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abstractOBJECTIVES: To examine how overweight and obesity at specific ages and overall BMI growth
patterns throughout childhood predict cardiometabolic phenotypes at 11 to 12 years.

METHODS: In a population-based sample of 5107 infants, BMI was measured every 2 years
between ages 2 to 3 and 10 to 11 years. We identified 5 BMI trajectories using growth curve
models. At ages 11 to 12 years, 1811 children completed assessments for metabolic syndrome
risk scores, carotid-femoral pulse wave velocity, and carotid intima-media thickness.
Multivariable regression models were used to estimate associations, adjusted for potential
confounders (eg, age, sex, smoking exposure, and small for gestational age).

RESULTS: Overweight and obesity from early childhood onward were strongly associated with
higher cardiometabolic risk at 11 to 12 years of age. At age 6 to 7 years, compared with those
with a healthy weight, children with overweight had higher metabolic syndrome risk scores by
0.23 SD units (95% confidence interval 0.05 to 0.41) and with obesity by 0.76 SD units
(0.51–1.01), with associations almost doubling by age 10 to 11 years. Obese (but not
overweight) children had higher outcome pulse wave velocity (0.64–0.73 SD units) from ages
6 to 7 years and slightly higher outcome carotid intima-media thickness (0.20–0.30 SD units)
at all ages. Cumulative exposure to high BMI from 2 to 3 years of age carried the greatest
cardiometabolic risk, with a gradient of risk across trajectories.

CONCLUSIONS: High early-childhood BMI is already silently associated with the development of
cardiometabolic risk by 11 to 12 years, highlighting the urgent need for effective action to
reduce overweight and obesity in early childhood.

WHAT’S KNOWN ON THIS SUBJECT: Researchers evaluating the
effects of early-life BMI on cardiometabolic health tend to focus
on a single measurement of childhood BMI and adult outcomes.
Knowing when and how early-life BMI impacts cardiometabolic
phenotypes in childhood could guide prevention efforts.

WHAT THIS STUDY ADDS: By examining overweight and obesity at
5 time points and overall BMI growth patterns throughout
childhood, we show that early-life overweight and obesity and
high BMI growth patterns are already silently associated with the
development of cardiometabolic risk at 11 to 12 years.
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The obesity pandemic is a public
health priority.1 It threatens to
undermine progress toward the
decline in cardiovascular mortality in
high-income countries, largely
achieved through preventive efforts
focused on cardiovascular risk
factors.2 Cardiovascular disease often
arises from atherosclerosis,
a pathophysiologic process that has
its origins in early life.3 Childhood
obesity is consistently one of the
strongest predictors of obesity
and cardiovascular disease in
adulthood.2–4 In addition,
associations of childhood overweight
and obesity with subsequent
metabolic disease and subclinical
markers of atherosclerosis in
adulthood can be explained by the
strong tracking of BMI from
childhood to adulthood.4,5

Researchers evaluating the effects of
early-life BMI on cardiovascular and
metabolic (cardiometabolic) disease
have mainly had only a single
measurement of childhood BMI and
focused on adult cardiometabolic
outcomes.4,6 This overlooks the
considerable physiologic changes in
BMI throughout childhood as part of
typical growth. Specific patterns of
BMI may incur additional
cardiometabolic risk. For example,
accelerated BMI growth during the
preschool years can be used to
predict sustained obesity in
adolescence.7 In addition, an early age
at BMI rebound has been associated
with a higher metabolic risk in early
adolescence.8 To date, no studies
have used serial data across several
time points to examine the extent to
which timing and/or growth
trajectories influence preclinical
cardiovascular phenotypes of
function and structure in later
childhood. This is of potential
importance if BMI at certain ages or
patterns over time is particularly
sensitive for later
cardiometabolic risk.

We therefore aimed to determine the
extent to which (1) BMI at 5 time

points and (2) BMI trajectories from 2
to 3 years of age can be used to
predict preclinical cardiometabolic
phenotypes at ages 11 to 12 years.

