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SUMMARY
Tissue-specific mechanisms prompting obesity-related development complications in humans remain un-
clear. We apply multiomics analyses of subcutaneous adipose tissue and skeletal muscle to examine the ef-
fects of acquired obesity among 49 BMI-discordant monozygotic twin pairs. Overall, adipose tissue appears
to bemore affected by excess body weight than skeletal muscle. In heavier co-twins, we observe a transcrip-
tional pattern of downregulated mitochondrial pathways in both tissues and upregulated inflammatory path-
ways in adipose tissue. In adipose tissue, heavier co-twins exhibit lower creatine levels; in skeletal muscle,
glycolysis- and redox stress-related protein andmetabolite levels remain higher. Furthermore,metabolomics
analyses in both tissues reveal that several proinflammatory lipids are higher and six of the same lipid
derivatives are lower in acquired obesity. Finally, in adipose tissue, but not in skeletal muscle, mitochondrial
downregulation and upregulated inflammation are associated with a fatty liver, insulin resistance, and dysli-
pidemia, suggesting that adipose tissue dominates in acquired obesity.
INTRODUCTION

Obesity, a major public health burden, has increased globally,

doubling in prevalence in 70 countries between 1980 and 2015.1

Obesity predisposes individuals to a range of complex metabolic
Cell
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diseases, including type 2 diabetesmellitus (T2DM), cardiovascu-

lar diseases, and some cancers.2 Triggers for obesity and related

adverse health outcomes vary remarkably between individuals

and are multifactorial, involving genetic and lifestyle factors in

the context of multiple social and environmental changes.
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Table 1. Participant characteristics of 49monozygotic twin pairs

discordant for BMI with a mean age of 45.7 years (SD ± 17.8); 27

pairs (55%) were female

Leaner

Co-twin

Heavier

Co-twin p Value

Body weight (kg) 75.8 ± 15.6 92.7 ± 17.9 <0.001

BMI (kg/m2) 26.2 ± 4.7 32.0 ± 5.5 <0.001

Body fat (%) 33.5 ± 9.0 41.1 ± 7.3 <0.001

Body fat (kg) 26.7 ± 10.9 39.0 ± 11.6 <0.001

Fat-free mass (kg) 47.5 ± 9.9 51.2 ± 11.7 <0.001

Subcutaneous fat (cm3)a 3,013

(2,435–4,697)

5,527

(4,312–7,652)

<0.001

Intra-abdominal fat (cm3)a 552 (327–805) 1,146

(743–2214)

<0.001

Adipocyte volume (pl) 450 ± 192 637 ± 232 <0.001

Liver fat (%)a 0.6 (0.4–1.1) 2.7 (0.7–8.2) <0.001

Fasting glucose (mmol/L) 5.5 (5.0–5.8) 5.8 (5.2–6.0) 0.028

Fasting insulin (mU/L) 5.3 (3.3–7.3) 7.9 (5.4–12.4) <0.001

HOMA-IR index 1.1 (0.7–1.7) 2.0 (1.5–3.1) <0.001

Matsuda index 7.2 (4.7–9.6) 4.0 (2.7–5.2) <0.001

Total cholesterol (mmol/L) 4.8 ± 0.9 4.9 ± 1.0 0.401

HDL cholesterol (mmol/L) 1.6 (1.3–1.9) 1.4 (1.2–1.7) <0.001

LDL cholesterol (mmol/L) 2.9 ± 0.8 3.1 ± 0.9 0.117

Triacylglycerol (mmol/L) 0.9 (0.7–1.1) 1.3 (0.9–1.3) <0.001

CRP (mg/L) 1.4 (0.6–4.0) 1.7 (0.9–3.7) 0.182

Total physical activity

(Baecke)

8.4 (7.0–9.3) 7.9 (6.9–9.0) 0.350

Data are reported as mean ± SD (normally distributed variables) or

median (interquartile range for skewed variables). We used paired t tests

to calculate the p values and considered p < 0.05 significant. Skewed

variables were loge transformed before analysis. BMI, body mass index;

HDL, high-density lipoprotein; LDL, low-density lipoprotein; HOMA-IR,

homeostatic model for the assessment of insulin resistance; CRP,

C-reactive protein.
aData are based on 26 twin pairs.
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Obesity affects keymetabolic organs, including adipose tissue

and skeletal muscle, closely associated with metabolic health.3

Dysfunction of excess adipose tissue is characterized by

increased adipocyte size (hypertrophy),4 downregulation of

mitochondrial oxidative metabolism,5 impaired lipid buffering

capacity,6 and increased inflammation.7 Consequently, ectopic

lipid accumulation (because of saturation of adipose tissue stor-

age capacity), mitochondrial dysregulation, and low-grade

inflammation may contribute to development of skeletal muscle

and liver dysfunction, including diminished insulin sensitivity and

increased oxidative stress and inflammation.6,8

To date, few global omics studies have examined adipose

tissue and skeletal muscle separately to unravel the metabolic

alterations associated with obesity. Global transcriptomics

studies have shown significant adipose tissue dysregulation in

obesity and insulin resistance. The adipose tissue transcriptome

is characterized by downregulation of mitochondrion-related

pathways, including oxidative phosphorylation (OXPHOS),

branched-chain amino acid (BCAA) catabolism, fatty acid
2 Cell Reports Medicine 2, 100226, April 20, 2021
b-oxidation,9–11 and upregulation of inflammatory[9–13] and

extracellular matrix organization pathways.12,13 These findings

become more distinct among individuals with more pronounced

insulin resistance.11,13–15 Furthermore, microarray analyses of

mature adipocytes16–18 and metabolomics of adipose stem cell

cultures19 also revealed alterations in glucose and amino acid

metabolism, mitochondrial metabolism, and inflammation in

obesity.

In skeletal muscle tissue, several single omics analyses have

been performed, although they primarily focused on insulin

resistance and T2DM rather than obesity per se. Skeletal muscle

transcriptome analyses20,21 and transcriptome analyses from

isolated myoblasts22 from individuals with T2DM compared

with healthy controls identified downregulation of mitochondrial

pathways and myogenesis20–22 and upregulation of apoptosis

and inflammation.21 Similarly, in T2DM, lower mitochondrial

and amino acid metabolism protein levels and higher glycolysis-

and stress-related protein levels were found using proteomics

platforms.23–27 Less is known about perturbations in skeletal

muscle tissue metabolism in obesity without metabolic compli-

cations, although smaller proteomics studies suggest lower

mitochondrial protein levels in obesity even in the absence of

T2DM.24–27

To date, several studies have combined metabolic tissue

and/or plasma collections to identify biomarkers of insulin resis-

tance or T2DM,28–35 but only a few have specifically studied

obesity. A comprehensive global understanding of the underly-

ing mechanisms of obesity and the early stages of metabolic

complications at the whole-body and tissue-specific level is

currently lacking. Furthermore, the relative importance of adi-

pose tissue and skeletal muscle for development of concomitant

complications in obesity remains unclear, as do the roles of ge-

netics and lifestyle factors affecting obesity in tissuemetabolism.

