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SUMMARY
The gut microbiome has been linked to fear extinction learning in animal models. Here, we aimed to explore
the gut microbiome and memory domains according to obesity status. A specific microbiome profile asso-
ciated with short-term memory, working memory, and the volume of the hippocampus and frontal regions
of the brain differentially in human subjects with and without obesity. Plasma and fecal levels of aromatic
amino acids, their catabolites, and vegetable-derived compounds were longitudinally associated with
short-term and working memory. Functionally, microbiota transplantation from human subjects with obesity
led to decreased memory scores in mice, aligning this trait from humans with that of recipient mice. RNA
sequencing of the medial prefrontal cortex of mice revealed that short-term memory associated with aro-
matic amino acid pathways, inflammatory genes, and clusters of bacterial species. These results highlight
the potential therapeutic value of targeting the gutmicrobiota formemory impairment, specifically in subjects
with obesity.
INTRODUCTION

The decline of cognitive function is rising worldwide due to

longer life expectancy (Larson et al., 2013) and increased preva-
548 Cell Metabolism 32, 548–560, October 6, 2020 ª 2020 Elsevier In
lence of obesity and related metabolic disorders (Ward et al.,

2019). Obesity has been identified as a modifiable risk factor

for cognitive impairment (Kivipelto et al., 2018), but in turn, cogni-

tive dysfunction is a predisposing factor for overeating and
c.
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Table 1. Clinical and Neuropsychological Data of the Human Discovery Cohort

Total Population (n = 116) Without Obesity (n = 51) With Obesity (n = 65) p

Age (years) 50.4 [41.8-58.5] 53.9 [44.4-59.0] 48.6 [41.1-57.1] 0.097

Females n (%) 81 (69.8) 34 (66.7) 47 (72.3) 0.511

Education (years) 12 [11-16.8] 15 [12-17] 12 [9-14] 9.0x10�6

BMI (kg/m2) 34.8 [25.3-43.3] 24.6 (2.6) 43.2 (6.7) 3.3x10�34

Waist (cm) 110 [92-126] 89.8 (9.6) 125.2 (13.9) 3.6x10�29

Fat mass (%) 43.6 [34-50.5] 32.4 (7.2) 49.9 (5.5) 2.7x10�27

SBP (mmHg) 132.8 (20.0) 124.3 (15.8) 139.3 (20.6) 2.3x10�5

DBL (mmHg) 74.8 (11.5) 71.2 (10.9) 77.6 (11.3) 0.003

HDL-C (mg/dL) 56 [45-68] 66.0 (17.0) 50.8 (12.7) 2.1x10�7

Triglycerides (mg/dL) 90 [65.3-134.8] 79 [58-96] 123 [81.5-156] 7.1x10�5

FPG (mg/dL) 96 [90-102.8] 95 [89-101] 97 [92.5-104.5] 0.196

HbA1c (%) 5.5 (0.3) 5.5 (0.3) 5.6 (0.3) 0.035

hsCRP (mg/dL) 2.4 [0.7-5.9] 0.7 [0.4-1.4] 5.0 [2.7-9.5] 8.1x10�14

CVLT-IR (score) 61 [55-67.8] 65 [56-70] 59 [52.5-65] 0.003

CVLT-SDFR (score) 14 [12-15] 14 [12-16] 13 [11-14] 0.002

Total Digit Span (score) 14 [11.3-17] 15 [13-18] 13 [11-16] 0.003

PHQ-9 (score) 5.5 [3-9] 4 [2-6] 7 [4-10] 1.8x10�4

Results are expressed as number and frequencies for categorical variables, mean and standard deviation (SD) for normal distributed continuous

variables, and median and interquartile range [IQ] for non-normal distributed continuous variables. To determine differences between study groups,

we used c2 for categorical variables, unpaired Student’s t test in normal quantitative, and Mann-Whitney U test for non-normal quantitative variables.

p values for the difference between subjects with obesity (BMI > 30 kg/m2) and without obesity (BMI between 18.5–30 kg/m2). SBP, systolic blood

pressure; DBP, diastolic blood pressure; HDL-C, high density lipoprotein cholesterol; FPG, fasting plasma glucose; HbA1c, glycated hemoglobin;

hsCRP, high-sensitive C-reactive protein; CVLT, California Verbal Learning Test; IR, Immediate Recall; SDFR, Short Delayed Free Recall; PHQ-9, Pa-

tient Health Questionnaire.
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obesity (Gunstad et al., 2020). One of the core cognitive domains

that is impaired first is learning and memory (Petersen et al.,

1999). Subjects with obesity have shown memory deficits, with

bodymass index (BMI) being negatively associatedwithmemory

traits across adult lifespan (Cournot et al., 2006; Gunstad

et al., 2006).

The link between obesity and altered gut microbiota is clearly

recognized (Ley et al., 2006). Increasing evidence supports the

role of microbiota in cognitive disorders (Rogers et al., 2016;

Sarkar et al., 2018). Learning and memory have been associ-

ated with specific microorganisms and metabolites (Mao

et al., 2020). For example, the lack of microbiota produced

fear extinction learning deficits in germ-free mice (Chu et al.,

2019) and the administration of Lactobacillus helveticus

prevented the memory impairment induced by a western diet

(Ohland et al., 2013). Bifidobacterium longum also led to a

beneficial effect in the object recognition tasks (Savignac

et al., 2015). However, it is important to note that all of these

studies have been performed in mice.

Evidence in humans is still scarce. Preliminary findings have

shown impaired cognitive traits and detrimental metabolic

profiles linked to some bacterial families in subjects with obesity

(Arnoriaga-Rodrı́guez and Fernández-Real, 2019; Blasco et al.,

2017; Fernandez-Real et al., 2015; Palomo-Buitrago et al.,

2019). In fact, interventions that delay or prevent cognitive

impairment, such as weight loss and treatment with some antidi-

abetic drugs, are well known to be associated with microbiota

shifts (Brunkwall and Orho-Melander, 2017; Livingston et al.,

2017; Maruvada et al., 2017).
Herein, we hypothesized that memory impairment is associ-

ated with both obesity status and a specific gut microbiome pro-

file. We evaluated brain structure (through magnetic resonance

imaging [MRI]) and function (using validated neuropsychological

tests) in subjects with and without obesity and determined how

these measurements associated with the gut microbiota and

the plasma and fecal metabolome. We also tested whether fecal

microbiota transplantation (FMT) from humans into mice could

help identify transmissible factors that impact the brain’s tran-

scriptome. The results showed that a specific gut microbiome

profile was linked to several memory domains and to the volume

of hippocampus and prefrontal regions differentially in subjects

with and without obesity. A plasma and fecal metabolomics

signature associated with these traits was also identified. Impor-

tantly, the microbiota from obese subjects led to decreased

short-term memory scores in recipient mice, which had shifts

in aromatic amino acid (AAA) pathways and inflammatory genes

in the prefrontal cortex (PFC) linked to clusters of bacterial

species.

RESULTS AND DISCUSSION

Analysis of theGutMetagenomeReveals Bacterial Gene
Functions and Species Associated with Memory Scores
Memory function was evaluated in a cohort of 116 middle-aged

subjects (n = 65 with obesity, n = 51 without obesity; Table 1).

Impairments in learning, immediate recall, short delayed recall,

and working memory were observed among subjects with

obesity, based on the scores of California Verbal Learning Test
Cell Metabolism 32, 548–560, October 6, 2020 549



Figure 1. ACharacteristic Microbiota Taxonomic and Functional Profile Is AssociatedwithMemory Scores andModulated byObesity Status

(A and B) Boxplot for the total digit span (TDS) (A) and California Verbal Learning Short Delayed Free Recall (CVLT_SDFR) (B) in subjects with and without obesity.

Differences between groups were analyzed by a Wilcoxon tests.

(legend continued on next page)
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Immediate Recall (CVLT-IR), California Verbal Learning Test

Short Delayed Free Recall (CVLT-SDFR), and Total Digit Span

(TDS), respectively (Figures 1A, 1B, and S1A; Table 1).

A characteristic microbiome ecosystem was associated with

cognitive scores using DESeq2 (Love et al., 2014) after adjusting

for age, sex, BMI, years of education, and depression scores as-

sessed using the Patient Health Questionnaire (PHQ)-9 (Figures

1C–1F, S1B, and S1C; Tables S1A–S1F). To take into account

the compositional structure of the microbiome data and rule

out possible spurious associations, we further analyzed the

data using a compositional univariate approach (Table S2) with

the ALDEx2 R package (Fernandes et al., 2014), as well as a

multivariate machine learning feature selection strategy on the

centered log-ratio transformed data (Table S3). Common spe-

cies were positively associated with learning and verbal memory

(CVLT-SDFR [Figure 1C; Tables S1A, S2A, and S3A]; CVLT-IR

[Figure S1B; Table S1B]) and working memory (TDS [Figure 1D;

Tables S1C, S2B, and S3B]), such as Clostridium sp. 27_14 or

Clostridium sp. CAG:230, all of them belonging to Firmicutes

phylum. On the contrary, negative associations between the

gut microbiota and memory scores were identified within the

phylum Bacteroides (Bacteroides fragilis CAG:558, Bacteroides

sp. 43_46, Bacteroides caccae CAG:21, Bacteroides sp.

