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Abstract: Obesity is the result of an energy imbalance caused by an increased ratio of caloric intake 
to energy expenditure. In conjunction with obesity, related metabolic disorders, such as 
dyslipidemia, atherosclerosis, and type 2 diabetes, have become global health problems. Obesity 
progression is thought to be associated with angiogenesis and extracellular matrix (ECM) 
remodeling. Angiogenesis occurs in growing adult adipose tissues, which are similar to neoplastic 
tissues. Adipose tissue is highly vascularized, and each adipocyte is nourished by an extensive 
capillary network. Adipocytes produce proangiogenic factors, such as vascular endothelial growth 
factor A and fibroblast growth factor 2, which promote neovascularization within the adipose tissue. 
Furthermore, matrix metalloproteinases (MMPs), including MMP-2 and MMP-9, play important 
roles in adipose tissue development and microvessel maturation by modifying the ECM. Thus, 
modulation of angiogenesis and MMP activity provides a promising therapeutic approach for 
controlling human obesity and its related disorders. Over the past decade, there has been a great 
increase in the use of alternative treatments, such as herbal remedies, for these diseases. This review 
will focus on the role of angiogenesis in adipose tissue growth and the regulation of obesity by 
antiangiogenic herbal medicines. 
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1. Introduction 

Obesity is characterized by increased adipose tissue mass that results from both increased 
adipocyte number (hyperplasia) and size (hypertrophy) [1]. Development of obesity is associated 
with extensive modifications in adipose tissue, which involves adipogenesis, angiogenesis, and 
remodeling of the extracellular matrix (ECM) [2]. 

Angiogenesis is defined as the formation of new blood vessels from preexisting vessels. It is a 
fundamental requirement for the survival of new tissues in embryonic development as well as for 
wound healing, placental development, and cyclical changes within the endometrium in the mature 
adult female [3]. However, angiogenesis is also part of the underlying pathological processes of all 
major diseases of the developed world. It is a prominent feature of cancer, atherosclerosis, diabetes, 
rheumatoid arthritis, and proliferative retinopathy [4–6]. Interestingly, the formation of new blood 
vessels is also required for the growth and development of adipose tissue to provide oxygen and 
nutrients to adipocytes [7,8]. 

Similar to neoplastic tissues, angiogenesis occurs in growing adult adipose tissues [2]. Adipose 
tissue can expand and contract throughout life, whereas most tissues do not typically grow 
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throughout adulthood, and the supporting vasculature is quiescent [9]. Adipose tissue is highly 
vascularized, and each adipocyte is nourished by an extensive capillary network [2,10,11]. Growing 
adipocytes produce proangiogenic factors, such as vascular endothelial growth factor A (VEGF-A) 
and fibroblast growth factor 2 (FGF-2), which contribute to the formation of new blood vessels within 
adipose tissue [7,12,13]. Therefore, it is suggested that the growth and expansion of adipose tissue 
depends on angiogenesis and may be inhibited by angiogenesis inhibitors. This is supported by 
reports that treatment with angiogenesis inhibitors results in weight reduction and adipose tissue 
loss, demonstrating that adipose tissue mass can be regulated by its vasculature [14–16].  

Prominent alterations in ECM remodeling have also been observed during adipose tissue 
growth. Two types of proteolytic systems, the plasminogen/plasmin (fibrolytic) and matrix 
metalloproteinase (MMP) systems, have been implicated in tissue remodeling via degradation of the 
ECM components or via activation of adipocyte growth factors [17–19]. The MMP system plays 
important roles in the development of adipose tissue and microvessel maturation by modulating the 
ECM [18,20]. Increasing evidence suggests that endogenous and exogenous MMPs regulate 
adipogenesis [20–22]. Indeed, it is well established that ECM degradation represents the first step in 
the angiogenic process and that MMP-2 and MMP-9 are necessary for this event [23], indicating that 
angiogenesis and the MMP system have synergistic actions in the regulation of adipose tissue growth. 

In addition to the link between angiogenesis and obesity, it has been suggested that obesity-
associated inflammation promotes angiogenesis and cancer. The obese state is associated with white 
adipose tissue dysfunction, including adipocyte hypertrophy, adipocyte death, macrophage 
infiltration, and elevated inflammatory cytokines [24,25] Chronic inflammation leads to the 
development and progression of several cancers, such as colorectal, gastric, breast, lung, and liver 
[26–30]. Elevated levels of inflammatory cytokines are associated with increased risk of cancer 
[27,31,32]. Consistent with high levels of inflammatory cytokines and macrophages, vascular 
permeability is enhanced in obese white adipose tissue, which facilitates the extravasation of tumor 
cells through the vessel wall, contributing to metastasis in obesity [33,34]. The tumor-promoting 
effects of obesity may occur via adipose inflammation. Moreover, activated macrophages produce 
potent proangiogenic factors, including tumor necrosis factor α (TNFα) and interleukin 1β (IL-1β) 
[32,35]. Thus, adipose inflammation during obesity contributes to increased angiogenesis and cancer. 

Based on our previously published results that demonstrate the actions of antiangiogenic herbs 
against obesity, this review will discuss the regulatory role of angiogenesis in adipose tissue and the 
use of antiangiogenic herbal medicines for the regulation of adipose tissue growth. 

