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ABSTRACT

Coronavirus disease 2019 (COVID-19) is an emerging disease that has reached pandemic status by rapidly spreading worldwide. Elderly individuals
and patients with comorbidities such as obesity, diabetes, and hypertension show a higher risk of hospitalization, severe disease, and mortality
by acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. These patients frequently show exacerbated secretion of proinflammatory
cytokines associated with an overreaction of the immune system, the so-called cytokine storm. Host nutritional status plays a pivotal role in the
outcome of a variety of different infectious diseases. It is known that the immune system is highly affected by malnutrition, leading to decreased
immune responses with consequent augmented risk of infection and disease severity. Body composition, especially low lean mass and high
adiposity, has consistently been linked to worsened prognosis in many different diseases. In this review, evidence concerning the impact of
nutritional status on viral infection outcomes is discussed. Adv Nutr 2020;00:1–11.
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Introduction
The coronavirus disease 2019 (COVID-19) pandemic is
caused by the novel severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2). This disease has rapidly spread
across the globe, and as of 1st June 2020, 6 million cases
of COVID-19 have been reported worldwide, including
>371,000 deaths (1).

Age, diabetes, cardiovascular disease, immunosuppres-
sion, and organ failure are risk factors related to illness
severity (2). SARS-CoV-2 infection is associated with a
broad clinical spectrum, ranging from asymptomatic to
the development of serious pneumonia, acute respiratory
distress syndrome, and death. Data from 72,314 patients with
COVID-19 show that the prevalences of mild, severe, and
critical cases were found to be 81%, 14%, and 5%, respec-
tively (2). Fever, cough, fatigue, muscle pain, diarrhea, and
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pneumonia are the most common manifestations of COVID-
19, and may progress to acute respiratory distress syndrome,
metabolic acidosis, septic shock, coagulation dysfunction,
and organ failure, including liver, kidney, and heart (3–6).

COVID-19 patients usually present lymphocytopenia
upon admission, and thrombocytopenia and leukopenia are
frequent among those with serious illness (7). Furthermore,
augmented concentrations of C-reactive protein and proin-
flammatory cytokines, such as IL-6, were also associated
with severity (7, 8). The body’s first reaction against viral
infection is the triggering of rapid and synchronized innate
immune responses. However, an excessive reaction may
cause damage to human tissues (9, 10). It is postulated
that hyperinflammatory aggression of the lungs, induced by
disproportionate immune activation and coagulopathy, may
be involved in disease progression and aggravation.

Nutritional status and diet modulate inflammation and
immune function and may be adjusted to impact COVID-
19 outcome. Herein, we will discuss the current available
evidence concerning the role of nutritional status in COVID-
19 patients, as well as the potential relevance of nutri-
tional readjustment in the prevention and management of
infection.
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Nutritional Status and COVID-19
The unexpected and sudden appearance of new infectious
diseases, such as HIV, severe acute respiratory syndrome,
chikungunya virus, and now, the COVID-19 pandemic, has
emphasized our vulnerability to newly emergent pathogenic
agents. Host nutritional status has been accepted as a key
factor in the outcome of a variety of different infectious
diseases (11).

Obesity
A high prevalence of obesity is described among hospitalized
patients with SARS-CoV-2 infection (12–16). In Spanish
intensive care units (ICUs), 48% of the first patients admitted
with COVID-19 were obese (14). Similarly, among 1482
of US hospitalized patients with COVID-19, 48.3% were
obese (17). In the same way, a study from China showed
that ∼43% of the hospitalized patients with COVID-19
were obese or overweight at admission (18). Obesity has
also been associated with mortality and increased disease
severity (12, 13, 15, 19). BMI of patients with cardiovascular
disease and SARS-CoV-2 infection in the ICU is higher
than that of patients without need for critical care (13). The
same study also demonstrated higher overweight/obesity
prevalence among nonsurvivors (13). Among the patients
who died of COVID-19, obesity prevalence was found to
range from 4.60% to 12.10% in Brazil and Italy, respectively
(20).