HMSC067B03, and Bacteroides sp. AR20) and phylum Proteo-

bacteria (Citrobacter freundii, Enterobacter cloacae, Salmonella

enterica, and Klebsiella aerogenes).

Of note, while some species were positively and specifically

associated with verbal learning, such as Ruminococcus sp.

CAG:353,Roseburia sp. CAG:197, Pararhodospirillum photome-

tricum, and Veillonella magna (Figures 1C and S1B; Tables S1A,

S1B, S2A, and S3A), others were positively linked to working

memory but not with learning or verbal memory (Clostridium

sp. CAG:440, Ruminococcus sp. CAG:177, and Firmicutes

bacterium CAG:103) (Figure 1D; Tables S1C, S2B, and S3B),

suggesting divergent memory domains. Remarkably, several of

the identified bacterial species were also longitudinally associ-

ated with the several memory domains measured one year later

(Figure S2). The characteristics of these subjects are shown in

Table 2.

Not only did the microbiota composition associate with mem-

ory, but also the metagenome functions were linked to this

cognitive trait (Figures 1E, 1F, and S1C; Tables S1D–S1F,

S2G, S2H, S3G, and S3H). Bacterial functions related to vitamin

B metabolism, such as riboflavin (ribBA, aphA, fre, and ubiB),

vitamin B6 (pdxA), folic acid (pabB, queE, pabC, folM, and

folX), and vitamin B12 (btuB), were negatively associated with

all memory domains (highlighted in black in Figures 1E, 1F,

and S1 and in Tables S1D–S1F). Of note, all these vitamins

are essential for one-carbon metabolism. There is convincing
(C and D) Volcano plots of differential bacterial abundance associated with the C

agenomic sequencing in the IRONMET cohort, adjusting for age, BMI, sex, educa

associated with a unit change in the corresponding test and Benjamini-Hochberg-

are colored according to phylum.

(E and F) Manhattan-like plot of significantly expressed KEGG bacterial genes a

identified from DESeq2 analysis adjusted for age, BMI, sex, educations years, a

account the direction of the association. Bars are colored according to the pFD

phenylalanine, tryptophan, and endocannabinoid metabolism are highlighted in

(G–N) Taxonomic and functional associations for the CVLT_SDFR and TDS tests in

species and metagenomic functions can be found in Table S1.
data for the association between B vitamins and cognition

(Mendonça et al., 2017; Obeid et al., 2007; Smith et al., 2010).

In particular, it is well known that thiamine and folate impact

memory (Matté et al., 2009; Witt and Goldman-Rakic, 1983).

Bacterial functions involved in thiamine (vitamin B1) metabolism

(thiB, thiK, and ABC.VB1X.P) were also associated with low

memory scores. We hypothesized that these functions would

result in preferential uptake or catabolism of thiamine by intes-

tinal bacteria, resulting in decreased thiamine uptake by the

host. Concordantly, significantly low plasma thiamine levels

were found in subjects with lower memory scores (34.5 [27.2–

45.3] versus 44.3 [32.3–64.6] ng/mL, p = 0.016). Other relevant

metagenomic functions associated with several memory do-

mains included those related to the AAA metabolism, one-car-

bon metabolism, and endocannabinoid signaling (highlighted in

Figures 1E, 1F, and S1C and in Tables S1D–S1F) and are further

discussed below.

When we evaluated the associations separately in subjects

who were obese and non-obese (Figures 1G–1N and S1D–

S1G; Tables S1G–S1R, S2C–S2F, and S3C–S3F), we found

that several Prevotella sp. were positively associated with verbal

memory among non-obese subjects (Figures 1G and S1D;

Tables S1G, S1O, S2C, and S3C) while Eubacterium and

Clostridium sp. showed similar associations within subjects

with obesity (Figure 1I and S1E; Tables S1I, S1Q and S2D). Bac-

teria belonging to Proteobacteria phylum were similarly and

negatively associated in subjects without and with obesity, but

preferentially in the latter (Figures 1G and 1I; Tables S1I and

S3D). Regarding working memory, we observed positive associ-

ations of Selenomonadaceae, Lactococcus sp., and Colinsella

sp. in non-obese subjects (Figure 1K; Tables S1K, S2E, and

S3E) and Eubacterium sp., Ruminococcus sp., Clostridium sp.,

and Faecalibacterium sp. CAG:74 in subjects with obesity (Fig-

ure 1M; Tables S1M, S2F, and S3F). The associations of

bacterial functions related to thiamine weremoremarked among

subjects with obesity (Figures 1J and 1N; Tables S1J, S1N, S2J,

S2L, S3J, and S3L) who have been described to be particularly

susceptible to thiamine deficits (Maguire et al., 2018).

In summary, several species of the phylum Firmicutes

(belonging to Clostridium, Ruminococcus, and Eubacterium

genera, and Selenomonadaceae family) were positively associ-

ated with memory scores. Species from the phyla Bacteroidetes

and Proteobacteria mainly presented negative associations with

memory scores.

To our knowledge, there are no previous descriptions of gut

microbiota linked to the different memory domains in humans.

Current results are in line with those identifying a higher preva-

lence of Bacteroidetes in patients with mild cognitive impairment

(Saji et al., 2019). Species of the Enterobacteriaceae family such
VLT_SDFR (C) and the TDS (D), as calculated by DESeq2 from shotgun met-

tion years, and Patient Health Questionnaire (PHQ)-9 scores. Fold change (FC)

adjusted p values (pFDR) are plotted for each taxon. Significantly different taxa

ssociated with the CVLT_SDFR (pFDR < 0.002) (E) and TDS (pFDR < 0.04) (F),

nd PHQ-9. The -log10(pFDR) values are multiplied by the FC sign to take into

R. Those functions related to B vitamin metabolism, one-carbon metabolism,

black.

subjects with and without obesity. The complete list of significantly associated

Cell Metabolism 32, 548–560, October 6, 2020 551



Table 2. Clinical and Neuropsychological Data of the Human

Follow-up Cohort

Total Population

(Female

n = 47, 68.1%) Baseline (n = 69) Follow-up (n = 69) p

Age (years) 51.9 [44.3-59] 53 [45.4-60.2] 5.2x10�13

BMI (kg/m2) 28.2 [24.7-40.0] 28 [24.9-36.4] 0.192

Waist (cm) 103 [86.3-121.3] 97 [87-119] 0.044

Fat mass (%) 40.2 [32.7-49.7] 36.9 [31.8-46.9] 0.158

SBP (mmHg) 128 [118-141.8] 128 [118-138.3] 0.278

DBL (mmHg) 72.5 [67-82] 74 [67.8-80] 0.817

HDL-C (mg/dL) 58 [47-70.5] 57 [49-68.5] 0.601

Triglycerides

(mg/dL)

86 [59-122] 88 [64-122] 0.796

FPG (mg/dL) 96 [89-102] 95 [90-102] 0.820

HbA1c (%) 5.5 [5.3-5.6] 5.5 [5.3-5.7] 0.317

hsCRP (mg/dL) 1.5 [0.6-5.1] 1.9 [0.7-3.3] 0.335

CVLT IR (score) 63 [56-70] 65 [60.5-72] 1.8x10�4

CVLT SDFR

(score)

14 [12-16] 15 [13.5-16] 0.005

Total Digit

Span (score)

15 [12-17] 15 [12.5-17] 0.169

PHQ-9 (score) 5 [3-9] 4 [2-8] 0.209

Results are expressed as median and interquartile range [IQ]. To deter-

mine differences between study groups, we used paired Mann-Whitney

U test. BMI, body mass index; SBP, systolic blood pressure; DBP, dia-

stolic blood pressure; HDL-C, high density lipoprotein cholesterol;

FPG, fasting plasma glucose; HbA1c, glycated hemoglobin; hsCRP,

high-sensitive C-reactive protein; CVLT, California Verbal Learning

Test; IR, Immediate Recall; SDFR, Short Delayed Free Recall; PHQ-9, Pa-

tient Health Questionnaire.
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as Citrobacter rodentium (phylum Proteobacteria) were associ-

ated with impaired memory in acute stress (Gareau et al.,

2011). Ruminococcus gnavus and different Bacteroidetes and

Enterobacter species were increased in subjects with insulin

resistance and obesity (Ley et al., 2006; Org et al., 2015) and

associated with a worse cognitive profile (Tables S1A–S1C).