Here we aimed to understand the tissue-specific biological

mechanisms and the relative tissue-specific importance under-

lying acquired obesity and related metabolic alterations. We

apply a multiomics framework to adipose tissue and skeletal

muscle by examining biological networks constructed using

RNA sequencing, proteomics, and metabolomics obtained

from 49 rare monozygotic twin pairs discordant for body mass

index (BMI); that is, when one twin is heavier than their co-

twin. These individuals share a genetic background as well as

most early life events and a family environment. Thus, our results

provide a global metabolic profile in obesity primarily dependent

upon acquired, environmental, and lifestyle factors.

RESULTS

Twin pairs highly discordant for clinical characteristics
of obesity
Table 1 summarizes the anthropometric andmetabolic character-

istics of leaner and heavier co-twins. The twin pairs, with a mean

weight difference of 17.1 ± 9.0 kg, were highly discordant (p <

0.001) for all measures of adiposity. In addition, the heavier co-

twins were more insulin resistant (p < 0.001) with higher plasma

triacylglycerol (TAG) concentrations (p < 0.001) and lower levels

of high-density lipoprotein (HDL) (p < 0.001), whereas the fasting

glucose level was only marginally higher in the heavier twin
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(p = 0.028). We detected no differences in total cholesterol, low-

density lipoprotein (LDL) cholesterol, C-reactive protein (CRP), or

physical activity levels between the heavier and leaner co-twins.

More transcripts were altered in adipose tissue than in
skeletal muscle
To understand the biological effect of the acquired excess body

weight, we first compared the adipose tissue and skeletal muscle

transcriptomes amongco-twins. In adipose tissue, among 14,558

identified genes, 3,454 transcripts were expressed differentially

between co-twins (false discovery rate [FDR] p < 0.05), with a total

of 1,615downregulated and 1,839upregulated genes in the heav-

ier co-twins (Table S1). The top 50 downregulated differentially

expressed genes included mitochondrial metabolism-related

genes (e.g., ACSS3, ETFA, MCCC2, and PCCA) and lipid meta-

bolism genes (SLC27A2, LPIN1, PPARA, HADH, and CIDEA).

The top 50 upregulated genes included inflammation-related

genes (IL1RN, C3AR1, CMSD2, and CD163).

In skeletal muscle, among 13,179 identified genes, we identi-

fied 1,287 differentially expressed genes between co-twins

(nominal p < 0.05, four genes with FDR p < 0.05), of which 665

were downregulated and 622 were upregulated in the heavier

co-twins (Table S2). The top 50 downregulated genes included

growth and nutrient-sensing genes (AKT1 and PDE4A) and mito-

chondrial membrane transport genes (HK2 and MCUR1). The

top 50 upregulated genes were linked to oxidoreductase activity

(NQO1) and lipid metabolism (THRSP and TYSND1).

KEGG pathway enrichment alterations in adipose tissue
and skeletal muscle
To gain insight into the differentially expressed transcriptome in

adipose tissue and skeletal muscle, we performed KEGG (Kyoto

Encyclopedia of Genes and Genomes) pathway enrichment an-

alyses. We observed consistent downregulation of mitochon-

drion-related metabolic pathways in the heavier co-twins in ad-

ipose tissue and skeletal muscle (Figure 1A). Upregulated

pathways in adipose and skeletal muscle tissue included the

extracellular matrix (ECM) remodeling pathways (Figure 1A).

In adipose tissue, we found multiple fatty acid metabolism

pathways, linked to lipid degradation among themost downregu-

lated pathways. Twenty-two inflammatory pathways were upre-

gulated significantly in the heavier co-twin (Figure 1B), including

pathways related to innate and adaptive inflammation, such as

the complement and coagulation cascades and Toll-like receptor

signaling and T cell receptor signaling pathways. Other upregu-

lated pathways were associated primarily with cell signaling.

In skeletal muscle tissue, we found 12 significantly different

pathways in co-twins (Figure 1C). Nutrient-sensing pathways,

including the insulin signaling pathway and autophagy, were

downregulated in the heavier co-twin along with metabolism of

several amino acids. The upregulated pathways in the skeletal

muscle tissue were involved in the N-glycan biosynthesis

pathway.

Downregulated transcripts for most genes in
mitochondrion-related pathways
Next, because mitochondrion-related metabolic pathways were

downregulated in both tissues, we inspected the individual tran-
scripts of the significantly differentially expressed mitochondrial

pathways (Figure 1): OXPHOS, tricarboxylic acid (TCA) cycle, py-

ruvate metabolism, and BCAA (i.e., valine, leucine, and isoleu-

cine) degradation. The overall pattern clearly revealed that all

five complexes of OXPHOS were downregulated in adipose

and skeletal muscle tissue in the heavier co-twins (Figure 2).

The majority of TCA cycle-related, pyruvate metabolism, and

BCAA degradation genes tended toward downregulation in the

heavier co-twins in both tissues (Figure 2). Notable exceptions

included the upregulated cytosolic genes BCAT1 and SDS in

adipose tissue, which control BCAA degradation before mito-

chondrial oxidation.

Reporter metabolite analysis predicts alterations in
mitochondrial metabolites
We integrated the RNA sequencing data with genome-scale

metabolic models to gain insight into the subcellular localization

of the altered metabolic reactions as well as the reporter metab-

olites between co-twins.36,37 In adipose tissue, most of the re-

porter metabolites affected by transcriptional downregulation

in the heavier co-twin were mitochondrial (Figure 3A). Skeletal

muscle showed a similar, although less prominent pattern for

mitochondrial reporter metabolites associated with transcrip-

tional downregulation (Figure 3A). The reporter metabolites

associated with the transcriptional upregulation localized to the

lysosomes and Golgi apparatus for adipose tissue and skeletal

muscle (Figure 3A).

We then selected individual reporter metabolites (based on the

Metabolic Atlas38) involved in the significantly altered mitochon-

drial pathways, as shown in Figure 2. We found that the majority

of significantly altered reporter metabolites appeared in adipose

tissue (Figure 3B). For both tissues, significant reporter metabo-

lites in the mitochondrial pathways were transcriptionally down-

regulated in the heavier co-twins, with the exception of citrate [c]

for skeletal muscle, which was upregulated in the heavier co-

twins. The majority of OXPHOS and TCA cycle intermediates

were transcriptionally downregulated in the heavier co-twin in

adipose tissue. Pyruvate emerged as transcriptionally downre-

gulated in both tissues, particularly the downstream genes.