2. Angiogenesis and Adipose Tissue Growth 

Adipose tissue is primarily a site for fat storage, but it also serves as an endocrine gland that 
secretes hormones, angiogenic factors, growth factors, cytokines, and free-fatty acids. Adipose tissue 
consists of diverse cell populations, including preadipocytes, mature adipocytes, adipose stromal 
cells, endothelial cells, pericytes, fibroblasts, and inflammatory cells.  

2.1. Adipose Tissue Vasculature 

Adipose tissue exhibits extensive vascularity, and each adipocyte is surrounded by an extensive 
capillary network. The adipose vasculature supplies nutrients and oxygen to growing adipocytes by 
simultaneously increasing the size and number of new blood vessels. These vessels also support the 
infiltration of inflammatory cells and remove waste products. In addition to the production of 
adipokines by adipocytes, activated endothelial cells also produce various growth factors and 
cytokines, and fenestrated vessels play an essential part in the local and systemic effects of these 
factors on the adipose tissue [36]. Furthermore, accumulating evidence shows that capillary 
endothelial cells communicate with adipocytes via paracrine signaling pathways, extracellular 
components, and direct cell–cell interactions [11,37,38]. 

The growth and differentiation of adipocytes are spatially and temporally associated with 
angiogenesis [2]. The growth and development of white adipose tissue requires extensive remodeling 
of the vascular network, primarily that of primitive capillary networks. The expansion of adipose 
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tissue can be supported by both neovascularization (for adipocyte hyperplasia) as well as dilation 
and remodeling of existing capillaries (for adipocyte hypertrophy). Hyperplasia of brown adipose 
critically depends on angiogenesis because it requires rapid activation of mitosis in precursor 
adipocytes and endothelial cells for capillary development [39]. It is likely that activation of 
angiogenesis in white adipose tissue promotes obesity [40]. In contrast to white adipose tissue, active 
angiogenesis in brown adipose tissue would stimulate the energy expenditure, leading to a lean 
phenotype.  

To adapt to the changes in volume and metabolic rates of adipose deposits, adipose vasculature 
requires continuous regulation by several angiogenic modulators. Adipocytes seem to regulate 
angiogenesis by both cell–cell contact and adipokine secretion [7,11]. Conditioned medium from 
differentiated 3T3 adipocytes and tissue homogenates of omental adipose tissues induce 
angiogenesis in the chick chorioallantoic membrane and in the mouse cornea [41–43]. Both white and 
brown adipose tissues produce several proangiogenic growth factors, such as VEGF-A and FGF-2, in 
addition to antiangiogenic factors, such as thrombospondin-1 (TSP-1). These adipose tissues also 
produce other angiogenic modulators, including leptin and adiponectin, and their expression ratio 
determines the angiogenic phenotype of the adipose tissue [4,7,8]. During the differentiation of 3T3-
F442A preadipocytes into mature adipocytes, proangiogenic factors are upregulated, whereas TSP-1 
and TSP-2 are transiently downregulated [13]. In addition to adipocytes, other types of cells 
contribute to angiogenesis modulation, including preadipocytes, fibroblasts, endothelial cells, 
resident macrophages, other inflammatory cells, and stromal cells [44].  

Adipose tissue growth is deeply associated with the remodeling of ECM. As adipose tissues 
expand during obesity progression, ECM remodeling and reorganization are essentially required to 
provide enough spaces for adipocytes to be enlarged (hypertrophy) and to adapt to the formation of new 
adipocytes from precursor cells (hyperplasia) [45]. ECM components in adipose tissue consist mainly of 
collagens, fibronectin, and laminin [46]. Additionally, several components, such as TSP-1, MMPs, 
tissue inhibitors of MMPs (TIMPs), a disintegrin and metalloproteinase (ADAMs), ADAM with 
thrombospondin motifs (ADAMTS), osteopontin, hyaluronan, and elastin, function as the 
modulators of ECM remodeling and adipose tissue expansion [47,48]. This process also helps to form 
new blood vessels that are important for healthy adipose tissue expansion and allows hypoxia that induces 
chronic low-grade inflammation and fibrosis [49]. Indeed, MMP-9 is able to release matrix-bound 
vascular endothelial growth factor (VEGF), thus indirectly inducing angiogenesis [50]. 

2.2. Proangiogenic Factors 

Angiogenesis is controlled by an elaborate balance between proangiogenic and antiangiogenic 
molecules (Table 1). Growing adipocytes produce multiple proangiogenic factors, including VEGF, 
placental growth factor (PlGF), FGF-2, leptin, neuropeptide Y (NPY), resistin, insulin, insulin-like 
growth factor 1 (IGF-1), transforming growth factor β (TGFβ), TNFα, hepatocyte growth factor 
(HGF), angiopoietin (ANG)-1 and ANG-2 (Figure 1). Preadipocytes and adipocytes also produce non-
protein, small lipid molecules, such as monobutyrin, that have been shown to stimulate in vivo 
angiogenesis and in vitro microvascular endothelial cell motility [51]. Adipose stromal cells secrete 
high levels of various proangiogenic factors, including VEGF, FGF-2, HGF, granulocyte macrophage 
colony-stimulating factor (GM-CSF), and TGFβ [20]. Inflammatory cell recruitment also significantly 
contributes to adipose neovascularization. For example, activated macrophages produce potent 
proangiogenic factors, such as TNFα, VEGF, FGF-2, IL-1β, IL-6, and IL-8 [52]. Additionally, pericytes 
and endothelial cells play crucial roles in angiogenesis. Pericytes secrete VEGF-A, TGFβ, ANG-1, and 
neuron glial antigen 2 (NG2), whereas endothelial cells produce VEGF-A, TGFβ, ANG-2, and platelet-
derived growth factor B (PDGF-B) [53,54]. 
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Table 1. Proangiogenic and antiangiogenic factors and their biological effects on angiogenesis. 