Conversely, taxa of the phylum Firmicutes such as Clostridiales

and Roseburia linked to higher memory score had a decreased

relative abundance in subjects with type 2 diabetes (Tilg et al.,

2020). In mice, the combined administration of Lactobacillus

rhamnosus and helveticus led to increased non-spatial memory,

improving c-Fos expression in the hippocampus (Gareau et al.,

2011; Smith et al., 2014).

Brain Structure Differentially Associates with the Gut
Microbiome and Bacterial Functions in Subjects Who
Are Obese versus Non-obese
We evaluated the volume of different brain areas involved in

verbal and working memory in 143 subjects using MRI (Table

S4). Verbal and learning memory were associated with the vol-

umes of the right and left hippocampus, and working memory

with the right frontal inferior orbital (FIO) volume in all subjects

after adjustment for age, BMI, sex, total intracranial volume

(TIV), and PHQ-9 (from now on the term ‘‘adjusted’’ will refer

to these adjustments) (Figure 2A). The hippocampal associa-
552 Cell Metabolism 32, 548–560, October 6, 2020
tions were also significant and positive within non-obese sub-

jects, although no significant associations were found with the

frontal areas (Figures 2B–2D). Conversely, working memory

(TDS) was positively associated with the left FIO volume in all

subjects (Figure 2A) and with other frontal areas within non-

obese subjects (Figures 2B, 2E, and 2F). Notably, no signifi-

cant associations among these memory domains and brain

volumes were observed in individuals with obesity. The

adjusted relationships between the baseline verbal and

learning memory (free retrieval of words in CVLT tests) and

the volumes of the right and left hippocampus as assessed

one year later in 69 of the participants were also significant.

These findings highlight different brain structures involved in

verbal and working memory and are in line with previous re-

ports linking verbal memory performance with prefrontal and

temporal brain features, such as the hippocampus (Aslaksen

et al., 2018; Colom et al., 2007; Gross et al., 2018; Yu et al.,

2018). Interestingly, we found several Roseburia sp. positively

associated with verbal memory that were directly associated

with the adjusted volume of the left hippocampus, and also

concordant negative associations among Bacteroides sp., ver-

bal memory scores, and the adjusted volume of left hippocam-

pus (Figure 2G; Table S5A). Other concordant associations are

shown in bold in Figure 2G.

On the other hand, Acetitomaculum ruminis was concomi-

tantly associated with working memory and the adjusted vol-

ume of the right FIO area (Figure 2H; Table S5D) while several

Bacteroides sp. appeared negatively and concordantly associ-

ated with both verbal and working memory and the adjusted

volume of both the left hippocampus and right FIO area (Fig-

ure 2H; Tables S5A and S5D). We also found several bacterial

functions concordantly associated with memory scores and

adjusted volumes (both positively and negatively), shown in

bold in Figure 2I and Tables S5B and S5E. Of note, a function

related to thiamine metabolism was associated with the

adjusted right FIO volume.

Notably, the metagenomic functions found to be associated

with the volume of the hippocampus were also associated with

verbal memory, while those associated with the FIO volume

were also concordantly linked to working memory. In addition,

the bacterial taxonomy and metagenomic functions were asso-

ciated with the volume of brain areas and memory domains not

only at baseline but also at follow up (Figures S3A–S3D; Tables

S5G–S5J).

When subjects with and without obesity were evaluated sepa-

rately, several bacterial functions that were found to be signifi-

cantly linked with verbal and working memory were also associ-

ated with the adjusted left hippocampus (Figure 2K ) and right

FIO volumes (Figure 2L), respectively, in subjects without obesity

(shown in bold). Remarkably, no associations were found be-

tween metagenomic functions and these brain volumes in sub-

jects with obesity, which is in line with the lack of significant as-

sociations between memory tests and selected brain volumes in

subjects with obesity.

There is preliminary evidence that commensal bacteria are

associated with morphological brain features in animal models

(Lu et al., 2018; Luczynski et al., 2016). In addition, the gut micro-

biota composition at a single timepoint was associated with

several brain features in humans (Labus et al., 2017; Tillisch



Figure 2. The Gut Microbiota Is Associated with Brain Structure

(A and B) Heatmap showing the partial correlations (adjusted by age, sex, BMI, education years, PHQ-9, and total intracranial volume [TIV]) between the TDS and

CVLT_SDFR tests and selected brain volumes in all subjects with andwithout obesity (A) and subjects without obesity (B). Significant associations are shownwith

a cross: +, p < 0.05; ++ p < 0.01. No statistically significant associations were found in individuals with obesity and are not shown.

(C, D, E, and F) After controlling for the above covariates, the left hippocampus volume had a positive association with the CVLT_SDFR (C and D), whereas the

right frontal inferior orbital volume was positively associated with the TDS (E and F). Both associations were more marked when only individuals without obesity

were considered.

(G and H) Volcano plots of differential bacterial abundance associated with the left hippocampus volume (G) and right frontal inferior orbital volume (H), as

calculated by DESeq2, controlling for covariates. Fold change (FC) associated with a unit change in the corresponding volumes and Benjamini-Hochberg-

adjusted p values (pFDR) are plotted for each taxon. Significantly different taxa are colored according to phylum. Taxa that were also associated with thememory

domains are highlighted in bold.

(I and J) Manhattan-like plot of significantly expressed KEGG bacterial genes associated with the left hippocampus volume (I) and right frontal inferior orbital

volume (J), identified from covariate-adjusted DESeq2 analysis. The -log10(pFDR) values are multiplied by the FC sign to take into account the direction of the

association. Bars are colored according to the pFDR. Metagenomic functions that were also associated with the several cognitive domains are highlighted

in bold.

(K and L) The results of the same functional analysis for the left hippocampus volume (K) and right frontal inferior orbital volume (L) in individuals without

obesity. The complete list of associated functions can be found in Table S5. No significant functional associations were found in individuals with obesity for these

brain volumes.
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et al., 2017). For instance, in agreement with our findings, Tillisch

and colleagues (2017) found greater Bacteroides abundance to

be associated to larger gray matter volume in the hippocampus

of healthy women. In patients with irritable bowel syndrome, the

relative abundance of Firmicutes and Bacteroidetes showed a

relationship with the gray matter volume of the opercula (orbital

and triangularis sections) as well as with the temporal cortex

(Labus et al., 2017).
Memory Scores Differentially Associate with Plasma/
Fecal Metabolomics and Bacterial Functions in Subjects
Who Are Obese versus Non-obese
We then performed metabolome-wide association studies

(MWASs) using random forest-based machine learning variable

selection techniques to identify plasma (Figures 3A–3H, S4A–

S4H, and S5A–S5H) and fecal (Figures 3I–3P, S4I–S4P, and S5I–

S4P) metabolites associated with the memory tests. Remarkably,
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Figure 3. Plasma and Fecal Metabolomics in Electrospray Ionization (ESI) Positive Mode Linked to Memory Domains

(A, E, I, and M) Boxplots of the normalized permutation importance measure for the metabolites associated to the to the CVLT_SDFR in plasma (A), the TDS in

plasma (E), the CVLT_SDFR in feces (I), and the TDS in feces (M), identified by machine learning thorough the random forest-based Boruta feature selection

algorithm at each of the 500 iterations.

(B, F, J, and N) Cross-validated permutation variable importance (CVPVI) measure 3 sign of the correlation between each metabolite associated to the

CVLT_SDFR test in plasma (B), the TDS in plasma (F), the CVLT_SDFR in feces (J), and the TDS in feces (N), identified by machine learning using the random

forest-based Vita method.

(C, D, G, H, K, L, O, and P) Normalized permutation importance measure for Boruta selected metabolites associated to the CVLT_SDFR in plasma (C and D), the

TDS in plasma (G and H), the CVLT_SDFR in plasma (K and L), and the TDS in feces (O and P), in individuals with and without obesity, respectively. All metabolites

were identified based on exact mass, retention time andMS/MS spectrum, except those with (*) that were only identified based on exact mass and retention time.

3-IAAld, Indole-3-acetaldehyde; AEA, arachidonoylethanolamide; CA, cholic acid; CDA, chenodeoxycholic acid; FA, fatty acid.
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the scores of all memory domains were associated with altered

plasma levels of the AAAs tryptophan, tyrosine, and phenylala-

nine and their catabolites (Tryptophan catabolites: Indole-3-

acetaldehyde [3-IAAld], Indole-3-propionic acid [3-IPA]; Tyrosine

catabolites: 4-hydroxyphenyllactic acid [4-HPLA]; Phenylalanine

catabolites: Phenylacetylglutamine and Phenylacetylglycine).