BCAA reporter metabolites were also identified as transcription-

ally downregulated, especially in adipose tissue. In summary,

adipose tissue exhibited a higher number of affected reporter

metabolites and, in both tissues, significant downregulation of

genes around OXPHOS, the TCA cycle, pyruvate, and BCAA

occurred in the heavier co-twins.

Tissue metabolomics alterations in adipose tissue and
skeletal muscle
To characterize the actual metabolome in acquired obesity, we

applied an untargeted metabolomics approach using mass

spectrometry, identifying 1,391 metabolites. In adipose tissue,

17 of 37 significantly altered metabolites (Table S3) and 21 of

63 significantly altered metabolites in skeletal muscle tissue

(Table S3) were lower in the heavier co-twins. Six lipid-related

metabolites were significantly lower in both tissues in the heavier

co-twins, including two oxylipins (Table S3).

In adipose tissue, metabolites with lower levels in the heavier

co-twins also included creatine, ATP, and taurocholic acid. The
Cell Reports Medicine 2, 100226, April 20, 2021 3
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Figure 1. KEGG pathway enrichment analysis of differentially expressed genes in co-twins

(A) The heatmap presents pathways that are significantly different in both tissues.

(B) The heatmap presents significantly altered pathways in adipose tissue (n = 49 twin pairs).

(C) The heatmap presents significantly altered pathways in skeletal muscle (n = 44 twin pairs).

The direction and significance of each pathway was based on the gene set as a whole while considering the p value and fold change for each gene. KEGG

pathways with FDR p < 0.05 are shown; blue indicates significantly downregulated pathways in the heavier co-twins, whereas red indicates upregulated

pathways. Pathways are grouped according to their biological function. AT, adipose tissue; SkM, skeletal muscle; ECM, extracellular matrix.
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most significantly altered metabolite at higher levels consisted of

the ceramide species C18:Cer (Table S3).

In skeletal muscle, lower levels of metabolites in the heavier

co-twins were associated primarily with a variety of lipid interme-

diates (Table S3). Pyruvate emerged as the most significantly

altered metabolite, exhibiting higher levels in the heavier co-

twins, followed by several proinflammatory polyunsaturated fatty

acid-related eicosanoids (eicosadienoic acid, arachidonic acid,

leukotriene A4, and prostaglandin derivatives).

Comparison of mitochondrial metabolism in predicted
reporter and actual metabolites
Next, for the mitochondrial pathways, we compared the actual

metabolome results with the genome-scale metabolic models
4 Cell Reports Medicine 2, 100226, April 20, 2021
results; that is, the reporter metabolites. We only identified

two significantly different metabolites in the mitochondrial

pathways between co-twins. In adipose tissue, ATP levels

were lower in the heavier co-twins (Figure 4B), consistent

with the reporter metabolite analysis. In skeletal muscle, we

observed a transcriptional alteration around pyruvate in the

reporter metabolite analysis, which we confirmed with untar-

geted metabolomics, in which pyruvate levels were higher in

the heavier twins (Figure 4A). Interestingly, we observed higher

TCA intermediate levels downstream of pyruvate until a-keto-

glutarate in skeletal muscle (Figure 4A), whereas in adipose

tissue, the actual metabolome results point toward a consis-

tent pattern of lower TCA intermediate levels (Figure 4A), a

pattern also suggested by the reporter metabolite analysis.
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Figure 2. Heatmaps showing the differential expression of individual genes in four mitochondrial pathways among co-twins

The heatmaps show the downregulation in transcription levels for the majority of genes involved in the central mitochondrial pathways in AT (n = 49 twin pairs)

and SkM (n = 44 twin pairs). The log2-fold differences indicated for the genes are based on the KEGG pathways. The color in the heatmaps reflects the

differential expressions associated with the heavier co-twins, where blue indicates downregulation and red indicates upregulation. Asterisks indicate statistically

significant differential expression: ***FDR p < 0.001, **FDR p < 0.01, *FDR p < 0.05, xnominal p < 0.05. TCA, tricarboxylic acid; BCAA, branched-chain amino

acids.
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Nevertheless, the TCA or BCAA metabolites (Figure 4C) be-

tween leaner and heavier co-twins were not significantly

different in either tissue.

Differences in the skeletal muscle proteome related to
glycolysis and oxidative stress pathways
We also assessed the skeletal muscle proteome. We identified

881 proteins, 43 of which were significantly different between

co-twins (nominal p < 0.05; Table S4). Seven proteins had

lower expression levels in the heavier co-twins, including the

mitochondrial outer membrane protein CISD1 and two

proteins involved in cytoskeleton organization, FLNB and

MYL6B. The 36 proteins with a higher expression level in the

heavier co-twin were involved in stress and redox homeostasis

(PARK7, GLRX, and HSP90), generating pyruvate through

glycolysis (PFKP, PFKM, and PGK2), and converting pyruvate

to lactate (LDHA). The KEGG pathway enrichment analyses

indicated glycolysis (LDHA, PFKP, PFKM, and PGK2) as the

most significantly altered pathway (Table S5). The proteomics

results point toward a consistent pattern of higher levels of

glycolytic proteins in skeletal muscle (Figure 4D), although

we only identified a few that were significantly different be-

tween co-twins.
Adipose tissue mitochondrial and inflammatory
pathways related to metabolic health
Following the transcriptome analyses in adipose tissue and skel-

etal muscle, we studied the relationship between four mitochon-

drial pathways (OXPHOS, the TCA cycle, pyruvate metabolism,

and BCAA degradation), three inflammation pathways (comple-

ment and coagulation cascade, phagosome, and T cell receptor

signaling pathways), and clinical outcomes among co-twins.

A combined score for genes in the mitochondrial pathways

was consistently associated negatively with multiple measures

for adiposity, such as subcutaneous adipose tissue volume

and the percentage of liver fat, insulin resistance (i.e., negatively

with the homeostatic model for the assessment of insulin resis-

tance (HOMA-IR) and positively with the Matsuda index), and

TAG and CRP in adipose tissue. However, we observed no

such associations with skeletal muscle (Figure 5). These correla-

tions were significant for the adiposity measures and tended to

be significant for insulin sensitivity measures when using the

within-pair differences for the measures; that is, controlling for

genetic influence (Figure 5). When analyzing twins as individuals,

all of these correlations were significant (Figure S1).

For the complement and coagulation cascade and phago-

some pathways, we observed a consistent pattern of positive
Cell Reports Medicine 2, 100226, April 20, 2021 5
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Figure 3. Reporter metabolite representation for heavier co-twins

The reporter metabolites algorithmmarks the regions during metabolism around which significant transcriptional changes occur in AT (n = 49 twin pairs) and SkM

(n = 44 twin pairs). Reporter metabolites are obtained using the p values calculated from the comparison of heavier co-twins with leaner co-twins. A) Reporter

metabolites for the associated subcellular compartments and divided based on the direction (down/up) of the related gene sets (nominal p < 0.05) in the heavier

co-twins.