ADAM, a disintegrin and metalloproteinase; ADAMTS, ADAM with TSP motif; ANG, angiopoietin; 
FGF, fibroblast growth factor; GM-CSF, granulocyte macrophage colony-stimulating factor; HGF, 
hepatocyte growth factor; IL, interleukin; IGF-1, insulin-like growth factor 1; MMP, matrix 
metalloproteinase; NG2, neuron glial antigen 2; NPY, neuropeptide Y; PDGF, platelet-derived growth 
factor B; PlGF, placental growth factor; TGFβ, transforming growth factor β; TIMP, tissue inhibitor of 
MMP; TSP, thrombospondin; TNFα, tumor necrosis factor α; t-PA, tissue-type plasminogen activator; 
VEGF, vascular endothelial growth factor. 

 

Proangiogenic factor Antiangiogenic factor 
Factor Biological effect Factor Biological effect 

    

VEGFs Proliferation and migration of endothelial 
cells ↑, apoptosis of endothelial cells ↓, 
Plasminogen activator ↑, ECM 
degradation ↑, Lymphangiogenesis ↑, 
Vascular permeability ↑ 

Adiponectin Proliferation and migration of endothelial 
cells ↓, MMP-2, MMP-9, and VEGF 
expression ↓, apoptosis of endothelial 
cells ↑ 

Angiostatin  Angiogenesis ↓, proliferation of 
adipocytes ↓ 

FGF-2 Differentiation, migration, and proliferation 
of endothelial cells ↑, adipocyte 
differentiation ↑, angiogenesis ↑, VEGF 
expression ↑, synthesis of proteinase ↑ 

TSPs Migration, proliferation, survival of 
endothelial cells ↓, apoptosis of 
endothelial cells ↑, VEGF and bFGF 
activity ↓ 

PIGF Angiogenesis ↑, adipose tissue growth ↑ TIMPs MMP activity ↓ 
Leptin Migration of endothelial cells ↑, VEGF 

expression ↑, induction of MMP-2 and 
MMP-9 activity ↑, synergistic effects with 
VEGF or FGF on stimulation of 
angiogenesis ↑ 

MMPs Angiostatin production ↑ 
TGFβ Proliferation and migration of endothelial 

cells ↓, tube formation ↓, plasminogen 
activator ↓, ECM accumulation ↑, 
apoptosis of endothelial cells ↑ 

Adiponectin Migration and tube formation of 
endothelial cells ↑, VEGF-A expression ↑, 
adipose tissue vascularity ↑, mouse 
Matrigel plug implantation ↑  

TNFα Proliferation of endothelial cells ↓ 
ADAM10  Vascular sprouting and density ↓ 
ADAMTS-1 
and -8 

VEGF-A-induced angiogenesis ↓, FGF-2-
induced vascularization ↓ 

NPY Angiogenesis and adipogenesis ↑ 
Resistin Proliferation, migration, and tube formation 

of endothelial cells ↑ 
VEGF-
A165b 

Angiogenesis and neovascularization ↓ 

Insulin VEGF expression ↑, antiangiogenic protein 
expression ↓ 

  

IGF-1 Angiogenesis ↑, MMP expression ↑   
TGFβ Low dose: VEGF- and bFGF-induced tube 

formation of endothelial cells ↑, 
  

TNFα Low dose: vessel formation ↑, chemotaxis 
of endothelial cells ↑ 

  

HGF Vessel growth and remodeling ↑   
ANG-2 Adipose tissue vascularization ↑   
Monobutyrin Angiogenesis ↑, microvascular endothelial 

cell mobility ↑ 
  

MMPs ECM degradation ↑, adipogenesis, 
angiogenesis, and expansion of adipose 
tissue ↑, microvessel maturation ↑ 

  

t-PA VEGF expression ↑, angiogenesis ↑   
ADAM15 
and 
ADAM17 

Tube formation of endothelial cells ↑, TSP-
1 expression ↓ 

  

PDGF-B Pericyte recruitment ↑, vascular 
stabilization ↑, blood vessel maturation ↑ 

NG2 Endothelial movement ↑, survival and 
migration of endothelial cells ↑ 
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Figure 1. Regulation of adipose tissue angiogenesis by multiple factors. A variety of cells in adipose 
tissues, including preadipocytes, adipocytes, adipose stromal cells, pericytes, and endothelial cells, 
contribute to the production of multiple angiogenic stimulators and inhibitors that regulate adipose 
tissue angiogenesis. ADAM, a disintegrin and metalloproteinase; ADAMTS, ADAM with 
thrombospondin (TSP) motif; ANG, angiopoietin; FGF, fibroblast growth factor; GM-CSF, 
granulocyte macrophage colony-stimulating factor; HGF, hepatocyte growth factor; IL, interleukin; 
IGF-1, insulin-like growth factor 1; MMP, matrix metalloproteinase; NG2, neuron glial antigen 2; 
NPY, neuropeptide Y; PDGF, platelet-derived growth factor B; PlGF, placental growth factor; TGFβ, 
transforming growth factor β; TIMP, tissue inhibitor of MMP; TSP, thrombospondin; TNFα, tumor 
necrosis factor α; t-PA, tissue-type plasminogen activator; VEGF, vascular endothelial growth factor. 