These AAAs are the precursor amino acids of serotonin and dopa-

mine, two neurotransmitters that play a key role in the central ner-

vous system. Brain regions implicated in cognition, such as the

hippocampusand thePFC, arevastly innervatedbydopaminergic

and serotonergic afferents, and alterations in both the seroto-

nergic and dopaminergic neurotransmission are associated with

impaired learning and memory (González-Burgos and Feria-Ve-

lasco, 2008; �Svob �Stracet al., 2016). Both tryptophanand tyrosine

positively associated with memory scores. This finding is in line
554 Cell Metabolism 32, 548–560, October 6, 2020
with past work where the oral administration of tryptophan led to

improved memory acquisition, consolidation, and storage in ro-

dents (Haider et al., 2007; Noristani et al., 2012).

Previous studies have shown that alterations of the microbiota

due to antibiotic treatment resulted in decreased AAA concen-

trations and serotonin and dopamine levels in the porcine hypo-

thalamus (Gao et al., 2018). The gutmicrobiota has also shown to

directly metabolize tryptophan into several indole derivatives,

which are potent ligands of the aryl hydrocarbon receptor

(AhR). Deletion of the AhR alters adult hippocampal neurogene-

sis and contextual fearmemory (de la Parra et al., 2018; Latchney

et al., 2013). Consistently, we found several indole derivatives

positively associated with memory scores. In addition, we also

identified several bacterial functions involved in tryptophan and

phenylalanine metabolism that negatively associated with the
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different memory domains (Figures S1H and S1I; Tables S1D–

S1F). In particular, functions related to tryptophan transporters

such as tryptophan-specific transporter (mtr) and low-affinity

tryptophan permease (tnaB) had negative associations with

the CVLT-SDFR. Quinate dehydrogenase (quiA), involved in

tryptophan, tyrosine, and phenylalanine metabolism, had the

strongest negative association with CVLT. Notably, fecal quinic

acid had, by far, the strongest negative association with the

TDS scores, followed by tryptophan (Figures S4I and S4J). The

negative association between fecal tryptophan and memory

scores might be related either to its transformation into trypto-

phan metabolites (see below) or to its increased systemic

absorption.

Interestingly, the memory-related alterations in tryptophan

metabolism were only observed in individuals with obesity, align-

ing with associations of tryptophan-related metagenomic

functions and memory domains in subjects with obesity, but not

in subjects without obesity. Chronic low-grade inflammation is a

hallmark of obesity, and the association between obesity and

cognitive decline has recently been shown to be mediated by

inflammation (Bourassa and Sbarra, 2017; Yang et al., 2020).

Consistently, we found a strong positive association between

BMI and hs-CRP (R = 0.71, p < 1 3 10�16). Notably, more than

90% of tryptophan is metabolized through the kynurenine

pathway, which is activated under inflammatory conditions

(Wang et al., 2015). In line with this, plasma tryptophan levels

had a negative correlation with the hs-CRP (R = �0.34, p < 3.33

10�4). Importantly, microbial-derived products, including indoles,

play a key role in the activation of indole-amine 2,3-dioxygenase

(IDO), the rate-limiting enzyme in the kynurenine pathway (Gao

et al., 2020). There is previous evidence that these metabolites

haveaneffectonastrocytes to limit inflammationof thecentral ner-

vous system in experimental models (Rothhammer et al., 2016).

Thecurrent observations are the first inhumans, toour knowledge,

linking tryptophan and its metabolites to cognition.

Cholinergic systems have also been linked to cognitive pro-

cesses such as attention and memory (Jeltsch-David et al.,

2008). Hence, choline is the precursor of the neurotransmitter

acetylcholine, but it can also be metabolized to betaine, a key

methyl donor in the one-carbon metabolism and modulator of

homocysteine status, whose elevated plasma levels have been

implicated in learning and memory deficits (Mendonça et al.,

2017). Thus, betaine supplementation has shown to prevent

homocysteine-induced memory impairment via changes in the

activity of MMP-9 in the frontal cortex (Kunisawa et al., 2015).

In agreement, we found circulating betaine levels associated

with memory scores. The changes in betaine levels are in line

with the associations between cognitive domains and several

metagenomic functions involved in choline and betaine trans-

porters, such as choline/betaine transport protein (betT and

betS), betaine/proline transport systems ATP-binding protein

(proV), and betaine/proline transport systems substrate-binding

protein (proX) (Tables S1D–S1F). Additionally, one of the func-

tions most associated with short and immediate memory impli-

cated the choline dehydrogenase (betA) gene (Tables S1D and

S1E), responsible for the conversion of choline to betaine. Inter-

estingly, we also found several alterations in metagenomic func-

tions related to themetabolism of B vitamins involved in one-car-

bonmetabolism, homocysteine levels, and cognition (Mendonça
et al., 2017; Obeid et al., 2007; Smith et al., 2010), mainly B2, B6,

B9, and B12.

Other metabolites that had positive associations with the

different memory domains were the endocannabinoids oleamide

and arachidonoylethanolamide (AEA, anandamide). The endo-

cannabinoids are lipid-derived mediators that play a key role in

neurotransmission. Consequently, extensive evidence indicates

a role of the endocannabinoid system in the modulation of cogni-

tion, particularly in learningandmemory functioning (Marosoet al.,

2016;Morena andCampolongo, 2014). Anandamide has been re-

ported to reverse hippocampal damage and memory impairment

in rodents and protect neurons from amyloid-b cytotoxic effects

(van der Stelt et al., 2006). Similarly, oleamide administration

significantly reversed memory and cognitive impairment in mice

(Heo et al., 2003). Interestingly, we found that microbial N-acetyl

Phosphatidylethanolamine Phospholipase D (NAPEPLD) (Figures

1F and 4H; Tables S1D and S1F), which is necessary for the

biosynthesis of fatty acid ethanolamides, including the endocan-

nabinoids (Basavarajappa, 2007), had one of the strongest asso-

ciations with the cognitive domains of both humans and mice.

Effects of Microbiota Transplantation from Humans
to Mice
We then tested the possible effects of the microbiota onmemory

scores in mice. The mouse behavioral models used in this study

evaluated two different memory tasks. The cue-induced fear

conditioning is a well-recognized model of emotional memories

(Sun et al., 2020), whereas the novel object recognition paradigm

is a widely used model of memories with a different neurobiolog-

ical substrate (Puighermanal et al., 2009). Specifically, cue-

induced fear conditioning evaluates emotional memory by as-

sessing mice ability to associate neutral cues with an aversive

experience, in which behavioral responses are mainly mediated

by the amygdala (Barsy et al., 2020). The subsequent presenta-

tion of the cue retrieves the memory trace and initiates a condi-

tioned response; freezing, driven by the central amygdala (Sun

et al., 2020). In contrast, the hippocampus plays a crucial role

in the memory responses evaluated in the novel object recogni-

tion paradigm. The long-term memory traces evaluated in this

paradigm are related to spatial memories not related to

emotional aspects (Puighermanal et al., 2009).

The novel object recognition cognitive task was performed us-

ing a V maze, since the accuracy and reliability of the behavioral

response is improved when compared to the use of an open field

for this task. In this task, the exploration of the mouse is directed

to the two different objects located in the extremes of the Vmaze

(Puighermanal et al., 2009; Busquets-Garcia et al., 2013).

Microbiota from 22 human subjects (11 with low and 11 with

high memory scores matched for age, sex, BMI, and PHQ-9

scores) (Table S6) was orally delivered to individual mice in a

blinded fashion (the investigator who performed the experiment

was blinded regarding the origin of feces). The effects on mem-

ory were compared with those of saline in 11 control mice. All

mice were pretreated with antibiotics for 14 days (Figure 4A).

Mice receiving FMT had higher scores in the Novel Object

Recognition test at 24 h (NOR24 h) and lower Freezing Total

scores than control mice (Figures 4B and S6A). Interestingly,

microbiota from non-obese donors led to significantly increased

NORII24 h scores compared with both obese donors (p = 0.026)
Cell Metabolism 32, 548–560, October 6, 2020 555



Figure 4. Human Donor’s and Recipient’s Mice Memory Became Aligned through the Microbiota

(A) Experimental design for the fecal microbiota transplantation (FMT) study. The microbiota from low-memory (n = 11) and high-memory (n = 11) human donors

were delivered to recipient mice pre-treated with antibiotics for 14 days. n = 11 control mice were treated with saline. Cognitive tests were performed after

4 weeks.

(B and C) Violin plots for the Novel Object Recognition tests comparing the control group and the FMT group (t test) (B), and comparing the control group to the

groups receiving microbiota from human donors with and without obesity (one-way ANOVA) (C).