Even though young individuals are at decreased risk of
critical COVID-19, if obesity is a concomitant condition,
patients are ∼2.0 times more likely to need critical care on
admission (21). The association between younger patients
with a BMI (kg/m2) ≥25 and pneumonia at admission
was also described, and low-flow supplemental oxygen and
mechanical ventilation was necessary in such cases (22).

Thrombotic events potentially aggravate the course of
COVID-19 (23), and obese patients are at increased risk
(24). Obesity also inflicts detrimental consequences on lung
physiology, such as reduced forced expiratory volume and
forced vital capacity (25). Invasive mechanical ventilation in
patients with COVID-19 has been reported to be positively
correlated with obesity, independently of age and comorbidi-
ties (15).

Obesity is characterized by an excess of white adipose
tissue, which is an extremely active organ with immunologic,
endocrine, and metabolic functions (26). Adipose tissue–
resident immune cells are important for tissue homeostasis
and significant changes in their number and function
are observed in obesity. Adipose tissue chronic low-grade
inflammation in obesity is attributed to the expansion of
effector T cells, including CD4+ helper T (Th) cells and
CD8+ cytotoxic T lymphocytes, as well as to macrophage in-
filtration (27–32). Some studies also describe B-lymphocyte
accumulation in animal models of obesity (33, 34), which,
through interactions with T cells, increase inflammation (33).
The preactivation of specific inflammatory cytokines in the
expanded adipose tissue results in reduced antigen response
and functional impairment of natural killer (NK) cells,

dendritic cells, and macrophages (35, 36). One such immune
dysfunction results in a dampened immune response to
infections (37–39).

Remarkably increased concentrations of proinflammatory
cytokines in patients with severe SARS-CoV-2 infection are
considered to be among the most important causes of acute
respiratory distress syndrome and multiple-organ failure
(40). A balanced pro- and anti-inflammatory response is
crucial for body homeostasis (41, 42). The loss or impaired
function of one of the regulatory components can favor the
“cytokine storm” phenomenon in tissues with exacerbated
proinflammatory response, such as the lung and adipose
tissue (43). As recently proposed by Ryan and Caplice (44),
unbalanced local inflammation is associated with overre-
action to viral spread, entry, and viral shedding, leading
to amplification and maintenance of the immune response
(44). The impaired inflammatory response contributes to
the severity of lung lesions found in patients with influenza
(45), and may play a key role in COVID-19 progression. We
put forward the hypothesis that white adipose tissue acts as
a relevant player in the disease, since SARS-CoV-2 enters
human cells via angiotensin-converting enzyme 2 (ACE2),
which is expressed not only in the lung and heart, kidney,
liver, and blood vessels, but also abundantly in the white
adipose tissue (46, 47), An additional interesting aspect is
that there is adipose anatomical site–associated heterogeneity
in the expression of ACE2, which is higher in the visceral
depots (48). The enlarged visceral adipose pads in obese
patients have been suggested to possibly act as reservoir for
viruses, thereby increasing total virus load as a result of
an “explosive systemic response of the angiotensin II and
angiotensin II type 1 receptor axis” promoted by the tissue,
and not perceived by the clinicians, who generally do not
envisage white adipose tissue as a vital organ (47).

Obese individuals present additionally, a delayed ca-
pacity of IFN production, which allows higher viral RNA
replication, consequently increasing the opportunity of the
emergence of novel, more virulent viral strains (38, 49).
Obesity is also associated with epithelial dysfunction and
increased permeability, which could permit rapid virus
shedding from the tissue and, consequently, faster spreading
(50). Based on these data, it is possible to infer that obesity
could have a potential role in the transmission of SARS-
CoV-2 (51). In patients with influenza, obesity was related
to virus shedding for an extended time (up to 104% longer)
than that observed in lean individuals (52), whereas BMI
was positively correlated with virus content in exhaled
breath (53). Thus, apart from their increased susceptibility
to infection, obese individuals could have a role in the
augmentation of virus pathogenicity and transmission. Since
52% of the world’s population are now obese or overweight
(54), practical implications, such as a longer quarantine for
obese people, should be considered (45).

