
REVIEW ARTICLE

Targeting obesity-related dysfunction in hormonally driven
cancers
Maria M. Rubinstein1, Kristy A. Brown2 and Neil M. Iyengar 1

Obesity is a risk factor for at least 13 different types of cancer, many of which are hormonally driven, and is associated with
increased cancer incidence and morbidity. Adult obesity rates are steadily increasing and a subsequent increase in cancer burden is
anticipated. Obesity-related dysfunction can contribute to cancer pathogenesis and treatment resistance through various
mechanisms, including those mediated by insulin, leptin, adipokine, and aromatase signalling pathways, particularly in women.
Furthermore, adiposity-related changes can influence tumour vascularity and inflammation in the tumour microenvironment,
which can support tumour development and growth. Trials investigating non-pharmacological approaches to target the
mechanisms driving obesity-mediated cancer pathogenesis are emerging and are necessary to better appreciate the interplay
between malignancy, adiposity, diet and exercise. Diet, exercise and bariatric surgery are potential strategies to reverse the cancer-
promoting effects of obesity; trials of these interventions should be conducted in a scientifically rigorous manner with dose
escalation and appropriate selection of tumour phenotypes and have cancer-related clinical and mechanistic endpoints. We are
only beginning to understand the mechanisms by which obesity effects cell signalling and systemic factors that contribute to
oncogenesis. As the rates of obesity and cancer increase, we must promote the development of non-pharmacological lifestyle trials
for the treatment and prevention of malignancy.
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BACKGROUND
The rates of adult obesity are increasing yearly and have already
reached epidemic proportions.1 Obesity—classically defined as a
body mass index (BMI) of 30 or greater2—is a well-known
contributor to overall mortality and, specifically, to death from
cardiometabolic diseases like diabetes and coronary artery
disease.3 In the past decade, the links between obesity and rising
rates of cancer incidence and cancer-specific death have been
increasingly recognised, and current evidence implicates obesity
as a risk factor for at least 13 different types of cancer, including
oesophageal, gastric, colorectal, breast and endometrial cancers.4,5

The relative risks of oesophageal, gastric and colon cancer for
obese individuals are 4.8-, 1.8-, and 1.3-fold greater, respectively,
and a staggering 7.1-fold greater for endometrial cancer, than
those for non-obese individuals.5 A longer exposure time to
obesity is also associated with an increased incidence of many of
these cancers.5,6 As the number of young obese and overweight
individuals continues to rise, a related acceleration in the global
cancer burden is likely to follow. Indeed, this prediction has
already been realised by the increased incidence of endometrial,
gallbladder, pancreatic and other obesity-related cancers in
younger cohorts (25–29 years old).7 In terms of mortality, it is
estimated that elevated body weight and excess adiposity
negatively impact clinical outcomes in ~20% of all cancer cases.8

In obese women, observational studies indicate a 2.12-fold
increase in the relative risk of death from breast cancer and a
6.25-fold increase in the relative risk of death from uterine cancer.9

In men, obesity has been associated with more than quadruple
and nearly double the risk of death from liver and colorectal
cancers, respectively.9

The recognition of obesity as a leading modifiable risk factor for
cancer development and mortality has triggered an active area of
investigation and a rationale for testing anti-obesity interventions
in oncology. Weight loss strategies targeting overweight or obese
individuals account for most of these interventions. Despite
multiple completed and ongoing clinical trials, however, it is still
unclear whether weight loss reduces the risk of developing cancer
and/or cancer-related death.10 Reliance on diagnostics that are
useful for the assessment of population health but imprecise at
the individual level might, in part, contribute to the challenge of
identifying successful interventions for obesity-related cancers.
Indeed, nearly all large epidemiology studies use convenient but
imprecise surrogates of adiposity (e.g., BMI, waist circumference)
to approximate the impact of obesity on cancer. However, such
anthropometric measures frequently mischaracterise obesity-
related dysfunction and related disease incidence. For example,
nearly one-third of women with normal BMI (<25 kg/m2) have
subclinical evidence of metabolic obesity.11 Similarly, increased
adiposity is associated with a two-fold increase in the risk of
invasive breast cancer among postmenopausal women with
normal BMI.12 Conversely, up to 30% of obese individuals can
be defined as metabolically healthy.13 The developmental
paradigm of interventions for obesity-related cancers must
therefore incorporate a more precise characterisation of disease
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phenotype in order to parallel the successes of other cancer
therapies that target specific biological pathways (Box 1).
The scope of obesity-related malignancy is vast and varied. In this

review, we will discuss the need to characterise obesity via biological
targets that are relevant to oncological pathways to facilitate
mechanistically driven and precise interventions for obesity-related
cancers. We will focus on hormonally driven cancer, such as breast
and endometrial cancers, and on the changes in peptide and steroid
hormones, including insulin and insulin-like growth factors (IGFs),
various adipokines such as leptin and adiponectin, and oestrogen,
that link metabolic dysfunction with chronic low-level systemic
inflammation. Finally, we will discuss the translation of biological
findings into the development of interventions, with a focus on
lifestyle modification strategies, that aim to attenuate the drivers of
obesity-induced tumorigenesis.