(D and E) Spearman correlation between the California Verbal Learning tests (CVLTs) in humans and the NOR24 h in mice.

(F and G) Volcano plots of differential human donor bacterial abundance associated with the recipient’s mice NOR3 h (F) and the NOR24 h (G), from DESeq2

analysis. Fold change (FC) associated with a unit change in the corresponding memory test and Benjamini-Hochberg-adjusted p values (pFDR) are plotted for

each taxon. Significantly different taxa are colored according to phylum.

(H) Manhattan-like plot showing only the significantly expressed KEGG bacterial genes associated with the mice NOR 24 h test (pFDR < 0.05) that were also

associated to the total digit span score in humans. The -log10(pFDR) values are multiplied by the FC sign to take into account the direction of the association. Bars

are colored according to the pFDR. A complete list of significantly associated bacterial genes can be found in Table S5C.

(I) Volcano plot of differential prefrontal cortex (PFC) genes associated with the NOR3 h. FC associated with a unit change in the NOR3 h test and Benjamini-

Hochberg-adjusted p values (pFDR) are plotted for each gene. Those genes with the highest FC and the lowest pFDR values are highlighted. Genes with a

possible role in memory based on the literature are also highlighted.

(J) Correlation heatmap among mice bacterial species and selected PFC genes associated with NOR3 h. Clustering was performed using Euclidean distances

and Ward linkage. Three bacterial clusters with strong correlations were identified and highlighted. These involve bacterial species positively linked to both the

NOR3 h and PFC genes positively associated with the NOR3 h, and bacterial species negatively associated to the NOR3 h and at the same negatively associated

to PFC genes positively associated with the NOR3 h and positively associated to genes negatively associated with the NOR3 h.
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and control mice (p = 0.009) (Figure 4C). Of note, both donor’s

CVLT-SDFR and CVLT-Short Delayed Cued Recall scores

were significantly correlated with NOR24 h scores in recipient

mice (Figures 4D and 4E). Bacterial species from the donor’s

microbiota, including Akkermansia sp. and Subdoligranulum

sp. (NOR3 h) (Figure 4F; Table S7A), and Clostridium, Rumino-

coccus, and Roseburia sp. (NOR24 h) (Figure 4G; Table S7B),
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were associated with increased memory scores of recipient

mice, while several Bacteroides sp. were negatively associated

with this score. Accordingly, the same Bacteroides sp. were

positively associatedwith the Freezing Total scores (Figure S6C).

Notably, several donors’ metagenomic functions, including the

NAPEPLD, associated with the TDS memory domains of the

donor andwith the NOR24 h scores of recipient mice (Figure 4H).
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Further, in linewith the human results, other associated functions

included those related to vitamin B6 (pdxJ and pdxB), B12

(btuB), and tryptophan metabolism (trpA and trpB) (Table S7C).

Finally, an RNA sequencing of the PFC of the mice highlighted

several significant genes associated with the NOR3 h score (Fig-

ure 4I; Table S7D). In the test phase, different memory scores

were recorded:micewere studied 3 h later for short-termmemory

(NOR3 h) and 24 h later for long-termmemory (NOR24 h). Notably,

the gene with the highest negative fold change was transthyretin

(ttr), which has been shown to have altered hippocampal expres-

sion associated with memory deficits in aged animals (Brouillette

and Quirion, 2008). The gene with the second strongest fold

change was slc6a3, which encodes a dopamine transporter. In

addition, there was a direct association between NORI3 h and

the5HT receptorgeneshtr1aandhtr2a, aswell as the folate recep-

tor gene folr1, further emphasizing the connection between AAAs,

folate metabolism, and memory. The nuclear factor gene nfkb1,

known to be crucial in the inflammatory cascade and in memory

consolidation (Snow et al., 2014), was also directly associated to

short-term memory; whereas dicer1 was negatively associated

with this memory trait. Relatedly, the knockout of dicer1 has

been previously reported to enhance memory (Konopka et al.,

2010). Finally, acss2 and hdac1 were directly associated to

short-term memory, confirming recent observations of brain his-

tone acetylation relationships with associative learning (Mews

et al., 2017). Interestingly, the expression of the memory genes

associated to the NORI3 h was simultaneously associated with

different bacterial clusters and in the same direction (Figure 4J).

Altogether, the current findings point to the existence of an

ecosystem of bacteria that are simultaneously linked to verbal

andworkingmemory, the volume of brain areas involved in these

traits, plasma/fecal tryptophan, microbiota-driven tryptophan

metabolites, and 5HT receptor expression in the PFC. Several

of the species identified here have been previously linked with

positive (Roseburia, Subdoligranulum, and Faecalibacterium)

and negative (Fusobacterium and Bacteroides) healthy eating

scores (Liu et al., 2019) in the same direction as the increased

and decreased memory scores described here. These findings

suggest a bidirectional host/microbe ecosystem that impacts

brain physiology. In this sense, the gut microbiota phenocopied

memory traits from humans to mice.

Limitations of Study
The current study presents some limitations. Although the sam-

ple size of the different cohorts seems appropriate, population-

based studies including subjects with different classes of obesity

and ethnic groups would be more representative of this condi-

tion. In addition, although our conclusions are based on the find-

ings of cross-sectional and one-year longitudinal studies, longer

term follow-up would be necessary to better understand the

strength of our conclusions. Finally, regarding the mouse

models, despite being widely used and validated to infer cogni-

tive function in real settings, they cannot be exactly comparable

with cognitive evaluation and brain morphology in humans.
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Human body fluids (feces, plasma) This paper N/A

Mice feces This paper N/A

Mice prefrontal cortex This paper N/A

Chemicals, Peptides, and Recombinant Proteins

Methanol LC-MS Scharlau Cat#ME03262500

Lysing Matrix E MP biomedicals Cat#SKU116914050-CF

Acetic acid LC-MS Scharlau Cat#AC03470050

Critical Commercial Assays

QIAamp DNA mini stool kit QIAGEN Cat#51504

Nextera DNA Flex Library Preparation kit Illumina Cat#20018705

TrueSeq stranded mRNA library

preparation kit

Illumina Cat#20020594

Truseq RNA Single Indexes Illumina Cat#20020492

Truseq RNA Single Indexes Illumina Cat#20020493

RNA 6000 Nano chip Agilent Cat#5067-1511

DNA 1000 chip Agilent Cat#5067-1504

KAPA Library Quantification Kit Roche Cat#07960204001

Deposited Data

Metagenome Sequencing Data of Fecal

Samples from Human subjects and Mice

European Nucleotide

Archive (ENA)

Project number: PRJEB39631

Human samples accession numbers:

ERS4859818-ERS4859933

Experimental Models: Organisms/Strains

Mouse C57BL/6J Charles River N/A

Software and Algorithms

SPSS software (version 19) IBM https://www.ibm.com/analytics/spss-statistics-

software

Rstudio (version 1.3.959) Rstudio Team https://rstudio.com/

R (version 3.6) R https://www.r-project.org/

MATLAB (version R20217a) Mathworks https://www.mathworks.com/products/matlab.html

Statistical Parametric Mapping software

(SPM12)

UCL Queen Square Institute

of Neurology

https://www.fil.ion.ucl.ac.uk/spm/software/

MassHunter Data Analysis software Agilent Technologies https://www.agilent.com/en/products/software-

informatics/mass-spectrometry-software

Prinseq-lite-0.20.4 (Schmieder and Edwards, 2011) http://prinseq.sourceforge.net/

FLASh 1.2.11 (Mago�c and Salzberg, 2011) https://ccb.jhu.edu/software/FLASH/

Bowtie2-2.3.4.3 (Langmead and Salzberg, 2012) http://bowtie-bio.sourceforge.net/bowtie2/index.shtml

MEGAHIT v1.1.2 (Li et al., 2015) https://github.com/voutcn/megahit

Prodigal v2.6.342 (Hyatt et al., 2010) https://github.com/hyattpd/Prodigal

HMMER (Durbin et al., 1998) http://hmmer.org/

Kaiju v1.6.2 (Menzel et al., 2016) https://github.com/bioinformatics-centre/kaiju

STAR software (version 2.5.3a) (Dobin et al., 2013) https://github.com/alexdobin/STAR

Subread version (1.5.1) (Liao et al., 2014) http://subread.sourceforge.net/

Limma (version 3.30.13) (Smyth, 2005) https://bioconductor.org/packages/release/bioc/

html/limma.html

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

edgeR (version 3.26.8) (Robinson et al., 2010) https://bioconductor.org/packages/release/bioc/

html/edgeR.html

DESeq2 (version 1.26.0) (Love et al., 2014) https://bioconductor.org/packages/release/bioc/

html/DESeq2.html

ALDEx2 (version 1.18.0) (Fernandes et al., 2014) https://www.bioconductor.org/packages/release/

bioc/html/ALDEx2.html

VITA (version 1.0.0) (Janitza et al., 2018) https://cran.r-project.org/web/packages/

vita/index.html

Boruta (version 6.0.0) (Kursa and Rudnicki, 2010) https://cran.r-project.org/web/packages/Boruta/