It is also important to highlight that obese people may
not benefit from a vaccine against SARS-CoV-2 to the same
extent as healthy-weight individuals. An association between
higher BMI and a greater decline in influenza antibody
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titers 1-y post vaccination (55), as well as lower concentra-
tions of vaccine-induced H1N1-specific antibodies in obese
mice (56), were reported. Additionally, vaccinated obese
individuals show double the risk of developing influenza
(and influenza-like illness) compared with normal weight
individuals (57). If the same is observed in COVID-19
patients, vaccination may not be an effective method for
ensuring protection of the overweight population.

Anthropometric (i.e., BMI, waist and hip circumfer-
ences) and metabolic parameters (i.e., plasma glucose and
insulin) have been used to evaluate the risk of COVID-
19 complications (58). Assessment of insulin resistance,
a robust indicator of altered metabolic health, impaired
cardiovascular function, and cardiovascular disease–related
mortality, is recommended (59) both in primary care, as well
as in the evaluation of the potential risk and prognosis in
patients with a positive SARS-CoV-2 test result.

It is worth noting that obese patients are at higher risk of
the development of comorbidities, such as type 2 diabetes,
hypertension, and cardiovascular disease (60). These comor-
bidities are increasingly associated with disease progression
and poor COVID-19 outcome (61). In a meta-analysis with
data from 76,993 patients, the prevalence of hypertension,
cardiovascular disease, and diabetes in patients with COVID-
19 was ∼16%, 12%, and 7%, respectively (62). The incidence
of comorbidities was also determined in a meta-analysis of
6 studies: diabetes, hypertension, and cardio-cerebrovascular
diseases were found to be 2- to 3-fold more prevalent in
ICU/critical patients than in noncritical cases. These results
highlight the susceptibility for worsened outcome among in-
dividuals with obesity-related comorbidities (63). In addition
to increased propensity and worsened outcome in patients
with previous cardiovascular metabolic disease, COVID-19
infection can, per se, induce cardiovascular complications,
including heart failure, myocarditis, pericarditis, vasculitis,
and cardiac arrhythmias (64, 65). Diabetic individuals show
an increased susceptibility to infectious diseases, especially
influenza and pneumonia (65–67), and experience the
disease with greater severity when infected with respiratory
viruses (68–70).

At present, the reason why individuals with obesity-
related comorbidities are at increased risk of severe COVID-
19 infection is unrecognized; however, it may be associated
with the ACE2 expression in adipose pads and adipose tissue
capacity to induce systemic inflammation. ACE inhibitors
and angiotensin II type I receptor blockers increase con-
siderably the expression of ACE2, and these drugs are very
commonly used for the treatment of patients with diabetes
and cardiovascular diseases (71, 72). Thus, the higher ACE2
content could help internalization of the virus by cells,
thereby increasing the severity of COVID-19 (73).

Serum concentrations of inflammation-related biomark-
ers are also considerably higher in patients with diabetes
(74). Thus, such patients, when infected, may be at higher
risk of developing the “cytokine storm,” and consequently of
worsened prognosis. In type 2 diabetes there is an imbalance
between coagulation and fibrinolysis, leading to increased

concentration of clotting factors and relative inhibition of
the fibrinolytic system. Additionally, endothelial dysfunction
with enhanced platelet aggregation and activation is observed
in insulin resistance and type 2 diabetes, favoring the
emergence of a hypercoagulable prothrombotic state (75).

