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A B S T R A C T   

Background: Chronic diseases have become main killers affecting the health of human, and environmental 
pollution is a major health risk factor that cannot be ignored. It has been reported that exogenous chemical 
residues including pesticides, herbicides, fungicides, veterinary drugs and persistent organic pollutants are 
associated with chronic diseases. However, the evidence for their relationship is equivocal and the underlying 
mechanisms are unclear. 
Objectives: We aim to investigate the linkages between serum exogenous chemical residues and 5 main chronic 
diseases including obesity, hyperuricemia, hypertension, diabetes and dyslipidemia, and further reveal the 
metabolic perturbations of chronic diseases related to exogenous chemical residue exposure, then gain potential 
mechanism insight at the metabolic level. 
Methods: LC-MS-based targeted and nontargeted methods were respectively performed to quantify exogenous 
chemical residues and acquire metabolic profiling of 496 serum samples from chronic disease patients. Non- 
parametric test, correlation and regression analyses were carried out to investigate the association between 
exogenous chemical residues and chronic diseases. Metabolome-wide association study combined with the 
meeting-in-the-middle strategy and mediation analysis was performed to reveal and explain exposure-related 
metabolic disturbances and their risk to chronic diseases. 
Results: In the association analysis of 106 serum exogenous chemical residues and 5 chronic diseases, positive 
associations of serum perfluoroalkyl substances (PFASs) with hyperuricemia were discovered while other asso-
ciations were not significant. 240 exposure markers of PFASs and 84 disease markers of hyperuricemia were 
found, and 47 of them were overlapped and considered as putative effective markers. Serum uric acid, amino 
acids, cholesterol, carnitines, fatty acids, glycerides, glycerophospholipids, ceramides, and a part of sphingolipids 
were positively correlated with PFASs and associated with increased risk for hyperuricemia. Creatine, creatinine, 
glyceryl monooleate, phosphatidylcholine 36:6, phosphatidylethanolamine 40:6, cholesterol and sphingolipid 
36:1;2O were significant markers which mediated the associations of the residues with hyperuricemia. 
Conclusions: Our study demonstrated a significantly positive association between PFASs exposure and hyper-
uricemia. The most significant metabolic abnormality was lipid metabolism which not only was positively 
associated with PFASs, but also increased the risk of hyperuricemia.   
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1. Introduction 

Nowadays, chronic disease has become a major health killer for 
human beings, and environmental pollution is a risk factor that cannot 
be ignored for multiple chronic diseases. The Report on the Status of 
Nutrition and Chronic Diseases of Chinese residents (2015) indicated 
that morbidity of obesity, hypertension and diabetes were 30.1%, 25.2% 
and 9.7% (Disease Prevention and Control Bureau of National Health 
and Family Planning Commission of China, 2015; Wang et al., 2020; 
Zhang et al., 2017), respectively. Morbidity of hyperuricemia and dys-
lipidemia was 13.3% (Liu et al., 2015) and 34%, respectively (Pan et al., 
2016). The morbidity showed a gradually upward trend as well (Wang 
et al., 2017). Studies have shown that the risk of chronic diseases is 
related to a combination of genetic factors and environmental exposure, 
and environmental factors are major contributors to disease in a manner 
complementary to the genome (Rappaport, 2016; Vermeulen et al., 
2020). Therefore, the impact of environmental exposure, especially 
environmental chemicals (so-called exogenous chemical residues) that 
accumulate in human body on chronic diseases is receiving increasing 
attention. 

Exogenous chemical residues, including pesticides, herbicides, fun-
gicides, veterinary drugs and persistent organic pollutants, have been 
detected in human serum (Chang et al., 2017; Sturza et al., 2016; Silver 
et al., 2015; Chen et al., 2021; Wang et al., 2018; Ya et al., 2019; Zeng 
et al., 2020), and they were reported to be associated with chronic 
diseases, such as obesity (Yang et al., 2018), hyperuricemia (Qin et al., 
2016; Arrebola et al., 2019; Scinicariello et al., 2020), hypertension 
(Pitter et al., 2020; Mi et al., 2020), diabetes (Sun et al., 2018; Charles 
et al., 2020; Honda-Kohmo et al., 2019), dyslipidemia (Nelson et al., 
2010) and other chronic diseases. However, many studies only focused 
on a few or a certain category of exogenous chemical residues. There-
fore, a screening method with high coverage was still needed to simul-
taneously monitor multiple exogenous chemical residues in one single 
injection. Additionally, results of association studies obtained from 
epidemiological investigations were ambiguous and sometimes even 
contradictory (Sun et al., 2018; Charles et al., 2020; Honda-Kohmo 
et al., 2019), which probably is due to lack of effective markers which 
can accurately and comprehensively reflect the impact from exogenous 
chemical residues and clarify underlying mechanism (Liang et al., 
2019). 