Other

1.5T Ingenia Philips Healthcare N/A

Dual energy X-ray absorptiometry GE Healthcare N/A

Cobas 8000 c702 analyzer Roche Diagnostics N/A

ADAM�A1c HA-8180V ARKRAY, Inc N/A

FastPrep-24TM MP biomedicals N/A

Reversed-phase column (Zorbax SB-Aq

1.8 mm 2.1 3 50 mm)

Agilent Technologies Cat#AG827700-914

Precolumn (Zorbax-SB-C8 Rapid Resolution

Cartridge 2.1 3 30 mm 3.5 mm)

Agilent Technologies Cat#AG873700-906

Shuttle chamber LE918 Panlab N/A

Bioanalyzer 2100 Agilent N/A

ABI 7900HT qPCR Applied Biosystems N/A

HiSeq 2500 Illumina N/A

Qubit 3.0 fluorometer Thermo Fisher Scientific N/A

NextSeq 500 Illumina N/A
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources should be directed to andwill be fulfilled by the LeadContact JoséManuel Fernández-

Real (jmfreal@idibgi.org).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
The data that support the findings of this study are available from the lead contact (jmfreal@idibgi.org) upon reasonable request. The

accession numbers for the rawmetagenomic sequence data of the 116 humans subjects reported in this paper are [European Nucle-

otide Archie]: ERS4859818-ERS4859933.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Clinical Study
Recruitment of Study Subjects

From January 2016 to October 2017, a cross-sectional case-control study was undertaken in the Endocrinology Department of

Josep Trueta University Hospital. We included consecutive subjects with obesity (body mass index, BMI330kg/m2) and age- and

sex-matched nonobese subjects (BMI 18.5-<30kg/m2), with an age range of 27.2-66.6 years. The sex Distribution and age range

is reported in Table 1. All analysis were adjusted by gender to remove the influence of gender on the results. Exclusion criteria

were: type 2 diabetes mellitus, chronic inflammatory systemic diseases, acute or chronic infections in the previous month; use of

antibiotic, antifungal, antiviral or treatment with proton-pump inhibitors; severe disorders of eating behavior or major psychiatric an-

tecedents; neurological diseases, history of trauma or injured brain, language disorders; and excessive alcohol intake (3 40 g OH/day
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in women or 80 g OH/day in men). The Institutional review board - Ethics Committee and the Committee for Clinical Research (CEIC)

of Dr. Josep Trueta University Hospital (Girona, Spain) approved the study protocol and informed written consent was obtained from

all participants.

Longitudinal Cohort
Cognitive tests and MRI variables were collected again in 93 consecutive subjects after 1 year of follow up. The sex distribution and

age range is reported in Table 2. All analyses were adjusted by gender to remove the influence of gender on the results.

Animal Study
Male C57BL/6J mice (Charles River, France), weighing 23–26 g at the beginning of the experiment were used in this study. Mice were

housed individually in controlled laboratory conditions with the temperature maintained at 21 ± 1�C, humidity at 55 ± 10%, and 7 h30/

19 h30 light/dark cyles. All animals were fed a standard chow diet RM1 (Irradiated Vacuum packed, Dietex International Ltd.). The

health status of each mouse included in the experimental schedule was checked every day before the experimental sessions and

recorded in the experimenter protocol notebook. Health status checks included body weight, physical aspect, behavior, and clinical

signs. No abnormalities were recorded in the animals included in this study. Animal procedures were conducted in strict accordance

with the guidelines of the European Communities Directive 86/609/EEC regulating animal research and were approved by the local

ethical committee (CEEA-PRBB). All the experiments were performed under blinded conditions (the researcher who administered the

microbiota was blinded in relation to the memory scores of the subjects who provided the feces). Mice were given a cocktail of ampi-

cillin and metronidazole, vancomycin (all at 500 mg/L), ciprofloxacin HCl (200 mg/L), imipenem (250 mg/L) once daily for 14 consec-

utive days in drinking water, as previously described (Kelly et al., 2016). Seventy-two h later, animals were colonized via daily oral

gavage of donor microbiota (150 mL) for 3 days. Animals were orally gavaged with saline (n = 11) and fecal material from healthy

volunteers’ samples from humans with better cognitive scores (n = 11) and humans with decreased cognitive scores (n = 11)). No

differences were found related to BMI, age, years, sex within these two groups. To offset potential confounder and/or cage effects

and to reinforce the donormicrobiota phenotype, booster inoculationswere given twice per week throughout the study. Animalswere

exposed to a series of behavioral testing including novel object recognition (NOR) test and fear conditioning with nociception

assessed by the hot plate test to ensure specificity.

At the end of the study the animals were consecutively sacrificed. The cecum was removed, weighted and stored, and the feces

collected and stored at �80�C for further microbiota analysis.

METHOD DETAILS

Clinical and Laboratory Parameters
Body composition was assessed using a dual energy X-ray absorptiometry (DEXA, GE lunar, Madison, Wisconsin). Fasting plasma

glucose (FPG), lipids profile and high-sensitivity C-reactive protein (hsCRP) levels were measured using an analyzer (Cobas� 8000

c702, Roche Diagnostics, Basel, Switzerland). Glycated hemoglobin (HbA1c) was determined by performance liquid chromatog-

raphy (ADAM�A1c HA-8180V, ARKRAY, Inc., Kyoto, Japan). Dietary pattern: The dietary characteristics of the subjects were

collected in a personal interview using a validated food-frequency questionnaire (Vioque et al., 2013).

Magnetic Resonance Imaging (MRI)
MRI Acquisition and Image Pre-processing

All subjects were studied on a 1.5T Ingenia (Philips Healthcare, Best, the Netherlands) with eight channel head coils. Structural

images were acquired using a 3D Turbo Field Echo Planar Imaging (TFEPI) sequence and parameters of echo time (TE) = 4.1ms,

repetition time (TR) = 8.4ms, flip angle 8, field of view (FOV) 230x190 matrix. A total of 145 whole-brain images per subject

with thickness axial slices of 1x1x1mm3 with or without gap. The total scan time was 189.6 s. The anatomical imaging data was

processed and analyzed using MATLAB version R2017a (The MathWorks Inc, Natick, Mass) and Statistical Parametric Mapping

software (SPM12; The Welcome Department of Imaging Neuroscience, London). Preprocessing steps involved motion correction,

spatial normalization and smoothing using aGaussian filter (FWHM8mm). Data were normalized to Diffeomorphic Anatomical Regis-

tration Through Exponentiated Lie (DARTEL) and resliced to a 2mm isotropic resolution in Montreal Neurological Institute

(MNI) space.

Volumetric Brain Analyses

The Automated Anatomical Labeling (AAL) (Tzourio-Mazoyer et al., 2002) atlas was used to obtain the volumetric information of the

right and left hippocampus, opercula (orbitalis, tringularis, opercularis), and middle and superior frontal gyri as informed by the

involvement of these brain regions in verbal memory (Aslaksen et al., 2018; Colom et al., 2007; Gross et al., 2018; Yu et al., 2018)

in 14394 participants. Volumetric differences for these targeted regions between participants with and without obesity were explored

using independent sample t tests, and we used Pearson Partial correlations to explore for Each region was orthogonalized for sex,

age and total graymatter volume inMATLAB version R2017a (TheMathWorks Inc, Natick, MA) and subsequently entered to SPSS to

investigate associations between the gray matter volumes and the performance in the CVLT and the digit tasks controlling for age,

sex, education, depressive symptoms, BMI and total intracranial volume in the whole sample, and within the obese and non-obese
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groups. Finally, we investigated the associations and between the volume in the selected brain regions and the microbiota using

Spearman correlation analyses corrected for multiple comparisons using q-values (Storey, 2002).

Neuropsychological Assessment in Humans
California Verbal Learning Test-II (CVLT)

CVLT is used to assess verbal learning and memory (Delis et al., 2000). It consists of 5 learning tests in which a list of words (list A) is

presented and the subject is asked, immediately after each presentation, to recall as much words as possible. Then an interference

list (list B) is presented, and the subject is asked to repeat the same task. CVLT Immediate Recall score is a result of the first five tests

and provides information about the learning process. In the short delay test, the patient is asked to recall list A, free (CVLT Short

Delayed Free Recall) or with semantic facilitation (CVLT Short DelayedCuedRecall). A higher score reflects a bettermemory function.