(B) Reporter metabolites associated with key mitochondrion-related pathways were compared between AT and SkM (nominal p < 0.05). The heatmap shows the

downregulated gene sets in the heavier co-twins that are significant in at least one of the tissues. In AT, no upregulated gene sets were associated with these

pathways. In SkM, the gene set associated with citrate [c] was upregulated (data not shown). ER, endoplasmic reticulum; [c], cytosol; [m], mitochondrion; [p],

peroxisome.
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associations for multiple measures for adiposity, insulin resis-

tance, LDL, TAG, and CRP in adipose tissue, again observing

no associations in skeletal muscle, except for body fat percent-

age and high-density lipoprotein (HDL) (Figure 5). These results

imply that, in acquired obesity, mitochondrial and inflammatory

pathways correlate more closely with metabolic health in adi-

pose tissue than in skeletal muscle tissue.

Finally, we studied the relationship between significantly

altered metabolites in adipose tissue and skeletal muscle tissue

and clinical outcomes among co-twins (Table S6). For adipose

tissue, we found that creatine was significantly associated nega-

tively with multiple measures of adiposity, adipocyte size, insulin

resistance, and lipid metabolism, whereas the ceramide

C18:1Cer was associated positively with measures for adiposity

and HDL. For skeletal muscle, pyruvate was significantly posi-

tively associated with measures for adiposity and lipid meta-

bolism but not insulin resistance or adipocyte size. Furthermore,

skeletal muscle proinflammatory polyunsaturated fatty acid-

related eicosanoids were primarily significantly associated posi-

tively associated with measures for adiposity but not with other

clinical measurements. Last, we associated six previously unex-

plored lipid-related metabolites that were significantly lower in

both tissues in the heavier co-twins, including two oxylipins

(Table S6). Overall, these six lipid-relatedmetabolites were asso-
6 Cell Reports Medicine 2, 100226, April 20, 2021
ciated with multiple measures for adiposity and insulin resis-

tance in both tissues, with the exception of the oxylipin

9,12,13-trihydroxyoctadecenoic acid (TriHOME) in adipose

tissue.

DISCUSSION

This study describes a global metabolic profile in adipose tissue

and skeletal muscle characteristic of acquired obesity.We adop-

ted a novel approach by combining detailed phenotyping from

49 BMI-discordant monozygotic twin pairs with comprehensive

collections of adipose and skeletal muscle tissue samples using

multiomics and genome-scale metabolic modeling. Our results

predominantly reflect environmental and lifestyle factors, given

our unique BMI-discordant twin study design. Furthermore, our

study provides an opportunity to compare the role of adipose tis-

sue and skeletal muscle in the same individuals in development

of obesity-related complications.

Excess body weight was associated with transcriptional

downregulation of mitochondrial and nutrient-sensing pathways

as well as upregulation of inflammatory pathways in adipose tis-

sue and skeletal muscle in heavier co-twins compared with their

leaner co-twins (Figure 6). In skeletal muscle, we observed

higher levels of glycolytic proteins and metabolites, including



A

B

C

D

Figure 4. Metabolites and proteins among co-twins in AT and SkM

(A–D) The direction (log2-fold changes) of the TCA cycle and pyruvate metabolite levels in the heavier co-twins (A), log2-fold changes of OXPHOSmetabolites (B),

log2-fold changes in the BCAA cyclemetabolite levels (C), and log2-fold changes of the glycolysis protein levels in SkM (D). AT (yellow, n = 47 twin pairs); SkM (red,

n = 40 twin pairs for metabolomics, n = 48 pairs for proteomics). **nominal p < 0.01, *nominal p < 0.05.
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lactate dehydrogenase and pyruvate, as well as redox stress

proteins (Figure 6). In adipose tissue, we found lower creatine

levels. Furthermore, in both tissues, we identified higher levels

of multiple proinflammatory lipids and lower levels of the same

six lipid-related metabolites at the metabolome level. Overall,

the effects of surplus body weight appeared to be more pro-

nounced in adipose tissue than in skeletal muscle. Accordingly,

in adipose tissue, but not in skeletal muscle tissue, altered mito-

chondrial and inflammation pathways were associated with a

fatty liver, insulin resistance, and dyslipidemia.

One key finding was parallel transcriptional downregulation of

mitochondrial oxidative pathways in adipose tissue and skeletal

muscle. These pathways were downregulated more in adipose

tissue than in skeletal muscle. Because obesity is a significant

bioenergetic challenge to the body, it is often associated with

mitochondrial oxidative dysregulation. Indeed, lower transcript

and protein levels of mitochondria emerged consistently in both

tissues in obesity and T2DM using omics platforms.9–11,24–26,39

However, most studies have focused more on adverse metabolic

health aberrations than obesity per se, specifically among skeletal

muscle tissue studies. Because adipose tissue is a low-oxygen-

consuming tissue,40 it is slightly counterintuitive that adipose tis-

sue exhibits stronger downregulation of oxidative pathways than
skeletal muscle tissue in obesity. Nevertheless, our results agree

with two previous microarray-based studies.33,34 In those

studies, adipose tissue genes were expressed differentially than

genes in skeletal muscle tissue in insulin resistance (irrespective

of obesity) with downregulated mitochondrial catabolic path-

ways33,34 and upregulated inflammation.33 These findings indi-

cate that adipose tissue is a key metabolic tissue in acquired

obesity and that alterations in adipose tissue mitochondria may

precede those of skeletal muscle.

In addition to the well-known role of mitochondria in bioener-

getics, other vital metabolic functions of mitochondria include

generating anabolic precursors for macromolecules, producing

metabolic byproducts such as reactive oxygen species (ROS)

and lipid intermediates, and using mechanisms to clear or utilize

waste products.41 Our findings related to concomitantly downre-

gulated mitochondrial metabolism and upregulated inflamma-

tion in both tissues is intriguing and in line with previous findings

in adipose tissue9–11,33 and skeletal muscle.42 However, the

underlyingmechanisms for the two seemingly closely connected

biological phenomena remain unclear. Here we propose that

‘‘underachieving’’ mitochondria in acquired obesity give rise

to metabolic stress (e.g., increased ROS), accelerating inflam-

mation. Other possible mechanisms include fatty acid and
Cell Reports Medicine 2, 100226, April 20, 2021 7
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Figure 5. Within-pair associations of four mitochondrial and three inflammatory pathways with clinical outcome measures

(A) Standardized coefficients (bs) in linear mixedmodels with the delta clinical outcome between co-twins as the dependent variable, the delta for themitochondrial

and inflammatory pathways scores as the fixed effect, and family ID as a random effect and adjusted for sex, age, and diabetes status in AT (n = 49 twin pairs).