Metabolomics, as a high-throughput approach, is able to simulta-
neously identify and quantify thousands of metabolic characteristics 
related to exogenous exposure and endogenous processes, which has 
emerged as a powerful tool to improve exposure estimation of complex 
environmental mixtures (Bundy et al., 2008; Miller and Jones, 2014). 
Metabolome-wide association study (mWAS) is an emerging approach to 
study the association between metabolic phenotype variation and dis-
ease risk factors, which could simultaneously explore multiple associa-
tions among exposure, metabolism and disease, and provide insight into 
molecular mechanisms of exposure-related disease when combined with 
the meeting-in-the-middle approach (Chadeau-Hyam et al., 2011). 
Currently, mWAS between exogenous chemical residues and chronic 
diseases has been carried out, results demonstrated that metabolic 
changes of lipid, fatty acid and amino acid metabolism were associated 
with PFASs exposure (Alderete et al., 2019; Chen et al., 2020; Jin et al., 
2020). In addition, when combined with meeting-in-the-middle strat-
egy, the effect of exposure-related metabolites on the risk of type 2 
diabetes was further elucidated (Schillemans et al., 2020). Nevertheless, 
studies on the metabolic mechanisms underlying the association be-
tween chronic diseases such as hyperuricemia, hypertension and mul-
tiple exogenous chemical residues are still quite limited and unclear. 

Therefore, the aim of this study is to investigate the linkages between 
serum exogenous chemical residues and 5 main chronic diseases 
including obesity, hyperuricemia, hypertension, diabetes and dyslipi-
demia, and further reveal the metabolic perturbations of chronic dis-
eases associated with exogenous chemical residues, then gain potential 

underlying mechanism insight at the metabolic level. Firstly, a systemic 
literature survey on exogenous chemical residues in blood (serum/ 
plasma) or food was carried out, 106 exogenous chemical residues 
(Table S1) were sorted out including pesticides, herbicides, fungicides, 
veterinary drugs and persistent organic pollutants with a high concen-
tration level and a high detection frequency reported in the literatures. 
Secondly, a targeted LC-MS-based quantitative method covering 106 
selected residues was established and applied to serum screening, 
further the association between serum exogenous chemical residues and 
chronic diseases was investigated. Finally, metabolic profiling of the 
same subjects was acquired by a nontargeted metabolomics method. 
Subsequently, combined with the meeting-in-the-middle approach and 
mediation analysis, mWAS was performed to discover the exposure- 
related metabolites and their association with the occurrence of 
chronic diseases, and its underlying mechanisms (Fig. 1). 

2. Materials and methods 

2.1. Chemicals and reagents 

Ultrapure water was prepared by a Milli-Q water purification system 
(Millipore,7 Billerica, MA, USA). HPLC grade acetonitrile and methanol 
were obtained from Merck (Darmstodt, Germany). Formic acid and 
ammonium bicarbonate were purchased from J&K Scientific (Beijing, 
China) and Sigma-Aldrich (St. Louis, MO, USA), respectively. Standards 
of exogenous chemical residues were purchased from AccuStandard 
(New Haven, CT, USA), J&K (Beijing, China), etc., the detail information 
is given in Table S2. Most of internal standards were isotope labelled 
chemical standards, which were used in both exposomics and metab-
olomics analyses. The detailed information is given in Table S2 and 
Table S3. 

2.2. Study population and epidemiological information 

A cross-sectional study was conducted from 2018 to 2019 in Shi-
jiazhuang and Hangzhou, China. The epidemiological information 
including gender, age, BMI sampling time, location, education level, 
sleep time, cigarette smoking and alcohol drinking history were 
collected by questionnaire. In total 496 controls and chronic disease 
subjects included in this study were matched and selected. The detailed 
information is presented in Table 1. The study has been approved by the 
National Institute for Nutrition and Health, Chinese Center for Disease 
Control and Prevention (reference No. 2019-023), and a written 
informed consent was obtained from each participant before the study 
began. 