About 30 min are necessary to administrate this test and its reliability ranges from 0.78-0.94 (Paolo et al., 1997).

Total Digit Span (TDS)

Working memory was assessed by the Digit Span, a subtest of the Wechsler Adult Intelligence Scale-III (WAIS-III) (Wechsler, 2012) a

measure of general intellectual function. It is based on numbers and includes the Forward and Backward Digit Span tests. In the

Forward Digit Span test, the examinee repeats a number sequence in the same order as presented. This constitutes a measure

of working memory but also of attention. In the Backward Digit Span, the examinee repeats the number sequence in reverse order.

Total Digit Span represents the total score of the two previous tests. A higher score reflects a better memory function. In a standard-

ization sample of 394 participants (aged 16-89 years), the reliability coefficient was very high, ranging from 0.94-0.97 (Strauss

et al., 2006).

The Patient Health Questionnaire-9 (PHQ-9)

Is a depression module of the PRIME-MD diagnostic instrument for mental disorders (Spitzer et al., 1999). It encompasses 9 items of

depression symptoms plus a question about functional impairment and can be scored as a depression severity rating (scores of

10-14 moderate, 15-19 moderately severe and 20-27 severe depressive symptoms) or with an algorithm based on the DSM-IV

criteria (major and minor episode). Scores of 10 or more have an 88% sensitivity and specificity. PHQ-9 score was considered as

a possible confounding factor in the analyses.

Extraction of Fecal Genomic DNA and Whole-Genome Shotgun Sequencing
Total DNA was extracted from frozen human stools using the QIAamp DNA mini stool kit (QIAGEN, Courtaboeuf, France). Quantifi-

cation of DNA was performed with a Qubit 3.0 fluorometer (Thermo Fisher Scientific, Carlsbad, CA, USA), and 1 ng of each sample

(0.2 ng/ml) was used for shot gun library preparation for high-throughput sequencing, using the Nextera DNA Flex Library Prep kit

(Illumina, Inc., San Diego, CA, USA) according to the manufacturers’ protocol. Sequencing was carried out on a NextSeq 500

sequencing system (Illumina) with 2 X 150-bp paired-end chemistry, at the facilities of the Sequencing and Bioinformatic Service

of the FISABIO (Valencia, Spain). The obtained input fastq files were decompressed, filtered and 3$ ends-trimmed by quality, using

prinseq-lite-0.20.4 program (Schmieder and Edwards, 2011) and overlapping pairs were joined using FLASH-1.2.11 (Mago�c and

Salzberg, 2011). Fastq files were then converted into fast files, and human and mouse host reads were removed by mapping the

reads against the GRCh38.p11, reference human genome (Dec 2013), and GRCm38.p6, reference mouse genome (Sept 2017),

respectively, by using bowtie2-2.3.4.3 (Langmead and Salzberg, 2012) with end-to-end and very sensitive options. Next, functional

analyses were carried out by assembling the non-host reads into contigs by MEGAHIT v1.1.2 (Li et al., 2015) and mapping those

reads against the contigs with bowtie2. Reads that did not assemble were appended to the contigs. Next, the program Prodigal

v2.6.342 (Hyatt et al., 2010) was used for predicting codifying regions. Functional annotation was carried out with HMMER (Durbin

et al., 1998) against the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, version 2016 (Kanehisa and Goto, 2000) to

obtain the functional subcategory, route and annotation of the genes. The filtering of the best annotations and the assignment of the

orf annotation to every read were carried out using the statistical package R 3.1.0 (R Development Core Team, 2013) which also was

used to count the aligned reads and to add the category and its coverage, and finally to build abundance matrices. Taxonomic anno-

tation, was implemented with Kaiju v1.6.2 (Menzel et al., 2016) on the human and mouse-free reads. Addition of lineage information

was added, counting of taxa and generation of an abundance matrix for all samples were performed using the package R (R Devel-

opment Core Team, 2013). Fecal microbiota composition from mice was also analyzed following the same procedures as humans.

Metabolomics Analyses
For non-targeted metabolomics analysis, metabolites were extracted from fecal and plasma samples with methanol (containing

phenylalanine-C13 as an internal standard) according to previously described methods (Wikoff et al., 2008). Briefly, for plasma

samples 30ml of cold methanol were added to 10 ml of each sample, vortexed for 1 min and incubated for one h at �20�C. For faecal
samples, the content of a 1.2 mL tube of Lysing Matrix E (MP biomedicals) and 600 mL of cold methanol were added to 10mg of

sample. Samples were homogenized using FastPrep-24 (MP biomedicals) and were incubated overnight in a rocker at 4�C. Then,
all samples were centrifuged for three minutes at 12,000 g, the supernatant was recovered and filtered with a 0.2 mmEppendorf filter.

Two mL of the extracted sample were applied onto a reversed-phase column (Zorbax SB-Aq 1.8 mm 2.1 3 50 mm; Agilent

Technologies) equipped with a precolumn (Zorbax-SB-C8 Rapid Resolution Cartridge 2.1 3 30 mm 3.5 mm; Agilent Technologies)
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with a column temperature of 60�C. The flow rate was 0.6mL/min. Solvent Awas composed of water containing 0.2%acetic acid and

solvent B was composed of methanol 0.2% acetic acid. The gradient started at 2% B and increased to 98% B in 13 min and held at

98% B for 6 min. Post-time was established in 5 min.

Data were collected in positive and negative electrospray modes time of flight operated in full-scan mode at 50–3000 m/z in an

extended dynamic range (2 GHz), using N2 as the nebulizer gas (5 L/min, 350�C). The capillary voltage was 3500 V with a scan

rate of 1 scan/s. The ESI source used a separate nebulizer for the continuous, low-level (10 L/min) introduction of reference mass

compounds 121.050873 and 922.009798, which were used for continuous, online mass calibration. MassHunter Data Analysis Soft-

ware (Agilent Technologies, Barcelona, Spain) was used to collect the results, andMassHunter Qualitative Analysis Software (Agilent

Technologies, Barcelona, Spain) to obtain themolecular features of the samples, representing different, co-migrating ionic species of

a given molecular entity using the Molecular Feature Extractor algorithm (Agilent Technologies, Barcelona, Spain), as described 5,6.

We selected samples with a minimum of 2 ions. Multiple charge states were forbidden. Compounds from different samples were

aligned using a retention timewindow of 0.1%± 0.25min and amasswindow of 20.0 ppm± 2.0mDa.We selected only those present

in at least 50% of the samples of one group and corrected for individual bias.

Behavioral Testing in Mice
The NOR was performed in a V-maze as previously published (Burokas et al., 2014). Three phases of 9-min were performed on

consecutive days. Mice were first habituated to the V-maze. On the second day, 2 identical objects (chess pieces) were presented

to themice, and the time that they spent exploring each object was recorded. In the test phase (3 h later for short-termmemory or 24 h

later for long-term memory), 1 of the familiar objects was replaced with a novel object (a different chess piece), and the time spent

exploring each object (novel and familiar) was computed. A discrimination index was calculated as the difference between the times

that the animal spent exploring the novel (Tn) and familiar (Tf) object divided by the total time of object exploration: (Tn-Tf)/(Tn + Tf).

Fear conditioning was conducted as described previously with somemodifications (Burokas et al., 2017; Saravia et al., 2019). Mice

were individually placed in a shuttle chamber (LE918, Panlab, Barcelona) surrounded by a sound-attenuating cabinet. The chamber

floor was formed by parallel stainless-steel bars connected to a scrambled shock generator. On the training day, mice were habit-

uated to the chamber during 180 s before the exposure to an acute beeping 30 s sound (80 dB). Each animal received an uncondi-

tioned stimulus (US) (0.6 mA footshock during 2 s) paired with the end of the sound (conditioned stimulus, CS). After the shock, the

animal remained for 60 s in the shuttle chamber. To evaluate cued fear conditioning, mice were re-exposed to the CS in a novel envi-

ronment (a wide white cylinder in the chamber) 24 h after the conditioning session. Mice were allowed to adapt for 180 s to the new

environment which was followed by 30 s of the sound used in the training day. After the last sound trial, mice remained in the cylinder

for 60 s. Fear memory was assessed as the percentage of time that mice spent freezing during the session. Freezing response, a

rodent’s natural response to fear, was evaluated by direct observation and defined as complete lack of movement, except for respi-

ration for more than 1 s. The procedure was performed between 8.00 and 12.00 h in an experimental room different to the hous-

ing room.

Study of Gene Expression in Prefrontal Cortex
Sample Preparation

The mice brains were quickly removed and the medial prefrontal cortex was dissected according to the atlas of stereotaxic coordi-

nates of mouse brain (Paxinos and Franklin, 1997). Brain tissues were then frozen by immersion in 2-methylbutane surrounded by dry

ice, and stored at �80�C.
RNA Quality Control

Quality control of the RNA was performed using the RNA 6000 Nano chip (Agilent) on an Agilent Bioalyzer 2100 obtaining RIN values

between 8.7 - 9.8.