METHODS

Study Design and Participants

Data are derived from the
Longitudinal Study of Australian
Children (LSAC) birth cohort and its
cross-sectional biomarkers and
physical assessment module, the
Child Health CheckPoint
(CheckPoint). Detailed methodology
is described elsewhere.9,10 Briefly, in
2004, LSAC recruited a nationally
representative birth cohort of 5107
infants at ages 0 to 1 years using a 2-
stage random sampling design from
Australia’s universal health care
system. Data have been collected at
home visits every 2 years since 2004.
CheckPoint took place between the
LSAC’s sixth and seventh wave of
data collection. At wave 6 (ages
10–11 years in 2014), the 3764
retained families were invited to
consent to their contact details being
shared with CheckPoint.9 Consenting
families were then contacted;
ultimately, a total of 1874 (50% of
LSAC wave 6) children participated in
CheckPoint, and 97% (n = 1811) of
these children had early-life BMI and
$1 cardiometabolic health measure
available (Supplemental Fig 4).10

Informed consent was provided by
a parent and/or guardian. Ethics
approval was granted from the
Australian Institute of Family Studies
Ethics Committee (14-05) and The
Royal Children’s Hospital Human
Research Ethics Committee (33225).

Procedure

CheckPoint assessments took place
between February 2015 and March
2016 for the children and parents at
child ages 11 to 12 years. Most
families attended 1 of 15 assessment
centers across Australia, where
a wide range of physical and
biomarker measures were

administered with a strong focus on
cardiometabolic health. Those unable
to attend were offered a shorter
home visit, which did not offer
venipuncture or carotid intima-media
thickness (cIMT).

Measures

To record biennial BMI from ages 2 to
3 to 10 to 11 years, children’s height
and weight (nearest 0.1 cm and 0.1
kg, respectively) were measured
using standard anthropometric
equipment (children did not wear
shoes and were in light clothing).
Height was measured 2 times
and a third time if the first 2
measurements differed by .0.5 cm;
the mean of both or all measurements
was used. At each time point, BMI
was converted to age- and sex-
specific BMI z scores by using the US
Centers for Disease Control and
Prevention (CDC) growth reference
values and to 4 categories of BMI
status (underweight [,5th
percentile], healthy weight [$5th
percentile and ,85th percentile],
overweight [$85th and ,95th
percentile], and obesity [$95th
percentile]).11 The underweight and
healthy weight categories were
subsequently combined given the
small number of underweight
children who were likely to have
favorable cardiovascular function or
structure (later confirmed). Thus, this
group is referred to as the “healthy”
weight category.

Cardiometabolic Phenotypes at Ages
11 to 12 Years

Metabolic Syndrome Risk Score

We calculated a continuous metabolic
syndrome (MetS) risk score using 4 of
the 5 traditional components of adult
MetS: systolic blood pressure, high-
density lipoprotein (HDL) cholesterol,
triglycerides, and glucose. This MetS
risk score was generated without BMI
to ensure our regression analyses did
not contain child BMI as both an
exposure and outcome. It was derived
by using principal components
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analysis (varimax rotation) and is
henceforth referred to as the “MetS
risk score.”12 This involved generating
an age- and sex-specific z score for
each of the 4 MetS risk components.
We then ran the principal
components analysis, which identified
2 principal components that were
summed, with weights determined by
the relative amount of variance
explained to generate a total MetS
risk score. This method has been used
previously in pediatric populations,
with a 1 SD increase in a continuous
adolescent’s MetS risk score shown to
result in adults with a 30% to 78%
increased risk of type 2 diabetes and
a 12% to 61% increased risk of high
cIMT.13

We also calculated a traditional
continuous MetS risk score, including
BMI, for comparison to previous
studies. This score included all 5
components of adult MetS: BMI z
score, systolic blood pressure, HDL
cholesterol, triglycerides, and glucose.
The NHANES (12–19-year-old
participants) non-Hispanic white, sex-
specific equations for male and
female participants were used, which
assign a weight to each measure to
identify children at higher risk for
developing adult diseases related to
MetS. Full details are available
elsewhere.14

Systolic blood pressure was assessed
as the mean of 3 measurements at the
right brachial artery after 7 minutes
of rest in the supine position by using
the SphygmoCor XCEL (AtCor Medical
Pty Ltd, Sydney, New South Wales,
Australia).

