explore the

role of the hypothalamus in cachexia-induced browning

are encouraged.

Although the influence of the hypothalamus on the

modutation of lean body mass is clear, the mechanisms

are only partially elucidated (Marks et al. 2001, 2003,

Wisse et al. 2001, Cheung et al. 2008, Braun et al. 2011).

The hypothalamic–pituitary–adrenal axis is an important
arcuate (ARC) nucleus are the major integrating centers of food intake,

modulating the timbre of serotonin (5HT) expression and melanocortin 4

receptor (MC4R) respectively. Interestingly, pro-opiomelanocortin leads to

skeletal muscle breakdown and sarcopenia. 3V, third ventricle.

Published by Bioscientifica Ltd.

http://joe.endocrinology-journals.org
http://dx.doi.org/10.1530/JOE-15-0170


Jo
u

rn
a
l

o
f

E
n

d
o

cr
in

o
lo

g
y

Review M C S MENDES and others Mechanisms of cancer cachexia 226 :3 R36
axis that links the CNS to the muscle catabolic program.

Interestingly, brain–IL1B injection leads to muscle wasting

and increases in markers of muscle protein breakdown,

such as MURF and Atrogin1. In accordance with the

existance of an adrenal-mediated effect, adrenalectomy

suppressed IL1B-induced muscle atrophy, whilst gluco-

corticoid treatment was enough to promote muscle

atrophy (Braun et al. 2011). Interestingly, in spite of

muscle wasting induced by cancer, uremia, or LPS, as well

as IL1B-induced anorexia is suppressed by MC4R blockade

(Marks et al. 2001, 2003, Wisse et al. 2001, Cheung et al.

2008, Whitaker & Reyes 2008), MC4R-knockout animals

are not saved from body lean mass loss after central

infusion of IL1B (Braun et al. 2011), these findings indicate

that different neuronal circuits are involved in the CNS

modulation of muscle catabolic programs and that the

hypothalamus is crucial for induction and maintenance of

the main symptoms of cancer cachexia.
Treatment of cancer cachexia

Initial efforts

Although a number of nutritional supplements and drugs,

such as Cannabis (Strasser et al. 2006), eicosapentaenoic

acid (Beck et al. 1991, Barber et al. 1999, Mantovani et al.

2008) and branched-chain amino acids (Eley et al. 2007)

have shown promising results in pre-clinical studies, the

results of phase III clinical trials have failed to demonstrate

a substantial effect of these drugs and nutritional

supplements as treatments for cancer cachexia.

Currently, the only FDA-approved drug for the

treatment of cancer cachexia is medroxyprogesterone.

Medroxyprogesterone acetate and MA are both synthetic

progestins currently used to improve appetite and

promote weight gain in cancer cachexia (Tchekmedyian

et al. 1992). In accordance, the results of recent meta-

analysis indicated that MA is associated with a small effect

on weight gain and increase in appetite (Ruiz et al. 2013).

Although the mechanism of action is unknown, these

drugs reduce pro-inflammatory cytokines and increase

NPY levels in the hypothalamus (Mantovani et al. 2001).

Corticosteroids are alternative orexigenic agents for the

treatment of cancer cachexia (Popiela et al. 1989, Shih &

Jackson 2007). Importantly, dexamethasone treatment

resulted in similar-magnitude effects on weight gain and

increased appetite when compared with MA; however,

this approach was associated with an increased drug

discontinuation rate because of increased collateral effects

(Loprinzi et al. 1999).
http://joe.endocrinology-journals.org � 2015 Society for Endocrinology
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New perspectives for the treatment of cancer cachexia

Triggered by better knowledge of the molecular

mechanisms of cachexia, we are observing an increasing

number of cancer cachexia clinical trials. One of the most

promising approaches for cancer cachexia is ghrelin

treatment. A proof of concept study of ghrelin infusion

revealed that this resulted in an increase of energy intake

and in pleasantness of the meal in patients with advanced

incurable cancer in a dose-dependent manner (Neary et al.