OBESITY AND DYSREGULATED INSULIN SIGNALLING
Under normal physiological conditions, increases in the levels of
systemic glucose induce pancreatic cells to release the hormone
insulin, which, in addition to mediating glucose metabolism,
stimulates key pathways implicated in cell survival, protein
synthesis and replication.14 It does this by binding to insulin
receptors (IR) on the surface of cells and activating various
signalling cascades, including the extracellular-signal-regulated
kinase (ERK)/mitogen-activated protein kinase (MAPK) and the
phosphatidylinositol 3-kinase (PI3K) pathways15–17 (Fig. 1). Two IR
isoforms, IR-A and IR-B, are present among various tissues in
different ratios and carry out different functions. IR-A has largely a
mitogenic role in early life,18 and its expression in adulthood is
linked to insulin resistance and unregulated cell proliferation.19 In
comparison, IR-B is expressed in the liver and other differentiated
adult tissue and is involved primarily in glucose metabolism.18

High levels of IR-A are implicated in tumorigenesis and are found
in various cancers including breast, endometrial, colon and
hepatocellular cancer.20–22 IR-A also shows an increased affinity
for IGFs compared with IR-B.23 IGF-1 and IGF-2 are small peptides
synthesised in the liver in response to growth hormone. While
insulin circulates mostly in its free form, IGFs circulate largely
bound to IGF-binding proteins (IGFBPs), which regulate their levels
and biological function.24 By binding to an IGF-1 receptor (IGF-1R),
IGF-1 and IGF-2 promote cell growth and proliferation,25 and
several studies have demonstrated that the expression of IGF-1R is
increased in breast and endometrial cancers.21,26,27 In the setting
of obesity, higher levels of IGF-2 stimulate both IGF-1R and IR-A.28

Although genetic mutation of IGF-1R as the primary driver
event in tumorigenesis is infrequent, dysregulation of the IGFR
axis can occur secondary to other events that influence the
expression of ligands and receptors in this pathway.29–32 Several
factors allow transformed malignant cells to heavily depend on
the dysregulation of insulin and IGF signalling pathways for
proliferation and invasion.32 In a state of energy abundance, such
as occurs in obesity, insulin and IGFRs are chronically activated,
resulting in increased glucose uptake into cells, cell proliferation,
angiogenesis and, ultimately, greater potential for malignant
transformation and growth.33,34 Additionally, hyperinsulinaemia
and insulin resistance occur in the setting of excess visceral

adiposity,35 but are not strongly associated with subcutaneous or
total body adiposity;36 this difference is thought to be mediated
by a rise in circulating free fatty acids due to increased rates of
lipolysis in visceral, but not subcutaneous, fat depots.37 Although
the mechanisms through which excess free fatty acids released
from visceral adipose tissue cause insulin resistance remain the
subject of ongoing investigation, proposed mechanisms include
production of lipid metabolites and secretion of pro-inflammatory
cytokines that stimulate insulin release.38 Accordingly, in studies
that differentiate adipose compartments, visceral adiposity is
associated with an increased risk of several cancers and is a
stronger predictor of risk than BMI.37 For breast cancer,
specifically, elevated insulin levels in non-diabetic patients are
associated with worse progression-free survival (PFS) then normal
insulin levels, and patients with obesity and diabetes have
significantly higher mortality rates compared with non-dia-
betics.9,39 Hyperactivation of IR and IGFR also promotes down-
stream signalling through PI3K, which is dysregulated and
constitutively activated in various obesity-associated cancers,
including breast, endometrial and colorectal cancers.40–42 Inhibi-
tion of PI3K is a strategy that is currently used in cancer treatment
and is associated with on-target hyperglycaemia and hyperinsu-
linaemia.43 In preclinical models, the subsequent surge in insulin
after PI3K inhibition can reactivate this pathway and stimulate
further tumour-cell proliferation.44 Thus, insulin resistance, char-
acterised by prolonged periods of hyperinsulinaemia and
stimulation of IR-A and IGFR1, is a key means by which obesity
promotes the development and growth of cancer.

Targeting the insulin signalling pathway
Strategies that target insulin and IGF signalling for cancer
treatment include ligand- or receptor-specific agents, as well as
interventions that globally alter glucose homoeostasis.

Receptor-specific agents. The high-affinity binding of IGFs to IR-A
and IGF1R offers potentially useful pharmacological targets, and
antibodies to IGF1R and IR-A, as well as various tyrosine kinase
inhibitors (TKIs), have been tested in early phase clinical trials.45

However, given the ubiquitous nature of both IR and IGF1R in
human tissues, the toxicities associated with targeting these
receptors pose serious challenges. Furthermore, strategic target-
ing has proven to be difficult. On the one hand, blocking both
IGF1R and IR can result in dose-limiting hyperglycaemia,46,47 but,
on the other hand, exclusively inhibiting IGF1R can cause
compensatory activation of IR signalling.48,49 Investigation of
various targets are ongoing, but for the purposes of this review,
we will highlight some that are the most advanced in clinical
development.
Figitumumab, an IGF1R monoclonal antibody, was investigated

in Phase 3 clinical trials in combination with carboplatin and
paclitaxel for the treatment of advanced non-small-cell lung
cancer (NSCLC). However, the trial was closed early due to an
increased incidence of serious adverse events, including grade 3/4
hyperglycaemia and treatment-related deaths.50 Two other IGF1R
monoclonal antibodies, ganitumab and dalotuzumab, were
investigated for the treatment of metastatic pancreatic cancer
and metastatic colon cancer, respectively, but both trials were also
terminated after preplanned futility assessments.51,52 In oestrogen
receptor-positive (ER+) breast cancer, ganitumab in combination
with the aromatase inhibitor exemestane or the ER downregulator
fulvestrant failed to improve PFS and also induced significant rates
of grade 3/4 hyperglycaemia.53 Other IGF1R monoclonal anti-
bodies, including cixutumumab, robatumumab and istiratumab,
have been investigated in Phase 1 and Phase 2 clinical trials but
have shown limited efficacy and poor tolerability.46,54–56

Small-molecule TKIs targeting IGF1R, IR-A and IR-B have also
been studied in the clinical setting. Although dual targeting of
IGF1R and IR circumvents compensatory IR activation, this