(B) Standardized coefficients (bs) in linear mixed models with the delta clinical outcomes between co-twins as the dependent variable, the delta for the mito-

chondrial and inflammatory pathways scores as the fixed effect, and family ID as a random effect and adjusted for sex, age, and diabetes status in SkM (n = 44

twin pairs).

Error bars denote 95% confidence intervals. BMI, body mass index; HDL, high-density lipoprotein; LDL, low-density lipoprotein; TAG, triacylglycerol; HOMA-IR,

homeostatic model for the assessment of insulin resistance; CRP, C-reactive protein.
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ceramide metabolism regulation and apoptosis by mitochon-

dria,43 processes we observed to be altered significantly in the

heavier co-twins and associated frequently with adipose tissue

inflammation.7 In addition, we observed upregulated lysosomal

and Golgi apparatus-related metabolic networks in both tissues,

identified similarly as closely related to dysregulated mitochon-

dria and inflammatory processes.44 Additional studies, however,

are needed to provide experimental evidence to support our pro-

posed causal link betweenmitochondria and obesity-associated

inflammation.

In skeletal muscle, our results suggest a shift in fuel partition-

ing frommitochondrial oxidation to cytosolic glycolysis with pref-

erential use of anaerobic glycolysis under normoxic conditions.

Alongside transcriptional mitochondrial oxidative downregula-

tion, we observed higher pyruvate levels in acquired obesity,

accompanied by higher glycolytic phosphofructokinases

(PFKM and PFKP) and LDHA protein levels. Higher skeletal mus-

cle glycolytic protein levels have been identified in women with

morbid obesity.45 Moreover, downregulated pyruvate uptake

into mitochondria has been associated with increased pyruvate

and circulating lactate levels in mice,46 leading to increased

whole-body energy expenditure. Another interesting finding

may be the pattern of higher TCA metabolites among heavier

co-twins up to alpha-ketoglutarate dehydrogenase. This finding

resembles glutamine-dependent reductive carboxylation,

discovered previously in several mammalian cell lines.47 In addi-

tion, reverse adaptation of the TCA cycle produces citrate and

lipids via glutamine-derived alpha-ketoglutarate. However, no
8 Cell Reports Medicine 2, 100226, April 20, 2021
conclusions regarding whether such metabolic routes occur in

the skeletal muscle of heavier co-twins can be made based on

the current data. Our data suggest an attempt to maintain ener-

getic and metabolic balance in the presence of excessive nutri-

ents in the early stages of obesity.

Interestingly, in adipose tissue, we also observed significantly

lower creatine levels in the heavier co-twins, accompanied by

the downregulated creatine transporter SLC6A8. Along with

the classically appreciated energy-buffering role (recycling

ATP) in skeletal muscle, recent work indicates that creatine has

a pleiotropic role in diverse cell types and physiological condi-

tions.48 For instance, in rodent brown adipose tissue, creatine

appears to closely link to mitochondria by controlling thermo-

genic respiration, and loss of this metabolite impaired whole-

body energy expenditure, leading to obesity.49 However, the

specific function of creatine in human white adipose tissue re-

mains unexamined. In addition, except for CIDEA, we did not

observe differences in markers of brown/beige adipose tissue

(e.g., UCP1 and PRDM16) between co-twins.

We also found that multiple metabolites of polyunsaturated

fatty acids were altered in acquired obesity. In skeletal muscle,

we detected high eicosanoid levels, known as powerful media-

tors of inflammation,50 in the heavier co-twins. In addition, in

both tissues, we found lower levels of potentially interesting

lipid-related metabolites, including two oxylipins (e.g., polyun-

saturated fatty acid derivatives) in the heavier co-twins. Overall,

these six lipid-related metabolites were associated with multiple

measures of adiposity and insulin resistance in both tissues, with



Figure 6. Summary of key metabolic differ-

ences in AT and SkM tissue metabolism in

acquired obesity

Results from AT (transcriptomics and metab-

olomics) and SkM (transcriptomics, proteomics,

and metabolomics) are included. Significant dif-

ferences between co-twins from proteomics are

indicated by P andmetabolomics by M (nominal p <

0.05). The color of the arrows reflects the differ-

ential expressions associated with the heavier co-

twins, where blue indicates downregulation, and

red indicates upregulation. OXPHOS, oxidative

phosphorylation; BCAA, branched-chain amino

acids.
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the exception of the oxylipin 9,12,13-TriHOME in adipose tissue.

The function of these lipids remains unclear. So far, other oxyli-

pins appear to affect tissue differentiation processes,51 lipid

storage,52 or the process of adipocyte ‘‘browning.’’53 Experi-

mental studies should follow up on these results.

Finally, the finding that adipose tissue relates more to meta-

bolic health in acquired obesity than skeletal muscle is an impor-

tant message for prevention of obesity-related complications. In

adipose tissue, transcriptional mitochondrial downregulation

and inflammation upregulation are associated with a fatty

liver, insulin resistance, and dyslipidemia. This indicates that

metabolic alterations in adipose tissue function occur during

the early stages of the cascade of events, eventually leading to

metabolic diseases.5 Mitochondrial downregulation and upregu-

lated inflammation could accelerate adipose tissue dysfunction,

leading to ectopic lipid accumulation in the liver and skeletal

muscle with harmful sequelae, such as insulin resistance6 and

non-alcoholic fatty liver disease8.

The major strength of this work is that our BMI-discordant

monozygotic co-twin research design provides an outstanding,

well-controlled human study design closely matching genes,

age, sex, and the intrauterine and childhood environment

between the leaner and heavier groups. Hence, phenotypic dif-

ferences within a monozygotic twin pair can be attributed to ac-

quired (lifestyle) factors. Our study also uses a systems biology

approach in humans covering the transcriptome, proteome,

and metabolome in two key metabolic tissue types. This multio-

mics approach in a well-phenotyped BMI-discordant monozy-

gotic twin model with a large weight discordance (17.1 ±

9.0 kg, 5.8 kg/m2) allows us to investigate the (patho)physiolog-

ical responses of surplus body weight on adipose tissue and

skeletal muscle, independent of genetic factors.

We show that metabolic alterations in adipose tissue appear to

be more pronounced and more related to metabolic health than

skeletal muscle in acquired obesity. Furthermore, a key finding is

that mitochondrion-related and nutrient-sensing pathways were

downregulated in adipose tissue and skeletal muscle in acquired

obesity. Concomitantly, we observed simultaneous upregulation

of inflammatory pathways, particularly in adipose tissue.Weargue
Cell Re
that, because of a high nutrition load, adi-

pose tissue and skeletal muscle tissue no

longer sufficiently shift between catabolic

andanabolic reactions inacquiredobesity.