It is generally accepted that the VEGF/VEGF receptor (VEGFR) system accounts for most of the 
angiogenic activity in adipose tissues, which makes it an attractive target to reduce obesity [55,56]. 
Among all bodily adipose tissues that have been examined, visceral adipose tissue expresses the 
highest levels of VEGF [57,58]. VEGF is the major angiogenic factor produced in the omentum, and 
it is most likely involved in the underlying mechanism of omentum-induced angiogenesis [57]. 
Endothelial cells from visceral adipose tissues exhibit a more marked proangiogenic and 
proinflammatory state than those from subcutaneous adipose tissues [58]. Additionally, infiltrated 
inflammatory cells and stromal cells of adipose tissues also significantly contribute to VEGF 
production. 

The VEGF family currently includes VEGF-A, -B, -C, -D, -E, -F, and PlGF, which bind in a distinct 
pattern to three structurally related receptor tyrosine kinases, denoted VEGFR-1, -2, and -3. VEGF-A 
is a major proangiogenic factor that stimulates the proliferation and migration of endothelial cells, 
and it prevents the apoptosis of endothelial cells [59]. Five forms of VEGF-A are produced in mice by 
alternative splicing (VEGF-A121, VEGF-A145, VEGF-A165, VEGF-A189, and VEGF-A206). Several 
studies indicate that VEGF-A stimulates both physiological and pathological angiogenesis by 
signaling via VEGFR-2 in a strict dose-dependent manner. VEGF-B also promotes angiogenesis and 
is implicated in ECM degradation via the regulation of plasminogen activation. VEGF-C and VEGF-
D play a crucial role in the lymphatic system via the promotion of lymphangiogenesis [59]. VEGF-E 
stimulates the proliferation of endothelial cells both in vivo and in vitro via the activation of VEGFR-
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2 [60]. VEGF-F possesses weak angiogenic activity but strong vascular permeability [61]. Another 
member of the VEGF family, PlGF, enhances angiogenesis. Functional inactivation of PlGF in mice 
leads to impaired adipose tissue development, suggesting that other VEGF members also modulate 
adipogenesis via the vascular system [62]. 

FGF-2 is a potent stimulator of differentiation, migration, and proliferation of endothelial cells 
both in vivo and in vitro [63,64]. It also enhances de novo adipocyte differentiation in mice [63]. 
During angiogenesis, FGF-2 increases VEGF expression [65] and stimulates the synthesis of 
proteinases, such as collagenase and urokinase-type plasminogen activator (u-PA), and of integrins 
to form new capillary cord structures [66,67]. It also stimulates the proliferation of fibroblasts that 
form granulation tissue in wound healing [68]. Furthermore, FGF-2-induced angiogenesis occurs in 
the absence of inflammation [69,70], which is a characteristic that distinguishes it from many other 
angiogenic factors, such as VEGF. 

Leptin is a hormone secreted by adipocytes that regulates appetite and energy homeostasis. 
Interestingly, leptin is also a potent proangiogenic factor that promotes endothelial cell migration. 
Binding of leptin to its receptor on endothelial cells leads to the activation of the signal transducers 
and activators of transcription 3 (STAT3) pathway as well as enhancement of its DNA-binding 
activity [71]. In addition to its direct proangiogenic activity, leptin upregulates VEGF expression via 
the activation of the Janus kinase/STAT3 signaling pathway [72]. Leptin has a synergistic effect on 
angiogenesis stimulation by modulating both VEGF and FGF-2 [73]. Leptin also induces MMP-2 and 
MMP-9 activity, which plays a role in ECM remodeling, and acts as an indirect proangiogenic factor 
or modulator of other known angiogenic factors [74]. 

NPY is a small peptide that is important in the promotion of adipogenesis and obesity. NPY also 
induces in vitro and in vivo angiogenesis via the activation of its Y2 receptor, which is expressed on 
vascular endothelial cells. Y2 receptor-null mice exhibit inhibition of NPY-induced angiogenesis and 
delayed wound healing [75]. The adipokine, resistin, is an angiogenic factor that stimulates the 
proliferation, migration, and tube formation of endothelial cells [76]. Insulin enhances proangiogenic 
factors, such as VEGF, and increases the survival of pericytes; however, it also reduces the expression 
of antiangiogenic proteins [77,78]. IGF-1 is a prosurvival factor for many cell types, and it promotes 
angiogenesis in endothelial cells/adipose-derived stem cells coculture system by enhancing the 
expression of angiogenesis-related growth factors [79,80]. 