Box 1

White adipose tissue (WAT)
● Predominant type of fat
● Anatomical locations include:

o Subcutaneous
o Visceral
o Bone marrow
o Breast

● Most common solid tumours arise within organs containing or surrounded
by WAT
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approach leads to a higher rate of hyperinsulinaemia and
hyperglycaemia.57 In a Phase 3 randomised controlled trial (RCT),
no difference in overall survival was seen in patients with
adrenocortical carcinoma treated with linsitinib, which targets
IGF1R and IR, versus those receiving placebo.58 The combination
of linsitinib and paclitaxel chemotherapy did not improve survival
in ovarian cancer, and linsitinib maintenance with erlotinib, a TKI
of the epidermal growth factor receptor (EGFR), did not improve
overall survival in patients with NSCLC.59,60

Ligand-specific agents. As well as inhibiting IGF1R and IR, other
potential strategies include targeting the IGFs. Dusigitumab, a
monoclonal antibody that binds IGF-2, has been explored in a
Phase 1 basket trial of advanced solid malignancies and resulted
in stable disease at best response, with a favourable toxicity
profile.61 However, no further development of this agent is
currently being planned. Early phase studies of xentuzumab, a
monoclonal antibody that binds IGF-1 and IGF-2, have demon-
strated promising anti-tumour activity in patients with breast
cancer. No improvement in the overall PFS was reported
with the addition of xentuzumab to exemestane and the
mammalian target of rapamycin (mTOR) inhibitor everolimus.
However, in patients without visceral metastasis, the three-drug
regimen had a longer PFS (hazard ratio (HR): 0.21 (0.05–0.98))
compared with the combination of exemestane and everolimus
alone.62

Agents that alter glucose homoeostasis. Repurposing medications
labelled for the treatment of diabetes is an area of active
investigation in cancer therapy. In preclinical models, metformin
was shown to downregulate IGF signalling and inhibit prolifera-
tion of uterine serous carcinoma cells.63 Metformin also attenuates
the expression of IGF1 and the activation of mTOR and Akt
(downstream effectors of insulin signalling) in breast, lung and
pancreatic cancer cells.64–66 However, the clinical response to
metformin has been mixed. When combined with other cytotoxic
agents during neoadjuvant treatment of breast cancer, metformin
improved pathological complete response rates, but did not
improve PFS in the metastatic setting.67,68 Similarly, the data
supporting metformin in the treatment of endometrial cancer

have been mixed. Inhibiting the IGF1 and PI3K signalling pathways
with metformin lowers cellular proliferation in endometrial
tumours.69,70 In small window-of-opportunity (presurgery) trials,
metformin reduced tumour proliferation (as indicated by the
marker Ki-67) by 11.75% (P= 0.008) in patients in one trial and
17.2% (P= 0.002) in another trial, but these findings were not
replicated in a confirmatory Phase 3 trial.71–73

Based on encouraging observational, preclinical and early phase
data, several clinical trials testing metformin in the presurgical/
neoadjuvant, adjuvant and metastatic settings in combination
with standard anti-tumour therapies are ongoing.

OBESITY AND DYSREGULATED ADIPOKINE SIGNALLING
Dysregulated circulating levels of adipokines—hormones and
cytokines secreted by adipose tissue—is a hallmark of hyper-
adiposity and can promote tumour growth. The primary function
of one such adipocyte-secreted hormone and biomarker of
adiposity,74,75 leptin, is hypothalamic-mediated regulation of
appetite, which modulates feeding behaviour and energy
expenditure.76,77 Circulating levels of leptin are elevated in obese
individuals and are associated with an increased risk of the
development and progression of cancer, such as endometrial,
breast, colon, and kidney cancers, among others.78–80

The mechanisms through which leptin promotes cancer growth
are best outlined in the setting of breast cancer. Binding of leptin
to one of the six isoforms of the leptin receptor induces the
activation of various signalling pathways including the Janus
kinase/signal transducer and activator of transcription (JAK/STAT),
MAPK and PI3K pathways, which ultimately promote cell
proliferation.81,82 Leptin signalling through the leptin receptor
also activates mammary cancer stem cells and is necessary for
mammary stem cell survival and maintenance83 (Fig. 2). Insulin
and IGF1 can also increase the expression of leptin and its
receptor in mammary epithelial tissues, and this increased
expression is associated with worse prognosis in breast cancer.79

Furthermore, the mRNA and protein expression of leptin in breast
cancer cells can be regulated by hyperinsulinaemia and hypoxia
(through hypoxia-inducible factor (HIF)).84 In turn, leptin can
stimulate angiogenesis and create vascular permeability to enable

Fig. 1 Affects of Obesity on Insulin and Estrogen Signaling. IR-A Insulin Receptor A, IR-B Insulin Receptor B, IGF-1 Insulin Growth Factor-1,
IGF-2 Insulin Growth Factor 2, IGF-1R Insulin Growth Factor Receptor 1, SHBG Sex Hormone Binding Globulin, ER Estrogen receptor.
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further malignant cell growth.85,86 Leptin is, therefore, an
important mediator of interactions between the tumour and the
tumour microenvironment (TME).
Another adipocyte-secreted hormone is adiponectin, which has

anti-diabetic and anti-inflammatory properties. Plasma levels of
adiponectin are decreased in obesity and metabolic syndrome, as
is the expression of adiponectin receptors (AdipoR1 and AdipoR2),
resulting in further reduced adiponectin sensitivity.87 Low
adiponectin levels are associated with insulin resistance and an
increased risk of obesity-associated malignancies, including breast
and endometrial cancer.88–91 The mechanisms contributing to this
relationship are not known; however, adiponectin has been shown
to inhibit the growth of several cancer cell lines in vitro.92

Additionally, adiponectin activates the 5’-adenosine
monophosphate-activated protein kinase (AMPK) pathway, lead-
ing to upregulation of p53 and p21, key regulators of the cell cycle
and apoptosis.93 Furthermore, because adiposity increases leptin
and decreases adiponectin levels, the leptin/adiponectin ratio has
been suggested to be a predictor of breast cancer growth.94,95 The
levels of other adipokines, such as resistin and visfatin, are
elevated in obesity; these increased levels are markers of
inflammation, and are associated with the development and
progression of various cancers.96–99 For example, resistin is
thought to promote growth of breast cancer cells through Toll-
like receptor 4 (TLR4)-mediated activation of nuclear factor (NF)-κB
and STAT3.96