Distancing measures aimed at the reduction of social
interaction have been adopted in several countries as a
measure to reduce the spread of SARS-CoV-2 infection
(76). Given the potential risk of developing severe COVID-
19, individuals with comorbidities should firmly adhere to
protective measures. To decrease the risk of infection and
severe disease, diabetic individuals should maintain strict
glycemic control. Inadequate glycemic control is associated
with several infections, such as pneumonia, endocarditis,
and tuberculosis (77). Frequent monitoring of glycemia is
even more important for obese individuals with type 2
diabetes, since medication adjustment to maintain blood
glucose concentrations may be necessary to adapt to the new
caloric requirements of reduced physical activity and energy
intake imposed by quarantines (78). In addition, diabetic
patients with heart disease or kidney disease may require
specific care to stabilize cardiac/renal status (77).

Undernutrition
Undernutrition, a pathologic state in which dietary intake
fails to meet the body’s energy or nutritional requirements,
can arise from inadequate intake of macronutrients or
micronutrients, abnormally increased energy expenditure,
defective absorption of nutrients, or any combination of
these (79). Worldwide, there were an estimated 821 million
undernourished individuals in 2017 (80), a condition widely
prevalent in developing countries (81). Protein–energy mal-
nutrition, as well as deficiencies in specific single nutrients,
are largely related to increased risk of mainly occuring
infectious diseases (82–85).

Immune cells show high energy expenditure (86), and
energetic and nutritional demand is increased during periods
of infection. For example, basal metabolic rate is significantly
higher during a fever due to the activation of the immune
response (87). Because immune cells have no substantial re-
serve of nutrients, glucose and amino acid uptake is required
for immune system activation (88). Indeed, malnutrition
induces a reduction in immune cell number, especially of T
cells (81, 85, 89, 90). For instance, lower CD4+ and CD8+ T-
cell numbers have been described in malnourished children
(91). Moreover, malnutrition induces atrophy of primary
lymphoid organs, reducing T- and B-cell numbers, leading
to leukopenia (92). This reduced number of immune cells
contributes to the impairment of the immune response in
malnutrition (93).

Both under- and overnutrition have a great impact on
adipose tissue mass, modulating the factors secreted by this
tissue, such as hormones and cytokines. During starvation,
the activation of immune cells is limited by adipokine
signaling, which reduces nutrient consumption, and conse-
quently, the body becomes more susceptible to infection (94).
Leptin plays a pivotal role in reporting nutritional status to
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immune cells by increasing glucose metabolism in T cells
(93). Leptin concentrations are inversely modified in both
extremes of body weight, being reduced in malnourished and
increased in obese individuals. Experimental studies show
that leptin receptor–deficient mice, as well as malnourished
animals, present reduced viral clearance, diminished lung
IFN-γ concentration, and lower survival during influenza-A
pneumonia infection (95). It is known that body adiposity is
extremely affected by protein–energy malnutrition, leading
to reduced systemic leptin concentrations (96). Therefore,
the impaired immune response in malnutrition may be
related to poor nutrient intake and dysfunction in leptin
signaling, critical factors for the activity and proliferation of
immune cells (93). These findings suggest a crucial role of
adipose tissue in the maintenance of immune defense in viral
infections.

As described previously for obesity, undernutrition may
also impact viral replication and pathogenicity. Increased
oxidative stress in animal models was associated with
virulence and incidence of reproducible genome mutations
observed for coxsackievirus and influenza (97). Since this
phenomenon was described for 2 distinct viral RNA families,
it is possible to infer that malnutrition may affect the outcome
of other virus-induced diseases (97).