TGFβ is expressed in endothelial cells and pericytes, and it is increased in the adipose tissues of 
obese mice [81]. TGFβ can positively and negatively regulate angiogenesis in a concentration-
dependent manner in endothelial cells [82,83]. Similar to TGFβ, TNFα also has proangiogenic and 
antiangiogenic activities that most likely depend on the concentration and duration of exposure as 
well as the cell type [84,85]. TNFα induces in vivo vessel formation at very low doses and stimulates 
in vitro capillary endothelial cell chemotaxis; however, it inhibits in vitro endothelial cell proliferation 
[84,85]. Preadipocytes and adipocytes produce high levels of HGF, which is an important 
proangiogenic factor for vessel growth and remodeling [86]. ANG-2 is a proangiogenic factor that is 
elevated in overweight and obese individuals [87]. Mice that overexpress ANG-2 show increased 
subcutaneous adipose tissue vascularization [88]. Similarly, ANG-2 neutralization in wild-type mice 
fed a high-fat diet (HFD) show reduced subcutaneous adipose tissue vascularization. 

PDGF-B released by endothelial cells promotes the recruitment of pericytes, vascular 
stabilization, and blood vessel maturation [89,90]. NG2 is a suitable pericyte marker and promotes 
endothelial cell motility and angiogenesis [53,91]. 

ECM proteolysis is required for cell migration during blood vessel development and also for 
adipose tissue expansion. MMPs are key factors involved in ECM degradation, and their main actions 
in adipose tissues include adipogenesis, angiogenesis, and adipose tissue expansion. Changes in 
MMP expression patterns and activities, as well as in the balance between MMPs and TIMPs, are 
crucial for ECM remodeling. Currently, 28 MMPs have been identified and classified according to 
their substrate specificity [92]. However, the MMP expression patterns in adipose tissue are still 
controversial, which could possibly be due to differences in experimental models and adipose tissue 
distribution. Increased MMP-2, but not MMP-9, activity occurs in the adipose tissues of a diet-
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induced obesity mouse model [93,94]. In contrast, the mRNA expression of MMP-3, MMP-11, MMP-
12, MMP-13, and MMP-14 is upregulated, whereas that of MMP-7, MMP-9, MMP-16, and MMP-24 is 
downregulated in the obese mice [95]. In 3T3-L1 and 3T3-F442A preadipocytes, gelatinase (MMP-2 
and MMP-9) inhibitors prevent differentiation into adipocytes in a dose-dependent manner, 
suggesting that MMP-2 and MMP-9 may be necessary mediators of adipocyte differentiation [96,97]. 

The fibrinolytic system (plasminogen/plasmin) may also be implicated in the proteolytic activity 
required for adipose tissue development. Plasminogen is converted into the active enzyme, plasmin, 
by tissue-type plasminogen activator (t-PA), which allows plasmin to degrade fibrin into soluble 
fibrin-degradation products. Additionally, t-PA also stimulates angiogenesis and VEGF expression 
in endothelial cells [98]. tPA-deficient mice on a HFD exhibit higher body weights and adipose tissue 
masses as well as an increased number of endothelial cells than control mice [99], whereas mice 
deficient in plasminogen exhibit reduced fat accumulation [100]. Proteins within ADAM and 
ADAMTS families may also contribute to the regulation of angiogenesis and adipogenesis [8]. For 
example, endothelial cell tube formation is decreased in ADAM15 small interfering RNA-treated 
endothelial cells, and an overexpression of ADAM17 in endothelial cells downregulates TSP-1 
expression [101,102], suggesting that both ADAM15 and ADAM17 can stimulate angiogenesis. 

Other components of ECM have been found to stimulate angiogenesis (Table 2). The two major 
components of ECM are collagen IV and laminins. The interaction of endothelial cells with full length 
collagen IV promotes angiogenesis [103,104] and intact laminins stimulate proliferation and 
migration of endothelial cells [105–107]. Fibronectin is a ubiquitously expressed ECM protein and 
strongly associated with endothelial ECM. Fibronectin increases the number of microvascular cells 
and promotes endothelial cell survival and migration [108–110]. Hyaluronan is a widely distributed 
ECM macromolecule. The partial degradation fragments of hyaluronan promote proliferation and 
migration of endothelial cells [111]. Osteopontin is an ECM protein expressed in a variety of tissue 
types. Osteopontin can induce VEGF release and stimulate proliferation and migration of endothelial 
cells [112,113]. Elastin is also a key protein of ECM. Elastin and bioactive elastin peptides, termed 
elastokines, not only enhance angiogenesis, but also upregulate proMMP-2 expression and activity 
[114,115]. 

Table 2. ECM components involved in angiogenesis. 

Proangiogenic factor Antiangiogenic factor 

Factor Biological effect Factor Biological effect 
    

Collagen IV Low dose: neovessel elongation and 
survival ↑, high dose: neovessel 
stability ↑ 

Endostatin Proliferation and migration of 
endothelial cells ↓, adipogenesis 
↓ 

Laminin Proliferation and migration of 
endothelial cells ↑ 

Arresten, canstatin, 
and tumstatin 

Proliferation and migration of 
endothelial cells ↓, microvessel 
density ↓, VEGF ↓ Fibronectin Migration and survival of endothelial 

cells ↑, number of microvascular cells 
↑ 

Hyaluronan 
fragments 

Proliferation and migration of 
endothelial cells ↑, bFGF-induced 
neovascularization ↑ 