Targeting adipokine signalling and repurposing diabetic and
cardiometabolic medications
Diabetic agents that inhibit leptin signalling. Despite the well-
established role of leptin in promoting tumour growth, no
pharmacological interventions directly targeting leptin signalling
are currently approved for the prevention or treatment of cancer.
Interestingly, metformin has been shown to decrease leptin levels
in patients with either breast or endometrial cancer.100,101 In
patients with endometrial cancer, metformin reduces cancer cell
proliferation (as measured by Ki-67 staining) and has inhibitory
effects on the PI3K–mTOR signalling pathways in the presurgical
window.71,72 In a trial of 200 non-diabetic patients with breast
cancer, metformin did not significantly decrease breast cancer cell
proliferation. However, trends were identified in an unplanned
analysis of Ki-67 reduction in overweight women with insulin
resistance.102 Metformin is currently being tested for adjuvant

breast cancer treatment in the MA.32 trial, a Phase 3 multicentre
trial that has completed accrual with results anticipated after
maturation of follow-up data.103 A leptin receptor antagonist has
been investigated in preclinical models in triple-negative breast
cancer.104,105 Pegylated leptin peptide receptor antagonist 2 (PEG-
LPrA2) was shown to inhibit leptin signalling pathways and inhibit
breast cancer growth both in vitro and in vivo in breast cancer
xenograft models.106 These promising preclinical findings warrant
further investigation in early phase human trials.

Diabetic agents that increase adiponectin levels. Peroxisome-
proliferator-activated receptor γ (PPARγ) synthetic ligands, such
as rosiglitazone and pioglitazone, are diabetes drugs that regulate
glucose metabolism, reduce hyperinsulinaemia and alter fatty acid
metabolism.107 Additionally, PPARγ synthetic ligands have been
shown to increase adiponectin levels in preclinical models and in
humans.108–112 Based on the observations that low adiponectin
levels are associated with cancer progression as discussed above,
the propensity of PPARγ agonists to increase adiponectin levels
may be beneficial for treating obesity-driven cancers.113,114

Statins. Statins, which are widely used for the management of
lipid levels, might also have anticancer properties, and many
preclinical studies have suggested a protective role for statins
against cancer development and progression.115–120 Several
mechanisms have been proposed to underlie this anticancer
effect: impaired tumour-cell proliferation via inhibition of Ras and
Rho activation;121,122 inhibition of cellular proliferation via cell
cycle arrest;123 induction of apoptosis;116,124,125 dose-dependent
inhibition of angiogenesis;126 and anti-inflammatory proper-
ties.118–120 Epidemiology data supporting an anticancer effect of
statins have been mixed. Several population studies have reported
a reduced risk of breast cancer in statin users compared with non-
statin users,127–131 but meta-analyses have not confirmed this
association.132–136 Notably, high-dose statin consumption might
provide a greater anticancer effect.130 Additionally, whether the
statin is hydrophobic or lipophilic could differentially affect cancer
risk, although data on this point are conflicting.128,131 The use of
statins might also be associated with reduced cancer mortality
after diagnosis,137 although observational studies do not support
this link in breast cancer.138–140 Taken together, the epidemiology
reports to date provide a signal that statin use might be protective
against breast cancer for some, but not all, patients. Identifying

Fig. 2 Effects of obesity on adipokine signalling. ObR leptin binding receptor, HIF-1 hypoxia-inducible factor, TNF-alpha tumor necrosis
factor alpha, IL-6 interleukin 6, TME tumor microenvironment.
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this high-risk or statin-responsive population will be critical to
developing successful intervention and prevention strategies that
use statins.

OESTROGEN SIGNALLING
It has long been established that oestrogen signalling is a key
driver of various cellular processes including cell proliferation and
survival, and that removal of the source of oestrogens—
predominantly the ovaries in premenopausal women—provides
clinical benefit and tumour regression for oestrogen-sensitive
cancers.141 Increased levels of oestrogen function to increase cell
proliferation and angiogenesis through various mechanisms,142

including binding to the ER and stimulating the IGF1 signalling
pathway in breast cancer;143 in endometrial cancer, oestrogen
binding to the G-protein-coupled oestrogen receptor (GPER) can
result in hyperplasia in endometrial tissue.144 Furthermore,
through activation of GPER, oestrogens play a role in hypoxia-
induced angiogenesis in breast cancer145 (Fig. 3).
After menopause, the main source of systemic oestrogen comes

from the peripheral conversion of androgens by the oestrogen
biosynthetic enzyme, aromatase, and one of the most well-
characterised obesity-related mechanisms for cancer pathogen-
esis involves the increased activity of aromatase in adipose tissue,
consistent with the dysregulation of oestrogens being implicated
in the development of obesity-associated ER+ breast and
endometrial cancers.11,146,147 Obesity and metabolic syndrome
have been linked to increased inflammation and increased
expression in breast tissue and adipose stromal cells of the
aromatase-encoding gene CYP19A1.148,149 In vitro studies using
isolated primary human breast preadipocytes or adipose stromal
cells, the main cell type responsible for oestrogen biosynthesis in
the breast, have contributed to defining the mechanism by which
inflammatory mediators drive aromatase expression in the context
of obesity. For example, prostaglandin E2 (PGE2), a crucial
inflammatory mediator, has been shown to strongly stimulate
the expression of CYP19A1 via activation of PII, the promoter
contributing to the majority of aromatase transcripts in breast
tissue in both obesity and breast cancer.150–152 This increased
expression is dependent on the binding and activity of a number

of transcription factors and co-regulators,153–161 and is regulated
by several pathways,152,159,160,162–164 some of which, notably,
involve regulation by leptin.148,159 Conversely, p53 has been
shown to act as a transcriptional repressor of the CYP19A1 gene,
but is inhibited by both PGE2 and leptin.148,165 The effects of p53
in tumour suppression therefore go beyond its established role in
promoting cell cycle arrest and apoptosis.166 Other inflammatory
mediators, such as tumour necrosis factor (TNF) and interleukin
(IL)-6, have also been shown to stimulate the expression of the
CYP19A1 promoter I.4.167–170