Semifasting (median of 4.2 hours
postprandial, range of 50 minutes to
20 hours, and interquartile range of
3.4–4.8 hours) peripheral blood was
collected, in which fasting time was
calculated as the hours between last
eating and/or drinking to the time
of blood collection. The last time
of eating and/or drinking was
crosschecked against when the
participant was taking part in other

CheckPoint stations (and known not
to be eating). Further details of
cleaning processes for the time of last
eating and/or drinking can be found
elsewhere.15 Semifasted bloods were
processed within 4 hours at an on-
site processing laboratory, with
serum aliquots frozen at 280°C for
batch analysis. High-throughput
proton nuclear magnetic resonance
spectrometry (AVANCE III 500 MHz
spectrometer; Bruker Corporation,
Billerica, MA) quantified serum total
triglycerides, total cholesterol, HDL
cholesterol, and glucose.16 Three
children were identified with outlier
glucose levels. Two were deemed
implausible (19.0 and 16.7) and
excluded, whereas the other
(8.8) was deemed plausible and
included.

Carotid-Femoral Pulse Wave Velocity

Pulse wave velocity (PWV) was also
collected by using the SphygmoCor
XCEL, as previously described.17 After
a 7-minute rest, assessors obtained 1
to 3 velocity (distance divided by
time) measurements while
participants lay supine. In the
analyses, we used the mean
of all available measurements.
The time component comprised
simultaneously recorded carotid
waveform, by using tonometric
applanation, and femoral waveform,
by using a cuff placed around the
upper thigh inflated to subdiastolic
pressure. Distance was measured
with a tape measure from the carotid
pulse to the suprasternal notch to the
right femoral pulse to the top of the
thigh cuff.

Carotid Artery Intima-Media Thickness

Common cIMT was measured via
portable ultrasound (GE Vivid i BT06
with a 10-MHz L-RS vascular probe),
as previously described.18 Trained
researchers used real-time
brightness-mode ultrasound carotid
artery images with standardized
protocols. Participants lay supine
with their head turned 45° to the left
to expose the right side of their neck.

We used a 10-MHz linear array probe
(Vivid i; General Electric Healthcare,
Chicago, IL) to obtain cine loops of
the right common carotid artery in
triplicate. A modified 3-lead
electrocardiogram was used to
capture cardiac cycle information
concurrently.

Six raters measured cIMT using
Carotid Analyzer (Medical Imaging
Applications LLC, Coralville, IA)
software. cIMT was measured
∼10 mm proximal to the carotid bulb,
over a distance of 5 to 10 mm. We
reported maximum cIMT, calculated
as the mean of 3 to 5 still
frames, timed at the R wave by
electrocardiogram, of the largest
thickness measurement in this 5- to
10-mm window. For a subset of 105
images, the within-observer and
between-observer coefficients of
variation were 4.9% and 6.2%,
respectively.18

Other Key Measures

Potential confounders known to
influence both BMI and
cardiometabolic phenotypes were
considered, including age, sex, small
for gestational age, passive smoking
exposure, family socioeconomic
position, and pubertal status.18–21

Birth weight and gestational age from
wave 1 (child ages 0–1 years) were
used to calculate “small for
gestational age,” defined as ,10th
percentile according to Australian
norms.22

Questionnaire data were used to
assess if the child was “ever exposed
to passive smoke” and considered
positive if the parent reported
a smoker(s) living in the home in any
LSAC wave. Family socioeconomic
position at LSAC wave 6 (ages 10–11
years) is a composite measure
combining parent-reported combined
household income, “prestige” of the
current or most recent occupation of
each parent, and the highest
educational qualification of each
parent.18 The unweighted average
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score of these items at each wave was
then standardized to have a mean of
0 and SD of 1, which can be
interpreted like a z score. Children
self-reported on their pubertal status
at CheckPoint using the 5-item
Pubertal Development Scale,23 which
was categorized as pre-, mid-, or late
or postpubertal.

Other CheckPoint assessment
measures considered in analyses
were systolic blood pressure
(described above) and low-density
lipoprotein (LDL) cholesterol, derived
from the same nuclear magnetic
resonance pass as the other
biomarkers above.