Laminin fragments Tube formation and migration of 
endothelial cells ↓, apoptosis of 
endothelial cells ↑ 

Osteopontin VEGF release ↑, migration and tube 
formation of endothelial cells ↑  

Fibronectin and 
anastellin 

Blood vessel density ↓ 

Elastin and 
elastokine 

Tube formation of endothelial cells ↑, 
ProMMP-2 expression and activity ↑ 

Hyaluronan Proliferation, migration, and 
capillary tube formation of 
endothelial cells ↑ 

    

2.3. Antiangiogenic Factors 

Adipose tissue produces several angiogenesis inhibitors, including adiponectin, angiostatin, 
endostatin, TSP-1, TSP-2, TIMPs, ADAM, ADAMTS, and VEGF-A165b. In contrast to proangiogenic 
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factors, regulation of adipose vessel growth and remodeling by endogenous angiogenesis inhibitors 
is relatively poorly understood.  

Adiponectin is an adipose-derived adipokine that is significantly decreased in obese animals 
and humans. Adiponectin levels in endothelial cells are reported to be inversely correlated with in 
vitro angiogenesis. Adiponectin inhibits endothelial cell proliferation, migration, and angiogenesis 
via the reduction of MMP-2, MMP-9, and VEGF, via caspase-mediated endothelial cell apoptosis, or 
via inhibition of autophagy in rhesus choroid-retinal endothelial cells [116–119]. However, in vivo 
and in vitro studies have shown that adiponectin promotes migration and tube formation of 
endothelial cells, VEGF expression, adipose tissue vascularity, and mouse Matrigel plug implantation 
[120–122], suggesting that the relationship between adiponectin and angiogenesis is still unclear.  

Angiostatin is an internal proteolytic fragment of plasminogen, and most crinkle domains of 
plasminogen inhibit angiogenesis [123]. Angiostatin induces weight reduction in obese ob/ob mice, 
relative to controls [14].  

The modulation of angiogenesis by TSP-1 and TSP-2 has been extensively studied [124]. TSP-1 
and TSP-2 are potent endogenous inhibitors of angiogenesis. They inhibit angiogenesis through 
direct effects on endothelial cell migration, proliferation, survival, and apoptosis and by antagonizing 
VEGF and basic FGF (bFGF) activities.  

MMP activity is modulated through interactions with TIMPs. Of the four TIMPs, most can 
inhibit the activities of all MMPs [125]. TIMP expression analysis in the adipose tissues of obese mice 
has shown that TIMP-1 mRNA is upregulated with obesity, whereas TIMP-4 mRNA is 
downregulated and TIMP-2 and TIMP-3 mRNA are not significantly altered [95]. Interestingly, 
TIMP-1 deficiency decreases body weight and adipose tissue mass, suggesting that TIMP-1 promotes 
adipose tissue development [126]. An explanation for these inexplicable findings may be that the 
expression levels of angiogenesis inhibitors may increase to limit further vascular growth when the 
adipose tissue growth rate plateaus. Consistent with this hypothesis, TSP-1 expression is 
downregulated in preadipocytes, but it is upregulated in differentiated adipocytes [127]. TSP-1 loss 
attenuates weight gain and fat accumulation in HFD-fed mice without any significant effects on 
adipocytes or adipose tissue development [128,129]. Thus, the regulatory role of TSP-1 in adipose 
tissue angiogenesis warrants further investigation.  

ADAMTS-1 and ADAMTS-8 can inhibit VEGF-induced angiogenesis and suppress FGF-2-
induced vascularization [130]. Both factors mediate a greater antiangiogenic response than that of 
TSP-1 or endostatin, with ADAMTS-1 showing a greater inhibitory capacity than ADAMTS-8. The 
antiangiogenic activities of ADAMTS-1 and ADAMTS-8 are mediated through their thrombospondin 
(TSP) motifs. ADAMTS-1 significantly inhibits VEGFR2 phosphorylation with consequent 
suppression of endothelial cell proliferation [131]. Furthermore, inhibition of ADAM10 induces 
vessel formation and density in vivo, indicating that ADAM10 may also have a positive effect on 
sprouting angiogenesis [81].  

In contrast to the proangiogenic effects of VEGF-A165a, VEGF-A165b, which is a splice variant 
of the VEGF-A gene, possesses antiangiogenic activity [132,133]. VEGF-A165b inhibits angiogenesis 
and neovascularization in several types of experimental models. 

ECM components have been shown to inhibit angiogenesis. Endostatin is a C-terminal fragment 
of type XVIII collagen, and ob/ob mice receiving endostatin exhibit weight loss or inhibited weight 
gain [14,134]. Endostatin also prevents diet-induced obesity by inhibiting angiogenesis and 
adipogenesis [14,135]. N-terminal fragments of type IV collagen, known as arresten, canstatin, and 
tumstatin, function as potent inhibitors of angiogenesis [103,136]. Similar to collagen IV, proteolytic 
peptides of laminins may inhibit angiogenesis [105]. Fibronectin and anastellin (the III1-C fibronectin 
fragment) also decrease blood vessel densities in mice [137]. Native hyaluronan inhibits angiogenesis 
by decreasing endothelial cell proliferation and migration and capillary tube formation [138] but 
accelerates bFGF-induced neovascularization in Matrigel plugs assays [139]. Thus, the role of native 
hyaluronan in angiogenesis needs to be further examined. 
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3. Modulation of Obesity by Antiangiogenic Agents 

Newly formed adipose tissue relies on continued angiogenesis to sustain growth. Thus, 
substantial evidence suggests that various angiogenesis inhibitors can significantly reduce body 
weight gain and adipose tissue mass, which further indicates the large role of angiogenesis in adipose 
tissue growth. Several types of angiogenesis inhibitors, such as TNP-470, CKD-732, galardin, and 
Bay12-9655, thalidomide and its analogs, and VEGFR2 inhibitors, have been shown to inhibit fat mass 
expansion in mice (Table 3). 