ACE2, the receptor crucial to the SARS-CoV-2 entry into
the host cells, is widely expressed in gastrointestinal cells,
such as those of the intestinal epithelium. Therefore, the
digestive system may also be affected by SARS-CoV-2 in-
fection, leading to gastrointestinal disorders and impairment
of the nutritional status of patients (98). Indeed, anorexia,
diarrhea, vomiting, nausea, and mild abdominal pain were
reported in COVID-19 patients (7). Anorexia is the most
common among the digestive system–related symptoms, and
it could be related to inflammation, hypoxia, dysregulated
hepatic function, or represent the side effects of therapeutic
drugs. Diarrhea is yet another common gastrointestinal
symptom, affecting ∼2% to 50% of patients (99). The
particular mechanism related to the pathogenesis of diarrhea
in patients with COVID-19 is not fully elucidated; however,
some possible causes are described: direct aggression to the
digestive epithelium by the virus, side effects of antiviral
drugs, or dysbiosis of the intestinal microbiota induced
by antibiotics (99). Anorexia along with diarrhea could
contribute to nutritional imbalance, and consequently to
a delay in recovery (100, 101). Moreover, patients with
COVID-19 and digestive symptoms were more prone to
complications of acute respiratory distress syndrome (7).
Clearly, the gastrointestinal symptoms of COVID-19 may be
even more harmful in malnourished patients. This aspect
could be of even more importance for the elderly, since a
reduction in mobility along with a depletion of muscle mass
and poor nutrient intake are frequently present in older
adults (102).

Aging and Nutrition and COVID-19
Elderly persons are more susceptible to SARS-CoV-2 in-
fection and experience a poorer outcome when compared

with younger patients (7, 103, 104). Aging is associated with
alterations in both the innate and the adaptive immune
response, a process known as immunosenescence (105).
Hematopoietic tissue (106, 107), lymphocyte number (108),
proliferative and functional capacity of effector lymphocytes
(107), and activity of NK cells (109) are all reduced in the
elderly. These alterations induce a basal systemic inflam-
matory state, or “inflammaging” (110), and are associated
with an augmented susceptibility to viral infection (111).
High morbidity and mortality are observed in elderly
patients with infections, especially those of the respiratory
tract (112–114). This situation could be prevented through
vaccination; however, vaccine efficacy in this population is
greatly reduced in comparison to that in younger adults
(115–119). Immunosenescence-related alterations, such as
reduced concentrations of naive T and B cells, decreased
B-cell diversity, and impaired antibody response to new
antigens, result in diminished response to vaccination or new
infection (108, 120, 121).

Nutritional deficiencies of micro- and/or macronutrients
are frequent in older adults, as stated (122). Although there
are few data regarding malnutrition in patients with SARS-
CoV-2 infection, given the prevalence of severe disease
among elderly patients it is likely that a significant proportion
of these patients were undernourished at the time of
hospitalization (123). In agreement with this hypothesis, the
risk of malnutrition and malnutrition in individuals >65 y
of age was 27.5% and 52.7%, respectively, in a cross-sectional
study in patients with COVID-19 (124). Many reasons
may be related to the higher prevalence of compromised
nutritional status in older patients with COVID-19. First,
a catabolic state induced by the inflammatory response to
SARS-CoV-2 infection may induce skeletal muscle wasting.
The concentrations of proinflammatory markers, such as C-
reactive protein, TNF-ɑ, and ferritin are usually augmented
in these patients (125), and the utilization of albumin
and even muscle protein may be needed to synthesize
the acute-phase proteins (125). This is consistent with the
hypoalbuminemia and low calf circumference observed in
these patients (126, 127). Second, in addition to respiratory
symptoms, gastrointestinal symptoms have been reported as
being most prevalent in elderly patients with COVID-19 (7).
Thus, digestive tract malfunction can exacerbate the poor
nutritional status in older patients with COVID-19. Last,
immunosenescence per se may contribute to potentialize all
alterations in COVID-19 (128).

Sarcopenia
Sarcopenia is defined by impaired muscle strength, reduced
muscle quantity/quality, and poor physical performance
(129). The pathogenesis of sarcopenia is associated with
proinflammatory cytokines (130, 131), and muscle mass
and strength are inversely proportional to IL-6 and TNF-
ɑ plasma concentrations in healthy older individuals (131).
Loss of muscle mass and function is a usual condition in
the elderly, as well as in younger individuals with acute
and chronic muscle-wasting diseases, such as cancer, chronic
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heart failure, liver cirrhosis, and chronic infection (132).
Studies have described that sarcopenia is a predictor of
the risk of pneumonia in the elderly (132), and it is
associated with mechanical ventilation, hospitalization time,
and mortality in ICU patients (130, 132–134).