Statistical Analysis

As previously published,24 to examine
trajectories of BMI z scores across 5
waves (LSAC waves 2–6: ages 2–3 to
10–11 years), we conducted group-
based growth curve trajectory
modeling using the Stata (Stata Corp,
College Station, TX) traj plug-in.25 All
LSAC children with height and weight
data available for $4 waves were
used to generate BMI z score
trajectories (n = 3900) fitted to
a censored normal distribution. To
identify meaningful trajectories, we
considered Bayesian information
criterion values, average posterior
probabilities, the proportion of the
sample in each trajectory, and visual
graphs of trajectories. Nonsignificant
(ie, P . .05) quadratic or cubic
parameters for each trajectory were
dropped (Supplemental Tables 3 and
4). This method was used to identify
5 trajectories (Fig 1), which we
named “low” (6.6%), “healthy”
(29.5%), “low to high” (6.0%), “always
high” (42.9%), and “always very high”
(15.0%). All but the low-to-high
trajectory were relatively flat
throughout childhood.

Univariable and multivariable linear
regression models were used. The
reference group for time-point
analyses comprised children with
healthy weight at each wave. For
trajectory analyses, the reference

group comprised children following
the low BMI trajectory, which was
selected because it contained enough
children to make meaningful
comparisons and was likely to have
the best cardiometabolic health (later
confirmed). We internally
standardized cardiometabolic
outcomes to have a mean of 0 and SD
of 1 so that regression coefficients
represented the standardized mean
difference (SMD) compared with the
reference group. The amount of
variance explained by the BMI status
and BMI trajectories was estimated
by using the coefficient of
determination (ie, R2). In addition, we
dichotomized each preclinical
cardiometabolic phenotype to
examine the relative risk of being
equal to or above the internal 75th
percentile (ie, in the quartile with the
highest risk) via modified Poisson
regression models.26

Three sensitivity analyses were also
conducted, firstly for PWV and cIMT,
to consider the potential effects of
LDL cholesterol and systolic blood
pressure, because they could lie on

the causal pathway between the BMI
and cardiometabolic phenotypes.
Secondly, we also ran a sensitivity
analysis using CheckPoint sample
(survey) weights in our analyses
using Stata survey techniques to
address missing data. Finally, we
considered the associations for BMI
status and trajectories with MetS risk
score including BMI to see whether
results were in the anticipated
direction.

RESULTS

Sample characteristics are shown in
Table 1. Our analytic sample (51%
boys; mean age of 11.5 [SD of 0.5]
years) had similar rates of childhood
overweight and/or obesity to the
Australian population.27 On average,
children came from slightly more
socioeconomically advantaged
households than the average LSAC
wave 6 household (socioeconomic
position of 0.18 [SD of 0.99] vs 0.00
[SD of 1.0]). Children’s mothers were
predominantly born in Australia or
the United Kingdom (71%).

FIGURE 1
BMI z scores trajectories during childhood. BMI z score (CDC) trajectories were created by using
growth curve models, from ages 2 to 3 years to ages 10 to 11 years, in which broken lines represent
95% CIs.
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Early-Life Overweight and Obesity at
5 Time Points and Cardiometabolic
Health at 11 to 12 Years

In univariable analysis (data not
shown), the amount of variance
explained by overweight and obesity
(ie, R2) typically increased with age for
cardiometabolic outcomes. The MetS
risk score variance explained was 1%
for BMI at ages 2 to 3 and rose to 11%
for BMI at 10 to 11 years. Values for
PWV rose similarly from 1% to 4%,
whereas variance explained for cIMT
was consistently 1%. Potential
confounders helped explain the
variance in cardiometabolic
phenotypes (Supplemental Table 5).

In multivariable models (Fig 2), from
ages 6 to 7 years, children with
overweight had a higher MetS risk

score at age 11 to 12 years. For
example, at 6 to 7 years those with
overweight had a highesr MetS risk
score by 0.23 SD units (95%
confidence interval [CI] 0.05 to 0.41),
and those with obesity had a higher
MetS risk score by 0.76 SD units
(95% CI 0.51 to 1.01), compared to
children with healthy weight. These
associations almost doubled by ages
10 to 11 years. Children with obesity
(but not overweight) from 6 to 7 years
had a higher outcome PWV (0.64–0.73
SD units), whereas they had slightly
higher outcome cIMT across all age
groups (0.20–0.30 SD units).

When cardiometabolic outcomes
were dichotomized, similar patterns
emerged across time points
(Supplemental Fig 5).