Table 3.  Effects of angiogenesis modulators on angiogenesis and obesity. 

Angiogenesis 
modulator Angiogenesis Obesity Mouse model 
    

TNP-470 Methionine aminopeptidases ↓, 
proliferation of endothelial cells ↓, 
angiogenesis ↓, vascular growth ↓ 

Body weight ↓, proliferation 
of 3T3-L1 preadipocytes ↓ 

HFD-fed, Ay, Cpefat, 
and ob/ob mice 

CKD-732  
(TNP-470 analogue) 

Methionine aminopeptidases ↓, 
proliferation of endothelial cells ↓  

Body weight ↓, fat mass ↓, 
adipocyte size ↓ 

Arcuate nucleus lesion 
and ob/ob mice, SD rats, 
and OLETF rats 

Galardin MMP activity ↓ Gonadal adipose tissue mass 
↓  

HFD mice 

BAY 12-9566 MMP activity ↓, bFGF-induced 
angiogenesis ↓ 

Body weight ↓ Ob/ob mice 

Thalidomide bFGF-induced angiogenesis ↓, 
neovascularization ↓ 

Body weight ↓ Ob/ob mice 

VEGFR blockers 
 

Angiogenesis ↓, fat vessel ↓  Adipogenesis ↓, fat tissue 
expansion ↓, body weight ↓ 

HFD mice 

    

bFGF, basic FGF; FGF, fibroblast growth factor; HFD, high-fat diet; MMP, matrix metalloproteinase; 
OLETF, Otsuka Long-Evans Tokushima fatty; SD, Sprague Dawley; VEGF, vascular endothelial 
growth factor; VEGFR, VEGF receptor. 

TNP-470 is a synthetic analog of the fungal metabolite, fumagillin, which inhibits in vitro 
endothelial cell proliferation and in vivo angiogenesis [140]. TNP-470 also significantly reduces body 
weight in obese animal models, such as Ay, Cpefat, and ob/ob mice, and it suppresses 3T3-L1 
preadipocyte proliferation [10,14]. HFD-fed C57BL/6J mice also show less vessel growth and weight 
gain with TNP-470 treatment [16,141]. CDK-732 is a TNP-470 analog that significantly decreases body 
weight, fat pads, and adipocyte size in various animal models, such as arcuate nucleus lesion mice, 
ob/ob mice, Sprague Dawley rats, and Otsuka Long-Evans Tokushima fatty rats [142]. 

Galardin and BAY 12-9566 are MMP inhibitors [143]. Galardin significantly reduces gonadal and 
subcutaneous adipose tissue masses, but not body weight in HFD-fed wild-type mice, suggesting a 
role of MMP inhibitors in the adipose tissue development [17]. BAY 12-9566 treatment results in 
weight loss or reduced weight gain in ob/ob mice relative to controls [14]. 

Thalidomide and its analogs suppress cell proliferation and angiogenesis, but the use of this 
drug has been stopped due to its teratogenic effect in humans [144]. Additionally, thalidomide 
treatment results in weight loss in ob/ob mice [14]. 

VEGFR2 inhibitors can limit diet-induced adipose tissue expansion and adipocyte 
differentiation during in vivo adipogenesis [55,145]. 

4. Antiobesity Effects of Antiangiogenic Herbal Medicines 

Over the past decade, there has been a notable increase in the use of alternative treatments, 
especially herbal remedies. Herbal extracts or active components have been shown to inhibit 
angiogenesis and obesity (Table 4). 
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Table 4. Effects of medicinal herbs on angiogenesis and obesity. 

Angiogenesis 
modulator Angiogenesis Obesity Mouse model 
    

Curcumin (polyphenol) Microvessel density ↓, VEGF and VEGFR 
expression ↓ 

Adipogenesis ↓, body 
weight ↓ 

HFD mice 

EGCG (catechin in green 
tea) 

Tube formation of endothelial cells ↓, 
VEGF signaling ↓ 

Body weight ↓, fat 
mass ↓ 

HFD mice 

Ginseng and ginsenosides MMP activity ↓, fat vessel ↓, expression 
of MMP, VEGF-A, FGF-2 ↓ 

Adipogenesis ↓, body 
weight ↓ 

HFD and db/db 
mice 

Ob-X (herbal composition 
from lemon balm, white 
mulberry, and injin) 

Tube formation ↓, VEGF-induced 
microvessel outgrowth ↓, fat vessel ↓, 
MMP activity ↓ 

Adipogenesis ↓, body 
weight ↓, adipose 
tissue growth ↓ 

HFD and ob/ob 
mice 

ALS-L1023 (lemon balm) Tube formation ↓, VEGF- and FGF-
induced endothelial cell proliferation ↓, 
fat vessel ↓, MMP activity ↓ 

Adipogenesis ↓, 
adipose tissue mass ↓, 
body weight ↓  

HFD mice 

    

EGCG, epigallocatechin gallate; FGF, fibroblast growth factor; HFD, high-fat diet; MMP, matrix 
metalloproteinase; VEGF, vascular endothelial growth factor. 