Consequently, the cells in these tissues in-
crease their intracellular communication and activate emergency

responses such as inflammation. Mitochondria may serve as key

sensors of such processes. However, the underlyingmechanisms

that drive the observed differences inmetabolic functions of mito-

chondria and inflammation in obesity require further study.

Limitations of study
The primary limitation associated with the current study is its

cross-sectional nature. Although we can exclude genetic and

shared early environmental factors from the observed associa-

tions, our cross-sectional design prohibits causal inferences.

Furthermore, because the heavier co-twins exhibited poorer

metabolic health, some of the findings in our differential expres-

sion analyses may arise from obesity-associated metabolic dif-

ferences between the co-twins. Finally, another limitation of

the present study is that, for ethical reasons, we do not have

data regarding visceral adipose tissue, which previous studies

have found to be strongly associated with metabolic health.54

Experimental studies should follow up on these findings to fully

elucidate the biological mechanisms.
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limma Ritchie et al.60 RRID:SCR_010943
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Jumbo PyProphet v1.0 Röst lab http://openswath.org/en/latest/docs/pyprophet_
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TRIC (in the msproteomicstools 0.8.0 package) Röst lab http://msproteomicstools.roestlab.org/

mapDIA v3.0.2 Teo et al.66 https://sourceforge.net/projects/mapdia/

jMRUI 6.0 software Stefan et al.37 http://www.jmrui.eu/

AMARES algorithm Vanhamme et al.67 https://www.esat.kuleuven.be/sista/

yearreport96/node2.html

ImageJ NIH RRID:SCR_003070

ImageJ adipocyte diameter algorithm Sakari Jukarainen https://github.com/birgittavdkolk/vanderkolk_

etal_2021

GraphPad Prism V8 for Mac GraphPad software RRID:SCR_002798

SPSS v24.0 for Mac IBM RRID:SCR_019096

R statistical programming language (version 3.3.3) The R-project RRID:SCR_001905

Servier Medical Art Servier https://smart.servier.com/

Cell Reports Medicine 2, 100226, April 20, 2021 e1

http://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD000954
http://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD000954
https://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/human/
https://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/human/
https://www.metabolicatlas.org/
https://www.metabolicatlas.org/gems/repository
https://www.metabolicatlas.org/gems/repository
http://openswath.org/en/latest/
http://openswath.org/en/latest/docs/pyprophet_legacy.html
http://openswath.org/en/latest/docs/pyprophet_legacy.html
http://msproteomicstools.roestlab.org/
https://sourceforge.net/projects/mapdia/
http://www.jmrui.eu/
https://www.esat.kuleuven.be/sista/yearreport96/node2.html
https://www.esat.kuleuven.be/sista/yearreport96/node2.html
https://smart.servier.com/


Please cite this article in press as: van der Kolk et al., Molecular pathways behind acquired obesity: adipose tissue and skeletal muscle multiomics in
monozygotic twin pairs discordant for BMI, Cell Reports Medicine (2021), https://doi.org/10.1016/j.xcrm.2021.100226

Article
ll

OPEN ACCESS
RESOURCE AVAILABILITY

Lead contact
Further information and requests for data should be directed to and will be fulfilled by the Lead Contact, Dr. Kirsi H. Pietiläinen (kirsi.

pietilainen@helsinki.fi).

Materials availability
This study did not generate new unique reagents.

Data and code availability
RNA sequencing data are part of the ‘Twin Study’ and are deposited with the Biobank of the Finnish Institute for Health and Welfare

(https://thl.fi/en/web/thl-biobank/for-researchers/sample-collections/twin-study) with the identification number THLBB2021_001.

For details on accessing the data, see https://thl.fi/en/web/thl-biobank/for-researchers/application-process. All bona fide re-

searchers can apply for the data. The ImageJ macro used for measuring adipocyte diameters can be found at https://github.

com/birgittavdkolk/vanderkolk_etal_2021.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Twin participants
The twin pairs included in this study were recruited from population-based longitudinal studies, FinnTwin16 (n = 2839 pairs68) and

FinnTwin12 (n = 2578 pairs69), as well as the Older Finnish Twin Cohort (n = 2932 pairs36), based on their responses to questions

regarding weight and height.

Here, we included 49 monozygotic twin pairs discordant for BMI (within-pair difference, DBMIR 2.5 kg/m2), from two age groups

(27–42 years old and 57–69 years old) and for whom adipose tissue and skeletal muscle multiomics data were available. Twenty-

seven pairs were female. Eight pairs were discordant and four pairs were concordant for T2DM, while other pairs reported no T2DM.

The Ethics Committee of the Hospital District of Helsinki and Uusimaa approved the studies and all participants provided their writ-

ten informed consent. The studies adhered to the principles of the Declaration of Helsinki.

METHOD DETAILS

Study protocol
Participants arrived at the clinical research center the day before the studies. All participants were instructed by a nutritionist to

consume an isocaloric diet and to avoid strenuous exercise and alcohol consumption for two days prior to admission. Weight

and height were measured after a 12-h overnight fast in light clothing. Body composition was measured using dual-energy X-ray ab-

sorptiometry (software version 8.8; DEXA, Lunar Prodigy, Madison, WI, USA), subcutaneous and visceral adipose tissue volumes

using magnetic resonance imaging (MRI) and liver fat content using magnetic resonance spectroscopy (MRS). Physical activity

was measured using the Baecke questionnaire70.

Liver fat content
MRI and MRS experiments were performed on a 1.5 Tesla clinical imager (Avanto/Avantofit, Siemens, Erlangen, Germany). To deter-

mine the liver fat content, a 253 253 25mm3 voxel was placed in themiddle of the right liver lobe and liver spectra with an echo time

(TE) of 30 ms, collecting 4 averages. A point-resolved spectroscopy (PRESS) sequence was used for spatial localization, while signal

acquisition was triggered to end exhalation using a navigator belt to eliminate motion artifacts due to respiratory motion, maintained

at TR > 4000 ms. Liver spectra were analyzed with the jMRUI 6.0 software37 and the intensities of methylene and water resonances

were determined using the AMARES algorithm.67 Signal intensities were corrected for the relaxation effects and the liver fat was

calculated as an intensity ratio of methylene/(methylene+water). Ratios were further converted to mass fractions as described pre-

viously.71 All spectra were analyzed by a physicist blinded to the clinical data.

Intra-abdominal and subcutaneous fat
MRIs were recorded using the body coil as the transmitter and receiver. A stack of abdominal T1-weighted MRIs (16 slices, slice

thickness 10 mm, TR of 91 ms, TE of 5.2 ms and a flip angle of 80�) were obtained from 8 cm above to 8 cm below the L4/5 lumbar

intervertebral disks using frequency-selective fat excitation. Areas of visceral and subcutaneous adipose tissue depots were deter-

mined from each slice using SliceOmatic (TomoVision, Quebec, Canada) version 5.0 segmentation software using the region-

growing routine.