Early-Life BMI Trajectories and Their
Relationship With Cardiometabolic
Health

For BMI trajectories, univariable and
multivariable estimates were similar
in magnitude (Table 2). In univariable
analyses, BMI trajectory accounted
for ,1% of the variance in
cardiometabolic outcomes. In
multivariable regression models,
compared with children following the
low BMI trajectory, other trajectory
groups had higher levels of MetS risk
score at 11 to 12 years, ranging from
an SMD of 0.46 to 0.92. PWV was also
higher in children following other
(except the healthy) trajectories,
whereas differences in cIMT were
less pronounced.

Overall, compared with the low-
trajectory group, those in the always-
very-high group had the poorest
cardiometabolic health, with higher
MetS risk scores (SMD of 0.92 [95%
CI 0.63 to 1.25]; PWV of 0.68 [95% CI
0.45 to 0.91]) and moderately higher
cIMT (0.47 [95% CI 0.21 to 0.74]).

When cardiometabolic outcomes
were dichotomized, results were
similar (Fig 3), revealing a markedly
higher cardiometabolic risk for
children who followed the always-
very-high trajectory.

All results were similar when cIMT
and PWV analyses were additionally
adjusted for LDL cholesterol and
systolic blood pressure (data not
shown). Similar results were also
found when applying survey weights
(data not shown). Effect estimates
were larger for MetS risk score
including BMI (Supplemental Fig 6)
compared to our MetS risk score
excluding BMI, which is reported in
our main results.

DISCUSSION

Principal Findings

Childhood overweight and obesity
from early childhood are associated
with a higher MetS risk score, higher
arterial stiffness, and increased cIMT

TABLE 1 Sample Characteristics

Child Characteristics N = 1811

Male sex, % 51
Mother’s country of birth, %
Australia 60
United Kingdom 11
Other 29

Aboriginal and/or Torres Strait Islander, % 2
Birth wt, kg, mean (SD) 3.4 (0.6)
Small for gestational age, % 9
Wave 6 (10–11 y old)
Socioeconomic position, z score, mean (SD) 0.18 (0.99)
Ever exposed to passive smoke in home, % 16

CheckPoint (11–12 y old)
Age, y, mean (SD) 11.5 (0.5)
Pubertal stage,a %
Prepubertal 10
Early to midpubertal 77
Late to postpubertal 13

BMI z score (CDC), mean (SD) 0.32 (0.98)
BMI status (CDC cut points), %
Overweight 15
Obese 9

Cardiovascular function, mean (SD)
Systolic blood pressure, mmHg 108.1 (8.0)
Diastolic blood pressure, mmHg 62.4 (5.7)
MetS risk scoreb 20.00 (1.02)
MetS risk score including BMI z scorec 20.18 (0.69)
PWV, m/s 4.46 (0.57)

Cardiovascular structure, cIMT, mm, mean (SD) 0.58 (0.05)

a Self-reported pubertal status was assessed by using the 5-item Pubertal Development Scale.
b The MetS risk score included systolic blood pressure, HDL cholesterol, triglycerides, and glucose and was derived by
using principal components analysis (varimax rotation).
c The MetS score including BMI z score was derived by using the continuous algorithm on the basis of US data for 12- to
19-y-old participants from the US NHANES.
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at ages 11 to 12 years. When looking
at BMI at the 5 biennial time
points separately (ie, ages 2–3 to
10–11 years), associations with
cardiometabolic scores at 11 to
12 years strengthened with age.
Growth trajectory analyses revealed
that cumulative exposure to high BMI
carried the greatest cardiometabolic
risk and revealed a gradient of risk
across the series of BMI trajectories.

Previous studies examining BMI and
cardiometabolic health have tended
to rely on a single BMI time
point in childhood and focused
on cardiometabolic outcomes in

adulthood.2–4 Through our findings,
we extend these studies by measuring
BMI over time and cardiometabolic
phenotypes in midchildhood. Our
results are in keeping with previous
studies but provide additional
important insights that suggest BMI
from as early as 2 to 3 years of
age is predictive of preclinical
cardiometabolic phenotypes
by ages 11 to 12 years.