Curcumin, a major component of turmeric (Curcuma longa), suppresses adipogenesis in 3T3-L1 
adipocytes as well as angiogenesis and obesity in HFD-fed obese C57BL/6J mice [146]. Curcumin 
inhibits adipokine-induced angiogenesis of human umbilical vein endothelial cells and reduces 3T3-
L1 differentiation. Curcumin supplementation not only decreases the expression of VEGF and 
VEGFR in obese mice, but also reduces body weight gain, adipocyte, and adipose tissue 
vascularization. 

Green tea catechin, epigallocatechin gallate (EGCG), inhibits endothelial cell tube formation by 
inhibiting VEGF signaling [147]. EGCG at physiological concentrations interferes with the formation 
of VEGF and VEGFR2 complexes, leading to decreased angiogenic signaling. EGCG also reduces 
body weight, epididymal white adipose tissue mass, and lipogenesis gene expression in HFD-fed 
mice [148].  

Korean red ginseng (Panax ginseng) prevents obesity by inhibiting angiogenesis in HFD-induced 
obese C57BL/6J mice and db/db mice [94,149,150]. Korean red ginseng extract (GE) decreases blood 
vessel densities in the visceral adipose tissues of obese mice [94,149]. GE decreases VEGF-A and FGF-
2 mRNA levels but increases TSP-1 mRNA levels in adipose tissues. GE decreases MMP-2 and MMP-
9 mRNA levels but increases the levels of TIMP-1 and TIMP-2 mRNA. Administration of GE 
suppresses MMP-2 activity in adipose tissues of HFD-fed obese mice. Ginseng and its active 
components, ginsenosides (GSs), inhibit adipogenesis in 3T3-L1 preadipocytes by regulating MMP-2 
and MMP-9 [151]. Among the GSs, Rb1 most effectively inhibits MMP activity. Moreover, the 
inhibitory actions of GE and GSs on adipogenesis are attenuated by the MMP activator, phorbol 12-
myristate 13-acetate.  

The antiangiogenic herbal composition, Ob-X, which is composed of lemon balm (Melissa 
officinalis), white mulberry (Morus alba), and injin (Artemisia capillaris), reduces adipose tissue growth 
and development in nutritionally and genetically obese mice and inhibits adipogenesis in 3T3-L1 
preadipocytes [152–154]. Ob-X inhibits in vitro tube formation of endothelial cells, VEGF-induced 
microvessel outgrowth in an ex vivo rat aortic ring assay, and the formation of new blood vessels 
induced by VEGF and bFGF in a mouse Matrigel plug assay [152,153]. Furthermore, visceral adipose 
tissue sections from Ob-X-treated mice have much lower blood vessel densities than those of 
untreated mice. Ob-X exerts a specific regulatory effect on genes involved in angiogenesis and the 
MMP system in adipose tissues. Consistent with the findings above, body weight gain and adipose 
tissue mass of treated mice are significantly less than those of untreated mice. Ob-X is capable of 
suppressing adipogenesis and adipocyte-specific gene expression [154]. Ob-X also suppresses MMP-
2 and MMP-9 gelatinolytic activities in 3T3-L1 adipocytes. 

Lemon balm extract, ALS-L1023, also regulates adipogenesis and obesity by inhibiting 
angiogenesis and MMP activities in animal models of obesity [93,155,156]. ALS-L1023 inhibits 
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endothelial cell VEGF- and FGF-induced tube formation [155]. Its inhibitory effect on endothelial cell 
proliferation is comparable to that of TNP-470. ALS-L0123 decreases the number of von Willebrand 
factor- (a marker of endothelial cells)-positive cells in HFD-fed obese mice. ALS-L1023 reduces the 
body weights, visceral adipose tissue mass, and average adipocyte sizes of HFD-fed C57BL/6J mice. 
ALS-L1023 reduced visceral fat mass in phase II human trial by computed tomography analysis 
(unpublished data) and phase III human clinical trial is in progress. Hepatic lipid accumulation, 
inflammatory cells, and collagen levels are lower in treated obese female OVX and male mice than in 
untreated mice [156,157]. ALS-L1023 also alleviates hyperglycemia and glucose intolerance in obese 
female mice [158].  

5. Conclusions 

Obesity is a complex metabolic disorder that is deeply associated with type 2 diabetes, 
dyslipidemia, atherosclerosis, hepatic steatosis, and cancer. Emerging evidence suggests that 
modulation of angiogenesis seems to have the potential to reduce fat mass and impair obesity 
development by regulating adipose tissue vasculature. Interestingly, natural antiangiogenic agents 
could inhibit obesity and its related disorders. Thus, angiogenesis inhibitors, particularly herbal 
medicines, may be an attractive pharmacological target for the treatment of obesity and its related 
metabolic disorders (Figure 2). 

 

Figure 2. Regulation of obesity by antiangiogenic medicinal herbs. 
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