Clinical chemistry
Blood samples were collected following an overnight fast. Whole blood, separated plasma and serum samples were frozen at�80�C
until further analysis. Samples were analyzed at the HUSLAB facilities using standardized methods. Concentrations of plasma
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glucose were measured using the spectrophotometric hexokinase and glucose-6-phosphate dehydrogenase assay (Gluko-quant

glucose/hexokinase, Roche Diagnostics, Basel, Switzerland) with a Hitachi Modular automatic analyzer and serum insulin with a

time-resolved immunofluorometric assay (Perkin Elmer, Waltham, MA, USA). Fasting plasma total cholesterol, high-density lipopro-

tein cholesterol (HDL) and triglyceride concentrations were determined using enzymaticmethods (RocheDiagnostics Hitachi, Hitachi

Ltd, Tokyo, Japan). Low-density lipoprotein (LDL) cholesterol was calculated using the Friedewald formula. Serum high-sensitivity

C-reactive protein (hs-CRP) was measured using the particle-enhanced immunoturbidimetric assay (Cobas CRP (Latex) HS, Roche

Diagnostics) on a Modular automatic analyzer (Hitachi Ltd, Tokyo, Japan).

Insulin sensitivity
Participants underwent a standard 4-point oral glucose tolerance test (OGTT). After an overnight fast, venous blood was sampled

before (t0) and after a 75-g glucose load was ingested. Blood samples were taken at the HUSLAB facilities at t0, t30, t60 and

t120 min to determine glucose and insulin concentrations. The homeostatic model assessment–insulin resistance index was calcu-

lated as (fasting glucose (mmol l�1)3 fasting insulin (mU l�1)/22.5). The Matsuda Index (ISI-M) = 10 000/(G0 3 I0 3 Gmean 3 Imean)
1/2,

where G and I represents plasma glucose [mmol dl�1] and insulin [mU l�1] concentrations, respectively, and ‘0’ and ‘mean’ indicate

the fasting value and mean value during OGTT, respectively.72

Adipose tissue and muscle biopsy collection
All biopsy collections took place during the fasting (12 h) state following collection of the fasting blood samples. The adipose tissue

and skeletal muscle biopsies were taken in sterile conditions under local anesthesia (lidocaine). The subcutaneous adipose tissue

biopsies were taken from superficial abdominal adipose tissue near the umbilicus using a surgical technique or through a needle bi-

opsy. A needle muscle biopsy was taken from the vastus lateralis muscle. An incision was made through the skin, after which the

sample was taken using a 5-mm Bergström needle.73 Both tissue specimens were immediately snap-frozen in liquid nitrogen and

stored in liquid nitrogen until further analysis.

Adipocyte size measurements
For part of the fresh subcutaneous adipose tissue biopsies, a collagenase digestion was performed. The subcutaneous adipose tis-

sue was minced and incubated for 1 h at 37�C through constant shaking in 10 mL of an adipocyte medium (DMEM/F-12 (1:1) (Invi-

trogen, Paisley, UK) supplemented with 16-mmol l-1 biotin, 18-mmol l-1 panthotenate, 100-mmol l-1 ascorbate and antibiotic-antimy-

cotic (Invitrogen)), supplemented with 2% bovine serum albumin (Sigma, St Louis, MO, USA) and with 2-mg ml-1 collagenase A

(Roche, Basel, Switzerland). Digestion was stopped when the adipocyte medium supplemented with 10% newborn calf serum

(Sigma) was added, and centrifuged for 10 min at 600 g. After washing the adipocytes with an adipocyte medium, photographs

of the adipocytes were then taken using a light microscope (Zeiss, Axioplan2) at x50 magnification. Adipocyte diameters were auto-

matically measured from the images using a custom algorithm for ImageJ (ImageJ 1.42q/ Java 1. 6.0 10 32-bit; https://github.com/

birgittavdkolk/vanderkolk_etal_2021), which preprocessed the image to enhance the borders of the adipocytes and then used a

circle-detection algorithm to identify the cells. The algorithm was tuned to identify the adipocytes taken using the standardized

microscope settings, and validated against 2000 manually measured diameters from 20 pictures (r = 0.85, p < 0.001). Mean adipo-

cyte volume was calculated for each individual using the following formula: V =

 P100
1

 
p $d3

i

6

!
=100

!
. V = cell volume (mm3), d = cell

diameter (mm). Adipocytes were assumed to be spheres.

Adipose tissue and muscle transcriptomics
For total RNA extraction, we used ~250 mg of frozen adipose tissue and skeletal muscle biopsies. RNA was extracted using the

AllPrep RNA, DNA, miRNA Universal Kit (QIAGEN, Nordic, Solletuna, Sweden) with a DNase I (QIAGEN) digestion according to

the manufacturer’s instructions. The resulting DNA-free RNA samples were analyzed for quality on a 2100 Bioanalyzer according

to themanufacturer’s protocol (Agilent Technologies, Santa Clara, CA, USA). The RNA integrity numbers (RINs) were calculated auto-

matically using the 2100 expert software prior to RNA sequencing.

For the RNA sequencing, we prepared the libraries using Illumina Stranded mRNA preparation and sequenced the samples on the

Illumina HiSeq2000 platform to an average sequence depth of 40 to 50M paired-ends. We sequenced adipose tissue RNA reads to a

length of 75 bp and skeletal muscle RNA reads to a length of 69 bp. We aligned the reads from the samples against the human refer-

ence genome hg38 using STAR v2.5.2b and its two-pass protocol with Gencode v26 annotations.57 We required an RNaseq sample

to include at least 20 M uniquely mapped reads and the correct Library strandedness. The sample quality was assessed using Pic-

ard.74 To avoid mixing up samples, we matched the genotype array and RNaseq data using exonic SNPs with VerifyBamID.58 Read

counts were calculated using HTSeq v0.6.1p.59

Skeletal muscle proteomics analysis
For the total protein extraction, we first lysed skeletal muscle biopsies of ~15mg and homogenized in an RIPA-M buffer, followed by a

full lyse in 8 M urea. The cell pellet was spun down and the supernatant discarded, and, then, the protein was washed and
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precipitated with 6 volumes of acetone and stored overnight at�20�C. Then, we took 100 mg of protein and treated it with dithiothrei-

tol and iodoacetamide to reduce and alkylate the sample, respectively, to prevent disulfide bonds. This was followed by overnight

trypsinization to create peptide fragments. The resulting peptide was then cleaned with a C18 spin column (Nest Group). Further

details and a step-by-step protocol for sample preparation appear elsewhere.75 Samples were then prepared for injection on an Ab-