Authors of several studies have
evaluated the trajectory patterns of
childhood BMI,8,28–32 with typically 3
to 4 distinct trajectories being
defined. Most individuals follow

a relatively stable trajectory
throughout childhood compared with
their peers. Higher BMI trajectories
have previously been associated with
a higher fasting insulin concentration
at age 14 years33 and higher blood
pressure values at age 18 years, as
well as obesity, increased cIMT, and
left ventricular mass in
adulthood.28,31,32 In line with these
studies, BMI trajectories in our
sample were relatively stable,
and a consistently high BMI
trajectory was associated with
worse cardiometabolic phenotypes
at 11 to 12 years of age. Given that

FIGURE 2
Cardiometabolic risk at each time point for children with overweight or obesity compared with those who are healthy weight. SMDs, with 95% CIs, in
cardiometabolic health at age 11 to 12 years in children with overweight and obesity are compared with those in children with healthy weight at 5 earlier
ages. Linear regression estimates are adjusted for socioeconomic position, sex, age, puberty status, passive smoke exposure, and born small for
gestational age. A, MetS risk score. B, PWV. C, cIMT.

TABLE 2 Differences in Mean Cardiometabolic Health Measures at 11–12 Years by 4 BMI z Score Trajectory Groups From 2–3 to 10–11 Years of Age
Compared With Those in the Low Trajectory (Reference Group)

BMI z Score Trajectories MetS Risk Score PWV cIMT

SMD (95% CI) P SMD (95% CI) P SMD (95% CI) P

Unadjusted estimates
Model R2, % 0.7 0.4 0.2
Low (reference group) — — —

Healthy 0.12 (20.14 to 0.38) .38 0.14 (20.06 to 0.34) .18 0.08 (20.15 to 0.31) .51
Low to high 0.46 (0.09 to 0.82) .02 0.41 (0.14 to 0.69) .003 0.21 (20.10 to 0.51) .19
High 0.41 (0.15 to 0.66) .002 0.18 (20.01 to 0.38) .07 0.31 (0.08 to 0.53) .008
Always very high 0.99 (0.70 to 1.29) ,.001 0.74 (0.51 to 0.96) ,.001 0.48 (0.23 to 0.74) ,.001

Adjusted estimates
Model R2, % 9 7 4
Low (reference group) — — —

Healthy 0.21 (20.07 to 0.47) .14 0.16 (20.39 to 0.37) .11 0.10 (20.14 to 0.33) .42
Low to high 0.46 (0.08 to 0.83) .02 0.44 (0.16 to 0.72) .002 0.28 (20.04 to 0.60) .09
High 0.42 (0.16 to 0.68) .001 0.20 (0.00 to 0.40) .04 0.28 (0.09 to 0.55) .007
Always very high 0.92 (0.62 to 1.23) ,.001 0.68 (0.45 to 0.91) ,.001 0.47 (0.21 to 0.74) .001

MetS risk score included systolic blood pressure, HDL cholesterol, triglycerides, and glucose. The BMI z score is the BMI standardized for age and sex (CDC growth charts). R2 is the
amount of variance the exposure(s) explain in each outcome. —, not applicable.
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trajectories were relatively stable
over time and cardiometabolic
phenotypes were only measured at
one time point, it is possible that our
longitudinal associations reflect
associations that emerge in
midchildhood. To establish exactly
when these associations emerge
requires repeated measures of both
BMI and cardiometabolic phenotypes
throughout childhood.

From a clinical perspective, our data
suggest that BMI from 2 to 3 years
onward is generally relatively stable
among the majority of children and is
associated with subsequent
preclinical cardiometabolic
phenotypes. In terms of intervention
efforts that are focused on childhood
obesity, our data provide unique
evidence that early-life BMI
measurements predict
cardiometabolic risk later in
childhood. The magnitude of
associations is also likely to translate
into clinically important differences
for children in the consistently high
BMI trajectories. Compared with

children in the low trajectory, those in
the always-very-high trajectory had
close to a 1 SD high MetS risk score
(SMD of 0.92 [95% CI 0.62 to 1.23]).
In one of our previous studies,14 a 1
SD higher continuous MetS risk score
was associated with an elevated risk
of type 2 diabetes and higher cIMT in
adulthood, highlighting the clinical
significance.