2.3. LC-MS-based targeted method for serum exogenous chemical 
residues quantification (exposomics analysis) 

A high-throughput sample processing method was used to extract 
exogenous chemical residues from serum samples. The deproteinization 
and purification of serum were conducted on a Phospholipid Removal 
Plates (Phenomenex, California, USA) with 96 wells. 200 μL of meth-
anol/acetonitrile (3:7, v/v) solvent containing 23 internal standards 
were added into each well and mixed with 50 μL of serum sample. Then 
96 well filter plates were covered with aluminum foil and shaken for 10 
min at room temperature. Protein and phospholipid were removed after 
centrifuged at 500 g for 20 min at 4 ◦C. Finally, 1 μL filter liquor was 
taken into LC-MS (ExionLC AD ultra-high-performance liquid chroma-
tography (AB SCIEX, Framingham, U.S.A) coupled with triple- 
quadrupole 6500 plus mass spectrometry (AB SCIEX, Framingham, U. 
S.A)) for targeted exposomics analysis. 

Spiked serum samples were used as quality-control (QC) samples to 
assess the stability of the whole analytical process and prepared by the 
above method. The QC sample was inserted after every 12 real samples. 
Validation of analytical methods was performed according to the criteria 
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of Guidance for Industry: Bioanalytical Method Validation (FDA et al., 
2018). The detailed information of method validation and parameter 
settings is provided in Supplemental Methods and Table S2. 

2.4. LC-HRMS-based metabolomics method 

200 μL of methanol/acetonitrile (1:1, v/v) solvent containing 18 
internal standards was added to 50 μL of serum, the mixture was vor-
texed and then centrifuged at 14 000g for 10 min for deproteinization. 
The supernatant was dried in a vacuum centrifuge and then recon-
stituted in 60 μL of acetonitrile/water (2:8, v/v). Finally, 5 μL and 10 μL 
of the sample were respectively injected in the positive and negative 
modes of an ACQUITY ultra-performance liquid chromatography 

(Waters, Milford, MA) coupled with an AB SCIEX Triple TOF 5600 plus 
System (AB SCIEX, Framingham, MA). Pooled serum samples were used 
as QC samples to assess the stability of the whole analytical process and 
prepared by the same manner as real samples. The QC sample was 
inserted after every 10 real samples. The acquisition of metabolomics 
data was carried out by using an LC-HRMS method published in our 
previous study (Ouyang et al., 2018). The detailed settings are presented 
in Supplemental Methods. 

2.5. Metabolite annotation 

Metabolite annotation was conducted based on accurate mass, 
retention time and MS/MS fragments. To increase the annotation 

Fig. 1. Workflow of the study.  

Table 1 
Epidemiological information of the samples involved in this study.  

Characteristics Total Control Obesity Hyperuricemia Hypertension Diabetes Dyslipidemia 

Gender (M/F) 229/267 21/62 33/38 41/40 50/33 43/31 41/63 
Age (mean ± SD) 51 ± 6 49 ± 5 50 ± 5 51 ± 6 50 ± 6 51 ± 5 52 ± 6 
BMI (mean ± SD) 26.3 ± 2.1 25.0 ± 1.4 29.1 ± 1.2 25.8 ± 1.3 27.0 ± 2.3 26.4 ± 2.1 25.2 ± 1.3 
Sampling time (2018/2019) 293/203 42/41 43/28 54/27 53/30 39/35 62/42 
Education level        
primary school, N (%) 27 (100) 1 (4) 3 (11) 11 (41) 2 (7) 5 (19) 5 (19) 
junior high school, N (%) 72 (100) 13 (18) 12 (17) 10 (14) 15 (21) 13 (18) 9 (13) 
technical secondary school, N (%) 48 (100) 11 (23) 3 (6) 6 (13) 11 (23) 12 (25) 5 (10) 
high school, N (%) 118 (100) 10 (8) 21 (18) 20 (17) 21 (18) 19 (16) 27 (23) 
university, N (%) 195 (100) 43 (22) 22 (11) 28 (14) 27 (14) 22 (11) 53 (27) 
postgraduate, N (%) 36 (100) 5 (14) 10 (28) 6 (17) 7 (19) 3 (8) 5 (14) 
Cigarette smoking history (yes/no) 144/352 14/69 21/50 23/58 32/51 29/45 25/79 
Alcohol drinking history(yes/no) 315/181 43/40 43/28 55/26 61/22 51/23 62/42 
Sleep time        
≤6h, N (%) 124 (100) 23 (19) 21 (17) 16 (13) 23 (19) 18 (15) 23 (19) 
7 h, N (%) 194 (100) 34 (18) 26 (13) 40 (21) 25 (13) 31 (16) 38 (20) 
≥8h, N (%) 178 (100) 26 (15) 24 (13) 25 (14) 35 (20) 25 (14) 43 (24) 
Location (Shijiazhuang/Hangzhou) 186/310 33/50 26/45 43/38 21/62 24/50 39/65  
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confidence, only databases which were constructed based on experi-
mental MS2 spectra were used, they were in-house database (OSI-SMMS 
(Dashuo, Dalian, China)) (Zhao et al., 2018) and the mass bank of north 
America (MONA) database (https://mona.fiehnlab.ucdavis.edu/). The 
annotation of lipids was carried out using MS-DIAL 4 (Tsugawa et al., 
2020). Detailed method is presented in Supplemental Methods. Anno-
tation levels are given following the Metabolomics Standards Initiative 
(MSI) reporting criteria (Schymanski et al., 2014). 