RNA Libraries

Libraries were prepared from 500 ng of total RNA using the TruSeq stranded mRNA library preparation kit (Illumina, #20020594) with

TruSeq RNA Single Indexes (Illumina, #20020492 and #20020493) according to the manufacturer’s instruction reducing the RNA

fragmentation time to 4.5 min. Prepared libraries were analyzed on a DNA 1000 chip on the Bioanalyzer and quantified using the

KAPA Library Quantification Kit (Roche, #07960204001) on an ABI 7900HT qPCR instrument (Applied Biosystems). Sequencing

was performed with 2x50 bp paired-end reads on a HiSeq 2500 (Illumina) using HiSeq v4 sequencing chemistry.

Bioinformatic Analysis

Raw sequencing reads in the fastq files were mapped with STAR version 2.5.3a (Dobin et al., 2013) to the Gencode release 17 based

on the GRCm38.p6 reference genome and the corresponding GTF file. The table of counts was obtained with FeatureCounts

function in the package subread, version 1.5.1. (Liao et al., 2014). The differential expression gene analysis (DEG) was assessed

with voom+limma in the limma package version 3.30.13 (Smyth, 2005) and R version 3.4.3. Genes having less than 10 counts in

at least 5 samples were excluded from the analysis. Raw library size differences between samples were treated with the weighted

‘‘trimmed mean method’’ TMM (Robinson and Oshlack, 2010) implemented in the edgeR package (Robinson et al., 2010). The

normalized counts were used in order to make unsupervised analysis, PCA and clusters. For the differential expression (DE) analysis,

read counts were converted to log2-counts-per-million (logCPM) and the mean-variance relationship was modeled with precision

weights using voom approach in limma package.
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QUANTIFICATION AND STATISTICAL ANALYSIS

First, normal distribution and homogeneity of variances were tested. Results are expressed as number and frequencies for categor-

ical variables, mean and standard deviation (SD) for normal distributed continuous variables and median and interquartile range [IQ]

for non-normal distributed continuous variables. To determine differences between study groups, we used c2 for categorical

variables, unpaired Student’s t test in normal quantitative andMann-Whitney U test for non-normal quantitative variables. Spearman

or Pearson analysis was used to determine the correlation between quantitative variables. Theses statistical analyses were per-

formed with SPSS, version 19 (SPSS, Inc, Chicago, IL). Statistics can be found in the figures and legends.

Differential abundance analyses for taxa and functions associated to the memory tests and brain areas volumes were performed

using the DESeq2 R package (Love et al., 2014), adjusting for age, body mass index, sex, education years, and Patient Health Ques-

tionnaire (PHQ)-9 scores. Fold change associated with a unit change in the corresponding test and adjusted p-values are plotted for

each taxon. Significantly different taxa are colored according to phylum. OTUs and bacterial functions were previously filtered so that

only those with more than 10 reads in at least two samples were selected. To take into account the compositional structure of the

microbiome data and rule out possible spurious associations microbiome data were also analyzed using a compositional approach

with the ALDEx2 R package (Fernandes et al., 2014). ALDEx2 uses a Dirichlet-multinomial model to inter abundance from read

counts. We used 128 Dirichlet Monte Carlo instances in the aldex.clr function, and then applied a generalized linear model with

the aldex.glm function controlling for age, BMI, sex, education years and depression scores. The p values were then adjusted for

multiple comparisons using q-values (Storey, 2002). We further analyzed the microbiome data adopting a multivariate machine

learning feature selection strategy after transforming the data to take into account the compositional nature. Specifically, first we

imputed the zero valueswith a Geometric Bayesianmultiplicative replacement using the zcompositions R package. Then, we applied

a clr transformation using the clr function from the compositions R package. Finally, we applied an all-relevant machine learning var-

iable selection strategy to the clr-transformed data using the VITA algorithm (describe below).

Metabolomics data were also analyzed using machine learning (ML) methods. Omics datasets are usually composed of high-

dimensional data with many redundant, non-informative and noisy features, i.e., not related to the outcome, with complex correlation

patterns. Therefore, feature selection, plays a crucial role in omics data analysis. In this context, MLmethods, such as random forest

(RF), are promising computational approaches for feature selection in high-dimensional omics datasets. ML tree-based algorithms

are particularly well-suited to this aim. Thus, variable selection tree-based methods have shown to perform better than classic

regression-based methods in large datasets (Sanchez-Pinto et al., 2018).

When the main goal is building a predictive model, variable selection techniques designed to identify a minimal set of strongest

predictors associated with the outcome are used (minimal-optimal problem). However, if the objective involves providing a more

holistic pictures of the underlying mechanisms, networks and pathways involved in pathophysiological or metabolic processes,

all-relevant variable selection methods, which include weak, correlated and redundant features, but avoid inclusion of uninformative

variables, are preferred (Shi et al., 2019). Therefore, we adopted an all-relevant machine learning variable selection strategy applying

two random forest-based methods, the Boruta algorithm (Kursa and Rudnicki, 2010) and the Variable Importance Testing Approach

(VITA) method (Janitza et al., 2018). The Boruta and Vita approaches have been recently proposed as the two best-performing var-

iable selection methods making use of RF for high-dimensional omics datasets (Degenhardt et al., 2019).

RF is an ensemble machine learning method based on ‘‘growing’’ many classification or regression trees. The advantage of the RF

is that the observations not used for the construction of a specific tree (termed out-of-bag (OOB) observations) may be used to

estimate the variable importance measure (VIM). Among the several VIMs, the permutation variable importance has shown to be

the most reliable. However, a drawback of VIMs in RF is that they are not directly related to the statistical significance and there

is no statistical test that discriminates between relevant and non-relevant features. Boruta and Vita are two RF-based approaches

that deal with this issue. The Boruta algorithm is a wrapper algorithm that performs feature selection based on the learning

performance of the model (Kursa and Rudnicki, 2010). The main idea behind this approach consists in: a) Randomization. Create

a duplicate copy of the original features randomly permutate across the observations (the so-called shadow features) to remove their

correlation with the response; b) Model building. Add the shadow feature to the original predictor feature dataset, built a RF with the

extended dataset, and compute the normalized permutation importance (Z) scores for each predictor and shadow feature; c)

Statistical testing. Find the maximum normalized importance among the shadow attributes (MZSA) and compare it with each orig-

inal predictor feature using a Bonferroni corrected two-tailed binomial test. Predictor features with significantly higher, significantly

lower, or non-significantly different Z scores than expected at random compared to theMZSA are deemed important, unimportant, or

tentative, respectively. d) Iteration. Unimportant and shadow features are removed and the previous steps are repeated until the

status of all features is decided or a predefined number of iterations has been performed. We run the Boruta algorithm with 500

iterations, a confidence level cut-off of 0.005 for the Bonferroni adjusted p-values, 5000 trees to grow the forest (ntree), and a number

of features randomly sampled at each split given by the rounded down number of features/3 (themtry recommended for regression).

The Vita algorithm is based on the assumption that most variables in omics datasets are non-relevant for the biological question

and can be used to approximate the unknown null distribution of variable importance scores to be able to select relevant variables

based on p-values (Janitza et al., 2018). First, the VIM for all features are obtained. The importancemeasure in the vita algorithm is not

based on the ‘‘standard’’ permutation variable importance calculated using the OOB samples, but uses a strategy inspired in the

cross-validation (CV) procedure, which is not based on the OOB observations, to obtain the CV permutation variable importance

(CVPVI). The method randomly splits the data in a total of k-folds of equal size. For each i-fold, a RF is trained using all samples
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that are not part of the i-test set, and the response variable is predicted for the samples in the i-test set. The procedure is repeated

after permutating n times the values of the predictor variables. The permutation variable importance is calculated as the average dif-

ference in the prediction errors between the original data and the permutations, and the CVPVI is the average over all k-fold-specific

permutation variable importance. Second, taking into account that for non-relevant features the change in accuracy is only due to

random variations and thus it does not change (zero CVPVI) or slightly increases (negative CVPVI) when not using the variable for

prediction, the non-positive CVPVI values are used compute the a symmetric null distribution of CVPVI scores around zero for

non-relevant features by mirroring them on the y axis. From this approximated null distribution, p-values can be calculated. As

the null distribution is obtained from non-relevant features, this testing approach is only suitable for datasets with a large number

of variables without effect. In our calculations we used 5000 trees, a 7-fold CV, and 10 permutations. P-values were then corrected

using the Benjamini-Hochberg procedure for FDR.
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