2004, Strasser et al. 2008, Hiura et al. 2012). More recently,

an oral mimetic of ghrelin (anamorelin) has been tested

and promising results were achieved with 16 cachectic

patients with different types of tumors (Garcia et al. 2013).

Numerous clinical trials to evaluate beneficial effects of

ghrelin and anamorelin in the treatment of cancer

cachexia are active (NCT0933361, NCT00681486,

NCT00225745, and NCT01505764). Although the use of

ghrelin in these patients appears to be safe, more studies

are necessary to confirm its efficacy and safety.

Despite the proven importance of TNF in the

pathogenesis of cancer cachexia, treatment with inflixi-

mab (a MAB to TNF) did not result in improvement in

cachexia cases (Jatoi et al. 2001, 2010, Wiedenmann et al.

2008). In contrast, cancer cachexia treatment with

thalidomide, a drug with potent anti-inflammatory effects

(Moreira et al. 1993, Fujita et al. 2001, Keifer et al. 2001,

Richardson et al. 2002) presented encouraging preliminary

results (Davis et al. 2012), but we still do not have

sufficient data to recommend this drug in clinical practice

(Reid et al. 2012).

Cancer cachexia promotes insulin resistance, which

not only blunts muscle glucose uptake and liver glucose

production, but also inhibits protein anabolism, contri-

buting to muscle atrophy (Yoshikawa et al. 2001, Winter

et al. 2012). Metformin, the most widely used agent for the

treatment of type 2 diabetes, increases food intake and

prolongs survival in cachectic rats bearing Walker256

tumors (Ropelle et al. 2007). Interestingly, the results of

a clinical trial in individuals with prostate cancer

without cancer cachexia indicated that the association

of metformin, exercise, and low-glycemic-index diet

improved body weight (Nobes et al. 2012). Another insulin

sensitizer, rosiglitazone, a PPAR agonist that improves

insulin sensitivity, prevented weight loss, and helped

avoid muscle protein degradation in an experimental

colon cancer model of cachexia. These effects were

paralleled by a decrease in Atrogin1 and MuRF1 expression

(Asp et al. 2010). Interestingly, emerging evidence has

indicated that insulin resistance-mediated blunted protein
Published by Bioscientifica Ltd.
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anabolism is not refractory to post-prandial physiological

amino-acid infusion, indicating conventional nutritional

support to be a promising approach for overcoming

anabolic resistance (Winter et al. 2012). As such, insulin

sensitizers are good candidates for the therapeutic

treatment of cancer cachexia, but clinical studies to

confirm experimental data are necessary.

The use of an ActR2B decoy receptor (sActR2B)

prevents muscle wasting and inhibits muscle loss in

different animal models of cachexia (Zhou et al. 2010).

Since the levels of activins are increased in cancer cachectic

patients (Loumaye et al. 2015), a promising approach for

cancer cachexia treatment may be the blockade of ActR2B.
Conclusion

Although cancer cachexia has been a major burden on

our society for centuries, it is only in recent decades that

there has been unprecedented progress in the under-

standing of its molecular basis. A broad concept that

has emerged is that the hypothalamus is a key center for

the control of anorexia and fat loss in cancer cachexia.

Additionally, the results of animal studies have revealed

numerous factors produced by the tumor that act in

muscle, promoting its wasting. Although the potential

therapeutic implications have not yet been fully exploited

in humans, this collective work has already demonstrated

that targeting the hypothalamus and tumor-secreted

factors are attractive therapeutic approaches for alleviating

cancer cachexia.
Declaration of interest

The authors declare that there is no conflict of interest that could be

perceived as prejudicing the impartiality of this review.
Funding

J B C C was supported by grants from the Conselho Nacional de

Desenvolvimento Cientı́fico e Tecnológico (CNPq; 306821/2010-9) and
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