Targeting oestrogen signalling
Aromatase inhibitors. Metformin has been identified as a
potential breast-specific aromatase inhibitor.171,172 Interestingly,
the adipokine adiponectin and the hunger hormone ghrelin have
also been shown to suppress aromatase expression in a promoter-
specific manner, which may help to explain the association
between low levels of adiponectin and breast cancer growth in
the setting of obesity.159,173,174 It remains to be determined
whether these results can be leveraged to improve treatment of
obesity-related breast cancer.
Specific steroidal and non-steroidal aromatase inhibitors have

demonstrated efficacy for the prevention and treatment of ER+

breast cancers, with an approximate 50% reduction in the risk of
ER+ breast cancer development or recurrence.175 Aromatase
inhibitors might also have clinical utility in ER+ endometrial
cancers, although the efficacy of aromatase inhibitors for the
treatment of endometrial cancer is modest.176 Anastrozole, a non-
steroidal aromatase inhibitor, has been shown to reduce
proliferation in endometrial cancer cells when used in the
neoadjuvant setting, and has modest activity for the treatment
of recurrent ER+ endometrial cancer.177,178 Letrozole, another non-
steroidal aromatase inhibitor, in combination with everolimus, an
mTOR inhibitor, is associated with an overall response rate of 32%
in an unselected endometrial cancer population.179 Exemestane,
an irreversible steroidal aromatase inhibitor, is currently being
tested for the treatment of endometrial hyperplasia and low-grade
endometrial cancer (NCT03300557). Other ongoing trials are
assessing various combinations of aromatase inhibitors with
inhibitors of the PI3K–mTOR pathway (NCT02730923,

Fig. 3 Effects of obesity on oestrogen signalling. AI aromatase inhibitor, GnRH gonadotropin releasing hormone, SERM selective estrogen
receptor modulator (i.e; tamoxifen), SERDselectve receptor degrader (i.e.; fulvestrant), CDK4/6 cyclin dependent kinases 4 and 6 inhibitors,
GPER G-coupled estrogen receptor.
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NCT03008408). As well as the use of aromatase inhibitors,
targeting the ER is a promising strategy for the treatment of
ER+ endometrial cancer. An ongoing clinical trial is assessing
fulvestrant, a selective ER downregulator, in combination with
abemaciclib, a cyclin-dependent kinase (CDK)4/6 inhibitor, for the
treatment of ER+ endometrial cancer (NCT03643510). Whether
obesity affects the efficacy of various hormone therapies for
endometrial cancer is currently unknown and warrants further
investigation. In the setting of breast cancer, however, obesity is
associated with reduced efficacy of aromatase inhibitors.180 This
observation may be explained in part by increased expression of
aromatase in the breast due to obesity-related adipose tissue
inflammation, which will be discussed below.

OBESITY AND THE MICROENVIRONMENT
The tumour microenvironment has an established role in tumour
formation and metastatic invasion. It consists of various cells
including lymphocytes, antigen presenting cells, cancer fibroblasts
and the extracellular matrix. Increased adiposity can create chronic
inflammation and hypoxic conditions that disrupt the intricate
web of connections, and subsequent perturbations contribute to
carcinogenesis.

Changes in vascularity
In the context of a tumour, it is well established that the increasing
mass resulting from rapidly dividing cells generates hypoxic areas;
HIF-1α mediates the adaptive response to the low availability of
oxygen, with higher levels of HIF-1α promoting angiogenesis,
thereby supporting further tumour growth and metastasis181,182

(Fig. 1). Indeed, higher levels of HIF-1α have been associated with
recurrence, metastasis and reduced survival in several tumour
types.183,184 The mechanisms underlying these observations and
potential opportunities to intervene have been reviewed else-
where by Pouysségur and colleagues.185 Hypoxia also induces the

expression of vascular endothelial growth factor (VEGF), which
further promotes angiogenesis and tumour growth.185 Obesity is
also associated with an increase in tissue hypoxia due to
expansion of adipose tissue beyond its vascular supply,186 which
also promotes neovascularisation.187 Furthermore, hypoxia-
induced VEGF expression can promote adipose tissue expansion,
as well as inflammation, and this can generate a microenviron-
ment that is supportive of tumour growth (discussed below).186,188

In endometrial cancer, VEGF is upregulated in the visceral adipose
tissue of obese women and drives endometrial hyperplasia and
endometrial cell growth through the PI3K–Akt–mTOR pathway.189

Anti-VEGF therapies used to target breast cancer have failed to
improve overall survival, and preclinical evidence suggests that
this might be related to obesity-induced resistance to anti-VEGF
therapy by the production of inflammatory factors such as IL-6,
which, as alluded to above, can promote a favourable TME.190

Small retrospective studies in ovarian and colorectal cancer have
suggested that increased adiposity is associated with decreased
efficacy of bevacizumab.191,192

Targeting angiogenesis. Inhibitors of HIF are currently under
investigation for the treatment of various types of cancer in early
phase clinical trials. For example, Phase 1 trials of EZN-2968 (a HIF-
1 inhibitor) and PT2977 (a HIF-2 inhibitor) demonstrated some
clinical activity, suggested by prolonged stable disease
(>24 weeks) in one patient with a duodenal neuroendocrine
tumour and five responses (one partial response, four stable
disease) in six patients with clear cell renal cell carcinoma.193,194

Inhibitors of VEGF signalling have progressed further than HIF
inhibitors in clinical development. The anti-VEGF monoclonal
antibody bevacizumab is currently used for the treatment of lung,
colon, cervical and ovarian cancers,195–198 while ramucirumab, an
anti-VEGF receptor antibody, is also approved for the treatment of
gastric, colorectal and hepatocellular cancers.199–201 Finally, small-
molecule TKIs of VEGF signalling, such as sorafenib, sunitinib,

Table 1. Completed lifestyle randomised control trials (RCT) for cancer survivors.