When we dichotomized
cardiometabolic health measures, the
adverse associations with
consistently high BMI were also
marked. Growth patterns have been
associated with differential
cardiometabolic risk by early
adolescence, with children with
a normal peak–early rebound pattern
or without any BMI decline after
infancy having higher insulin
resistance and metabolic risk scores.8

Because our methodologic approach
was used to generate summary BMI
trajectory patterns and was designed
to reveal empirical “typical”
groupings of patterns rather than
individuals with early adiposity

rebound, our findings are not directly
comparable. Notwithstanding, we
observed effects early in life when
BMI was considered across the 5
biennial time points separately. Infant
BMI was not included because length
was not collected in LSAC wave 1.
However, when we adjusted
estimates for small for gestational
age, the results were essentially
unchanged.

Despite the strong associations we
observed between groups, the
amount of variance in
cardiometabolic phenotypes
explained (R2) was relatively small
for both the time-point and trajectory
analyses. However, at the population
level, the small amount of variance
explained is still likely to be
meaningful, and this is likely to
increase as the pathogenesis of
cardiometabolic disease develops
over the life course with cumulative
risk factor exposure.

Our findings have public health
implications because they highlight
the subclinical effects of obesity in
childhood. This highlights the
importance of early interventions
when trajectories are likely to be
more malleable and adverse
cardiometabolic phenotypes are
reversible.4 The 2017 World Health
Organization Commission on Ending
Childhood Obesity report argued that
multisectoral action is urgently
needed to address the obesogenic
environment.34 Such action requires
systems-based approaches and policy
implementation. Until this is realized,
we must continue to try to curb the
obesity pandemic at all levels (eg,
family, child care, and school)
throughout childhood to promote
healthy weight and healthy eating,
sleep, screen, and activity behaviors
in the hope of setting healthy weight
trajectories in childhood that track
into adolescence and adulthood.35

Limitations

The study cohort is not completely
population representative. Compared

FIGURE 3
Relative risk of poor cardiometabolic health at age 11 to 12 years for BMI z score trajectories
compared with the low trajectory. The relative risk of being .75th percentile on each preclinical
cardiometabolic phenotype at age 11 to 12, by BMI z score trajectories, in which the reference
category is the low trajectory, is shown. All estimates of relative risk were adjusted for socioeco-
nomic position, sex, age, puberty status, passive smoke exposure, and born small for
gestational age.
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with the original population-based
sample (n = 5107), those who
did not take part (n = 3233) were
largely comparable to CheckPoint
participants (n = 1874) at baseline
(ie, 2004). The exception was that
compared with CheckPoint families,
those lost to follow-up came
from more socioeconomically
disadvantaged families (baseline
Socio-Economic Indexes for
Areas mean of 1019 [SD of 61]
vs 1003 [SD of 59]), were more
likely to be of indigenous background
(2% vs 6%) and have parents
whose home language was not
English (11% vs 16%).10 However,
after applying survey weights,
which accounted for nonresponse
and loss to follow-up over the 6
waves of the LSAC from 2004 to
2015, the associations were largely
unchanged.

Because of the young age of the study
population (11–12 years), it is not
possible to evaluate the effects of BMI
on actual cardiovascular disease or
events. Instead, their cardiometabolic
health was evaluated by using
preclinical phenotypes (MetS risk
scores, cIMT, and PWV) known to be
associated with conventional
cardiovascular risk factors in
adulthood and used to predict overall
cardiovascular morbidity.36–38

Physical activity and dietary intake
both reveal complex relationships
with BMI and cardiometabolic health.
We chose not to treat them as
potential confounders in these
analyses for several reasons: (1)
neither could be adequately
measured at or before baseline,
(2) our previous work in this cohort
has revealed that an inflammatory
diet is not related to cardiovascular
function and structure in children,39

and (3) in crosslagged wave-on-wave
analyses, dietary scores and/or
patterns did not consistently predict
weight-to-height ratio and BMI z
score or vice versa in subsequent
waves.40 Finally, blood samples were
collected after a semifast (median
time of 4.2 hours) rather than
a traditional 8-hour fast. However,
previous data suggest that a random
sampling or fasting for a 3-hour
period is sufficient for reliable
glucose measurements,41 and current
guidelines recommend that
nonfasting blood samples can be
routinely used for the assessment of
plasma lipid profiles.42

CONCLUSIONS

BMI from 2 to 3 years of age onward
is associated with MetS risk and
subclinical markers of atherosclerosis

by 11 to 12 years. These findings
suggest that public health efforts are
needed in early childhood to mitigate
overweight and obesity to avoid
associated cardiometabolic risks
that are already emerging in
childhood.
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