Sarcopenia may affect normal weight healthy and over-
weight/obese individuals, being different from weight loss
or cachexia (135–137). Augmented fat mass associated with
low muscle mass or high fat mass together with low muscle
strength are known as sarcopenic obesity (138). Ectopic
fat accumulation in skeletal muscle and other tissues is a
characteristic of obesity (139). The increased fat content leads
to mitochondrial dysfunction and induces the production
of reactive oxygen species (134). This microenvironment is
related to enhanced secretion of proinflammatory myokines
capable of inducing muscle dysfunction (134). In turn,
adipose tissue inflammation may be exacerbated by these
proinflammatory myokines, supporting the condition of
chronic low-grade systemic inflammation. This sets up a
vicious cycle supporting inflammation of both skeletal mus-
cle and adipose tissue, hence stimulating and maintaining
sarcopenic obesity (134). As obesity has been related to a
poor prognosis in patients with COVID-19, it cannot be
discarded that sarcopenic obesity is an even more harmful
scenario (133).

The sarcopenic phenotype is also associated with de-
creased physical activity (129). This is extremely relevant
in terms of the COVID-19 pandemic, since many people
are staying at home and are currently physically inactive
(spending a long time sitting or lying down). Prolonged
immobility is associated with muscle mass wasting within
the first week of bed rest, which is even worse in individuals
with the severe form of the disease (140). The duration of
hospital stay of COVID-19 patients is, on average, between
11 and 15 d (141); thus, patients may be prone to developing
sarcopenia.

Bearing in mind that sarcopenia may play a relevant
role in COVID-19 outcome, Krznaric and colleagues (142)
recently proposed the utilization of 2 clinical tools to assess
nutritional risk and loss of muscle mass and function
remotely by incorporating them into telemedicine processes
and digital platforms. For a simple, preliminary diagnosis of
sarcopenia, the Strength, Assistance with walking, Rise from
a chair, Climb stairs and Falls (SARC-F) questionnaire, which
evaluates muscle strength, assistance with walking, rise from
a chair, climbing stairs, and falls, may be adopted (143). The
prescription of personalized nutrition care and support is
recommended for patients whose questionnaire results are
predictive of sarcopenia and poor outcome (142, 144, 145).

Concluding Remarks
The COVID-19 outbreak has brought a great challenge
for all communities and health care systems worldwide.
Considering the absence of specific therapeutic treatment
and of an effective vaccine, countries are taking strong
measures to contain the spread of COVID-19, ranging from
increasing social distancing to community-wide quarantine.

FIGURE 1 Obesity and related comorbidities are associated with
physiological alterations leading to higher susceptibility to
infection and pathogenicity and transmission of COVID-19. ACE2,
angiotensin-converting enzyme 2; COVID-19, coronavirus disease
2019; SARS-CoV-2, severe acute respiratory syndrome
coronavirus 2.

Changes in dietary habits and lifestyle parameters, due to
quarantine and social isolation, may lead to an impaired
nutritional status. Obesity and related comorbidities are
associated with physiological alterations leading to higher
susceptibility to infection and pathogenicity and transmis-
sion of COVID-19 (Figure 1). Moreover, with no imminent
end to the pandemic , people should be encouraged to
improve their lifestyle to lessen the risks both in the current
and likely subsequent waves of COVID-19. Healthy habits
are important not only to ensure optimal immune response
but also to prevent and/or treat undernutrition, obesity,
and obesity-related comorbidities in COVID-19 patients.
Therefore, clear advice on the impact of the nutritional status
in COVID-19 outcomes should be provided to alert the
population. Finally, it should be emphasized that nutritional
status must be considered also in health policies designed to
diminish the impact of COVID-19.
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