Study Population Intervention BMI Primary endpoint Outcomes

Breast cancer trials

WINS Early stage BC Fat reduction diet All RFS 9.8% vs 12.4% (HR 0.78; CI 0.60–0.98) P= 0.03156

WHEL Early stage BC Diet All Recurrence
rate death

16.7% vs 16.9% (HR 0.96; CI 0.8–1.17) P= 0.63
10.1% vs 10.3% (HR 0.91; CI 0.72–1.15) P= 0.43157

DAMES Mother-Daughter Dyads
with early Stage BC

Diet + PA 25–39.9 Feasibility &
weight loss

>5% weight loss in 21.7-39.1% of participants167

LISA Node negative BC Diet + PA 24–50 DFS events* 12.9% vs 18.0% (HR 0.71; CI 0.41–1.24) P= 0.23181

ENERGY Early stage BC Diet + supervised
exercise

25–45 Weight loss 3.7% vs 1.3% at 24 months (P < 0.001)168

LEAN Survivors of stage 0-III BC Diet + PA ≥25 Weight loss 6.4% vs 5.4% vs 2.0%** (P= 0.004, P= 0.009, P=
0.46)169

SUCCESS C Her2-negative early
stage BC

Diet + PA 24–40 DFS No difference in DFS. HR 0.99; CI 0.76–1.28, P=
0.922182

Prostate cancer trials

MEAL Localized PC Diet All Time to progression No difference detected. Adjusted HR 0.97 (CI
0.76–1.25), P= 0.84)183

CAPS2 Localized PC Diet ≥24 PSADT*** 28 vs 13 months, P= 0.021184

Endometrial cancer trials

SUCCEED Stage I-II EC Diet + PA ≥25 Weight loss 1.4 kg vs −4.6 kg (CI −1.09 to 0.14), P= 0.011185

Multiple cancer trials

RENEW Survivors of BC, CRC, PC Diet + PA 25–40 PF scale decline −2.15 vs −4.84, P= 0.03186

PA physical activity, EC endometrial cancer, BC breast cancer, PF physical function, CRC colorectal cancer, PC prostate cancer, I individual arm, T team arm, PSADT
prostate serum antigen doubling time, CC colon cancer, HR hazard ratio, CI confidence interval.
*Loss of funding, underpowered, reporting weight loss, **in-person vs telephone vs standard care, ***study terminated after interim analysis showed futility.
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pazopanib, lenvatinib and others, have demonstrated efficacy for
the treatment of kidney, thyroid and hepatocellular cancers.202–204

In endometrial cancer, lenvatinib in combination with the
checkpoint inhibitor pembrolizumab has FDA breakthrough
designation and is undergoing confirmatory Phase 3
investigation.205

Chronic inflammation
Obesity is associated with a chronic state of subclinical inflamma-
tion that is characterised by white adipose tissue inflammation.
Such inflammation can be histologically detected by the presence
of crown-like structures (CLS),206 in which dead or dying
adipocytes are surrounded by activated macrophages. These
macrophages are associated with the production of several pro-
inflammatory mediators, the expression of aromatase, and the
presence of a fibrotic extracellular matrix.207,208 In humans,
adipose inflammation in the breast is present in many over-
weight/obese individuals and is associated with postmenopausal
status.11 In preclinical models of postmenopausal obesity,
inflammation of mammary adipose tissue is associated with
increased levels of TNF-α, IL-1β, IL-6 and cyclo-oxygenase (COX)-2
and an increased risk of developing breast cancer and reduced
distant disease-free survival after breast cancer diagnosis.209,210

These chronic inflammatory changes associated with dysfunc-
tional adipose tissue contribute to a microenvironment that is rich
in tumour growth factors.211,212 We have previously reviewed the
mechanisms through which this pro-inflammatory microenviron-
ment promotes tumour growth.213 Interventions that reduce
adipose inflammation, such as diet and exercise, might therefore
reduce breast cancer risk and/or mortality, and clinical trials
investigating the effects of diet and exercise on cancer-related
outcomes are currently underway.

NON-PHARMACOLOGICAL/LIFESTYLE INTERVENTIONS
We have so far outlined the various mechanisms through which
increased adiposity drives changes in insulin signalling, adipokine
signalling, oestrogen signalling and in the TME, including

angiogenesis and chronic inflammation. We have also briefly
addressed the current landscape of pharmacological interventions
in the context of cancer treatment for targets that are
dysregulated by obesity. However, as well as such targeted
approaches, the pleiotropic effects of lifestyle interventions offer a
promising strategy to reverse the cancer-promoting effects of
obesity. Furthermore, combining lifestyle interventions with
pharmacological therapies could further augment the efficacy of
anticancer therapies.