Sciex 5600 coupled with an Eksigent LC by aliquoting 1 mg of peptide together with indexed retention-time peptides (Biognosys). The

samples were then acquired in SWATH mode with 64 windows on a 60-min gradient76 and processed using OpenSWATH v2.1.77,78

The analysis pipeline was recently published,78 and only briefly summarized here. Raw acquisition files (.wiff) from the mass spec-

trometer were converted to mzXML using Proteowizard 3.0.5533.65 Samples were searched with OpenSWATH v2.1 using the

PanHuman library.56 Peptides were filtered at a 1% FDR using Jumbo PyProphet v1.0. All 103 successful runs (including technical

replicates) were then aligned with TRIC (in the msproteomicstools 0.8.0 package on Github), yielding 9360 proteotypic peptides cor-

responding to 2935 unique proteins. Total protein levels were calculated using default parameters on mapDIA v3.0.2.66

Adipose tissue and muscle metabolomics
For both tissues, 20 to 80 mg of frozen tissue was homogenized under cold conditions by keeping them in a cold ethanol bath

(<�20�C). To homogenize the tissues, we added metallic beads and 0.5-mL cold (�40�C) extraction solvent (70% (v/v) 99.9% purity

ethanol in double-distilled water) to each sample and homogenized it at full speed for 1 min with TissueLyser. Thereafter, the homog-

enized samples were transferred to a new tube and 7mL of hot (75�C) extraction solvent was added. The samples were incubated for

exactly 1 min in a hot water bath and thorough mixing was assured through quick cycles of vortexing. After 1 min, the tubes with

samples were vortexed quickly and transferred to a cold bath (< �20�C). The samples were centrifuged for 10 min at 1000 g at

4�C and a supernatant was transferred to a new tube, whereby no liquid remained in the old tube. The metabolite extracts were dried

under a vacuum at a maximum temperature of 30�C, resuspended in 10 mL of ddH20 per mg and stored in a �80�C freezer until

further analysis.

Then, we analyzed the metabolite extracts through flow injection–time-of-flight mass spectrometry analysis on an Agilent 6550

QTOF instrument (Agilent) in the negative mode at 4 GHz and in the high-resolution mode in the m/z range of 50 to 1000.79 Samples

were delivered in a 60:40 mixture of isopropanol:water supplemented with NH4F at pH 9.0 at a flow rate of 150 mL/min. Ions were

putatively annotated to metabolites based on an accurate mass within a 0.001-Da mass accuracy using the HMDB v3.0 database.55

This approach allowed us to infer the molecular formula of the detected metabolites, but not to distinguish between isomers.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses
We analyzed all data using SPSS for Mac (version 24.0; SPSS Inc., Chicago, IL, USA) or R statistical programming language (version

3.3.3). In the figure and table legends, we state the specific statistical used parameters as well as the number of included twin pairs

and the cutoff for statistical significance.

Participant characteristics
We assessed the anthropometric andmetabolic differences between twin pairs using paired t tests for continuous variables. Skewed

variables were loge-transformed before analysis.

Proteomics and metabolomics data preprocessing
Raw proteomics data were LOESS normalized, batch corrected at the peptide level and aggregated to the protein level based on the

most abundant peptide across samples. We imputed missing values by using the minimum value divided by a factor of 10. For

the raw metabolomics data, we matched data across both tissues for the participant. We collapsed all duplicated samples based

on the mean, followed by pareto scaling and log2-transforming the data.80

Differential expression analysis
We performed differential expression analyses between co-twins using the R package Limma (Voom).60 Prefiltering of genes was

applied by retaining genes that have at least ten counts in 70% of samples and only selecting protein coding genes. We identified

the altered genes, proteins and metabolites that associated with the heavier compared with the leaner co-twin within each sample.

We adjusted the regression model for the sex, age group and diabetes status of the individuals. To ensure pairwise comparisons

between twins, we used the family ID as the identifier. We corrected p values for multiple testing (using the Benjamini and Hochberg

method) and, for the adipose tissue transcriptomics, we considered FDR p < 0.05 statistically significant. For adipose tissue metab-

olomics and for all skeletal muscle omics analyses, applying multiple test corrections proved statistically too conservative and

hampered the biological interpretation. Therefore, we considered nominal p < 0.05 significant for these datasets.

Biological pathway analyses
We investigated the significantly altered genes and proteins identified from the differential expression analyses using KEGG pathway

enrichment analyses. For the transcriptomics results, we used the PIANO package in R and the KEGG pathways gene-set collection
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from EnrichR.62 For the skeletal muscle proteomics results, we identified the KEGG pathways for the significantly differentially ex-

pressed proteins using STRING version 11.0 KEGG pathways, and considered FDR p < 0.05 statistically significant.

Genome-scale metabolic models
Wegenerated genome-scalemetabolicmodels based on the transcriptomics data to extract the so-called reportermetabolites using

PIANO61 as well as the iAdipocytes180963 and iMyocyte241964 models for the adipose tissue and skeletal muscle, respectively.

These models represent a list of metabolic equations incorporated into a network that links common metabolites. The metabolic

equations relate to the genes coding for each particular protein in themetabolic reaction, while reporter metabolites are also assigned

to the appropriate cellular compartment. Reporter metabolites with nominal p < 0.05 were considered significant.

Associations with clinical variables
To analyze how mitochondrial and inflammation pathways associated with clinical variables, we calculated four mitochondrial and

three inflammation pathway scores by averaging the z-scores of the associated genes in the KEGG pathways for each co-twin. We

calculated the standardized beta coefficients between these four mitochondrial KEGG pathway scores, three inflammation KEGG

pathway scores, selected metabolites and the clinical measures using a linear mixed-model analysis. We repeated the analysis,

examining the within-pair differences in the variables, which allowed us to control for genetic influences. Family ID was used as a

random factor and we adjusted the model for sex, age and diabetes status. Skewed clinical variables were loge-transformed.
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Supplemental Figure 1. Associations of four mitochondrial and three inflammatory pathways with clinical 
outcome measures. Related to figure 5. A) Standardized coefficients (βs) in linear mixed models with the clinical 
outcome among co-twins as the dependent variable, the scores of mitochondrial and inflammatory pathways as the fixed 
effect and family ID as the random effect, adjusted for sex, age and diabetes status in adipose tissue. B) Standardized 
coefficients (βs) in linear mixed models with the clinical outcomes among co-twins as the dependent variable, the scores 
of mitochondrial and inflammatory pathways as the fixed effect and family ID as the random effect, adjusted for sex, age 
and diabetes status in skeletal muscle. Error bars denote the 95% confidence intervals. BMI, body mass index; HDL, 
high-density lipoprotein; LDL, low-density lipoprotein; HOMA-IR, homeostatic model for the assessment of insulin 
resistance; CRP, C-reactive protein. Related to Figure 5.  
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