Dietary interventions
Although the biological mechanisms through which the modula-
tion of specific macro- and micro-nutrients impact tumour biology
are beyond the scope of this discussion and have been reviewed
elsewhere,214,215 we outline here the key findings from RCTs that
have tested strategies to shift overall dietary patterns in cancer
populations. In the case of breast cancer, several trials have
established that dietary modification as well as exercise are
achievable and safe after diagnosis.216,217 Subsequent trials have
examined the effects of diet and exercise interventions on weight
loss, breast cancer outcomes, and circulating blood factors
(Table 1). Two large RCTs that tested dietary interventions to
improve breast cancer outcomes have been completed, but the
results are conflicting. The Women’s Intervention Nutrition Study
(WINS) demonstrated a 24% reduction in the recurrence of breast
cancer in patients randomly assigned to a low-fat diet group versus
control patients.218 Conversely, however, the Women’s Healthy
Eating and Living (WHEL) trial did not show any improvement in
the risk of recurrence for women randomised to a low-fat, high-
fibre diet;219 diets high in fibre are known to increase microbial
biodiversity (see below) and decrease insulin resistance.220,221 The
long-term results of another RCT, the Women’s Health Initiative
(WHI), were reported in 2019 and demonstrated a 21% reduction in
mortality after breast cancer diagnosis in patients randomised to a
low-fat diet intervention compared with a usual diet.222 Although
large-scale clinical trial data are still lacking in this area, several
RCTs testing the efficacy of diet and/or exercise interventions are
ongoing (Table 2).

Table 2. Ongoing lifestyle randomised control trials (RCT) in cancer patients.

Study Population Intervention BMI Primary endpoint

Breast cancer

DIANA-5170 Early stage BC Diet + exercise All Recurrence

PREDICOP (NCT02035631) Early stage BC Diet + supervised exercise 18–40 Time to recurrence

BWEL (NCT02750826) Her2-negative early stage BC Diet + PA ≥27 Invasive DFS

DEDiCa (NCT02786875) Early stage BC Diet All DFS

DIRECT (NCT02126449) Stage II/II Her2-negative BC Diet ≥19 Toxicity

Efficacy of Dietary Fat Reduction (NCT00002564) Stage I/II/IIIA BC Diet All DFS, OS

OPTITRAIN (NCT02522260) Early stage BC Exercise All Cancer-related fatigue

EXCAP (NCT00851812) Early stage BC Exercise All Cancer-related fatigue

Colon cancer

CHALLENGE187 Stage II/III CRC Exercise All DFS

Prostate cancer

INTERVAL (NCT02730338) MCRPC Exercise All OS

Endometrial cancer

REWARD (NCT01870947) Stage I EC Exercise ≥30.0 Weight change

Step into Wellness (NCT03367923) Stage IA–IIIA EC Exercise 25–60 Activity level

Ovarian cancer

LIVES (NCT00719303) Stage II–IV OC Diet + PA >20 PFS

PA physical activity, RFS relapse-free survival, PF physical functioning, OS overall survival, DFS disease-free survival, EC endometrial cancer, OC ovarian cancer,
PFS progression-free survival, MCRPC metastatic castrate-resistant prostate cancer, CRC colorectal cancer.
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For patients diagnosed with endometrial or breast cancer,
preclinical evidence suggests that a ketogenic diet (KD; a diet of
high fats, moderate proteins, and very low carbohydrates) might
improve the efficacy of PI3K inhibitors by inhibiting insulin
signalling.44,223 It has recently been shown in murine KPC tumour
models that treatment with PI3K inhibitors causes a transient
hyperglycaemia and hyperinsulinaemia. This resultant hyperinsu-
linaemia can partially reactivate PI3K signalling, and following PI3K
inhibition, can reactivate PI3K signalling in both normal and
tumour tissues.44 A ketogenic diet, which is deficient in
carbohydrate, prevents hyperinsulinaemia and can thereby reduce
the paradoxical reactivation of PI3K by PI3K inhibitor-associated
hyperglycaemia.44

RCTs of a KD have demonstrated reductions in visceral adiposity
and serum insulin levels without adversely affecting blood lipid
levels despite elevated dietary fat intake.224,225 Notably, in
xenograft models of pancreatic cancer, a KD also increased
sensitivity to radiation—putatively by reducing oxidative stress;
however, the diet was poorly tolerated in a pilot study of nine
people.226

In obese patients without malignancy, a very-low-calorie KD
reduces visceral adiposity and obesity-related metabolic dysfunc-
tion, restores leptin and resistin levels to normal, and reduces the
expression of inflammatory markers.227–229 This approach might
therefore be particularly valuable for cancer populations where
weight loss is a critical priority. The definition of a KD varies
among clinical trials—all KDs include low carbohydrates, but
varying cut-offs for daily calories and lipid targets exist.230 Thus,
the tolerability and durability of a KD intervention requires further
testing, which would be aided by standardisation of KD
parameters. Finally, it is important to note that, although a KD
might be beneficial for certain established tumour phenotypes
(e.g., PIK3CA-mutated tumours), this approach might not be
effective—and could potentially be detrimenta—in certain other
tumour types and in the preventive setting. For example, high
dietary fat intake has been associated with an increased risk of
developing breast cancer.231,232 Accordingly, the selection of an
appropriate KD protocol (e.g., low-calorie, carbohydrate-restricted,
and/or limited-fat) will be important for the development of this
approach for use in cancer populations. However, it is important
to note that a KD might not be beneficial in all circumstances or
cancer histologies, as other groups have noted that changing to a
high protein intake can increase insulin signalling through IGF-
1.220,221 There remains ambiguity regarding which diets can
effectively reverse tumorigenesis mechanisms, and future studies
should aim to identify the appropriate populations and tumour
phenotypes for rational dietary intervention.

The gut microbiome. Investigations carried out over the past
decade have demonstrated that particular gut microbiome
signatures are associated with the development of cancer,233,234

and that alterations in the gut microbiota can promote chronic
inflammation and immunological changes that facilitate carcino-
genesis.235,236 As obesity and diet alter the health and diversity of
the gut microbiome, research on the role of the gut microbiome in
contributing to obesity-associated cancers is active and ongoing.
Although there is less data regarding hormonally driven cancers
such as breast and endometrial cancers, an individual’s metabolic
profile and oestrogen status can affect their microbiome. In breast
cancer, there is a growing interest in the ‘oestrobolome’, which
includes genes that encode bacterial enzymes such as
β-glucuronidases, which are involved in the processing of
endogenous oestrogens,237 and understanding how changes in
oestrogen-dependent pathways influence the gut microbiome.238

Obesity can disrupt this oestrobolome, resulting in increased
levels of oestrogen and its metabolites, which could affect the
development and treatment of breast and endometrial
cancers.239,240

Exercise interventions
A substantial body of observational data suggests that post-
diagnosis exercise could prevent cancer progression and improve
cancer-related mortality. In a seminal study by Holmes et al.,241

9–14.9 MET (metabolic equivalent of task) hours·per week
(equivalent to ~150–250min of moderate-intensity exercise per
week) was associated with an adjusted 50% reduction in breast
cancer death compared with <3 MET-hours per.week among 2987
patients with primary breast cancer. In another systematic review,
post-diagnosis exercise was associated with, on average, a 37%
reduction (95% confidence interval (CI) 0.54–0.73) in the risk of
cancer-specific mortality in the most- versus least-active
patients.242 Collectively, observational data support the hypothesis
that exercise confers anti-tumour effects for several cancer types.
Although data from investigations into the effect of post-

diagnosis exercise on cancer progression from prospective RCTs
are not yet available, such trials are underway and outlined in
Table 2. The Colon Health and Life-Long Exercise Change
(CHALLENGE) trial is an international, multicentre, Phase 3 trial
investigating the impact of exercise on recurrence and cancer-
specific mortality in patients with resected high-risk stage II or stage
III colorectal cancer.243 Another international, multicentre Phase 3
trial, the INTense Exercise foR survival (INTERVAL) trial, is investigat-
ing the effects of high-intensity aerobic and resistance training on
disease outcomes in 866 patients with metastatic castrate-resistant
prostate cancer (NCT02730338). Data from these, and other, Phase 3
trials of exercise in cancer populations are eagerly awaited, but it is
important to note that the ‘dose’ of exercise that confers optimal
anticancer efficacy or predictors of favourable response to exercise
has not yet been identified. Early phase dose-finding trials of
exercise are needed, and a Phase 1a/1b trial of exercise in ER+

metastatic breast cancer is currently ongoing (NCT03988595).

Combination diet and exercise interventions
Several RCTs have demonstrated that combining diet and exercise
interventions provides an effective approach for inducing weight
loss in patients who have survived obesity-related breast
cancer244–246 (Table 1). Several of these weight loss interventions
have also demonstrated improvements in circulating metabolic
and inflammatory factors.246–250 For example, in the Lifestyle,
Exercise, and Nutrition (LEAN) study, breast cancer survivors with a
BMI ≥25 randomly assigned to diet and physical activity
counselling experienced reductions in the level of circulating C-
reactive protein (CRP) and body fat percentage compared with
usual care.246 Participants who achieved a 5% or greater weight
loss by caloric restriction and increased physical activity were also
found to have reductions in their levels of circulating insulin, leptin
and IL-6.246 Several other studies have established that weight loss
is an effective method for reducing circulating levels of CRP,
insulin, glucose and lipids.251–255

Diet and exercise interventions can also influence the levels of
circulating hormones in individuals with or without malignancy. In
the Nutrition and Exercise for Women (NEW) trial, circulating levels
of estrone and oestradiol in overweight and obese postmeno-
pausal women were reduced with energy-restricted diet, exercise,
or combined diet plus exercise, versus control.256 The interven-
tions also increased the circulating levels of sex-hormone-binding
globulin (SHBG) and decreased free oestradiol and testosterone
levels, which could inhibit the recurrence or growth of hormone-
sensitive tumours. The magnitude of effect on SHBG and
oestrogens was greatest in the diet plus exercise arm. Encoura-
ging findings from these trials collectively support the further
development of diet and exercise interventions in the prevention
and treatment of cancer.257

Bariatric surgery
Given the various mechanisms by which obesity contributes to
carcinogenesis, weight loss mediated by bariatric surgery has
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been investigated as a strategy for adjunct cancer treatment and
prevention. The Swedish Obesity Study demonstrated that,
especially for women, bariatric surgery reduced the incidence of
cancer with a HR of 0.67 (95% CI 0.53–0.85);258 this risk reduction
was confirmed in a large multicentre retrospective study in the
USA in obesity-related cancers including breast cancer (HR 0.58;
95% CI 0.44–0.77) and in endometrial cancer (HR 0.50; 95% CI
0.37–0.67).259 A prospective trial is investigating the efficacy of
bariatric surgery in reducing recurrence in breast cancer patients
(NCT03946423).260 Although additional randomised prospective
data are needed, it seems that weight loss modulates many of the
effects of obesity on carcinogenesis.

FUTURE DIRECTIONS
As increasing data elucidate the mechanisms by which obesity can
alter cancer cell signalling, the prospective TME and systemic
factors, additional targets that can be therapeutically exploited to
improve obesity-related cancer risk and outcomes are likely to be
identified. Figure 4 provides a summary of the pathways and
mechanisms through which obesity promotes tumour growth,
which establishes the paradigm for interventions. A number of
pharmacologic agents could be repurposed for the prevention
and treatment of obesity-related cancers, and obesity might be
associated with a differential response to existing and novel
anticancer therapies. Lifestyle interventions, including dietary
modification and exercise, also demonstrate potential anticancer
efficacy; however, the identification of appropriate ‘dose’, popula-
tions and tumour phenotypes is needed to leverage the promise
of this approach. Significant progress has been made in
elucidating the mechanisms through which obesity promotes
cancer risk and mortality. Interestingly, a number of pathways that
are dysregulated in obesity are also key drivers of oestrogen
production, cancer growth and angiogenesis. Targeting these
pathways would therefore potentially lead to a multifaceted
approach to tumour suppression through both direct and indirect

mechanisms. Translating these findings into effective clinical
strategies is urgently needed to halt the accelerating global
burden of obesity-related cancer.
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