2.6. Statistical analysis 

In the targeted exposomics analysis, the peak area of serum exoge-
nous chemical residues and internal standards was acquired by a SCIEX 
OS (AB SCIEX, USA) from the raw data. The internal standards were 
used to normalize peak areas to acquire a relative response for each 
residue, and the suitable internal standard was defined according to the 
minimum relative standard deviation (RSD) of each ion feature in QC 
samples (Sysi-Aho et al., 2007). The same internal standard was used for 
the normalization of calibration curve of each residue. The calibration 
curves were fitted with the model of weighted linear regression using 
PASW Statistics 18 software (SPSS, Chicago, IL) to ensure the accuracy 
of quantification at low concentration (Koponen et al., 2013). The 
concentrations below the limit of detection (LOD) were set to LOD/2. To 
determine the association between serum exogenous chemical residues 
and chronic diseases, non-parametric tests, spearman correlation anal-
ysis and binary logistic regression were used, which were performed by 
a PASW Statistics 18 software (SPSS, Chicago, IL). In order to exclude 
the interference from confounding factors, the binary logistic regression 
model was adjusted to gender, age, BMI, sampling time, cigarette 
smoking and alcohol drinking history, and selection of confounding 
factors refers to previous study (Andersen et al., 2016). 

In the metabolomics analysis, the aligned peak table was acquired by 
a MarkerView workstation (AB SCIEX, USA) from the raw data, and the 
suitable internal standard was defined according to the method 
mentioned in the targeted analysis. To determine exposure markers, 
models of multiple linear regression were built separately to investigate 
associated metabolites of each residue adjusted for confounders 
including gender, age, BMI, sampling time, location, education level, 
cigarette smoking and alcohol drinking history. Moreover, a spearman 
correlation was performed to future check the association between 
exposome and metabolome, and multiple testing of the significant cor-
relation was conducted using false discovery rate (FDR) calculated by 
MATLAB (R2014a, MathWorks, Natick, USA). To determine disease 
markers, non-parametric tests and binary logistic regression were used 
(SPSS, Chicago, IL), and p value was also adjusted by FDR. All data 
subjected to the regression analysis were transformed into natural log-
arithms to meet the requirements of normal distribution. Metabolic 
pathway analysis was referred to KEGG (https://www.kegg.jp/). The 
classification information of metabolites was given using Classyfire (http 
://classyfire.wishartlab.com/) when the pathway information was not 
available. Partial least square discriminant analysis (PLS-DA) loading bi- 
plot was performed using SIMCA-P 14.1 software (Umetrics, Umea, 
Sweden) to gain observation scores and metabolite loadings. Modified 
triplot simultaneously integrates and displays the differentiation of 
control and hyperuricemia samples with effective metabolic markers 
through PLS-DA, as well as their correlations with exposures, epidemi-
ological factors and disease risk (Schillemans et al., 2019). 

Both single- and multiple-mediator models were used to evaluate the 
mediation effects of putative effective markers on the associations be-
tween PFASs and hyperuricemia. Single and high dimensional media-
tion analyses were performed, respectively, by R package “mediation” 
(Tingley et al., 2014) and “HIMA” (Zhang et al., 2016) in R software 
(version 4.10.0, R Foundation for Statistical Computing, Austria). Detail 
model settings are presented in Supplemental Methods. 

3. Results and discussion 

To define a list of exogenous chemical residues for studying the 
exposure effect on chronic diseases, a systemic literature survey was 
carried out. The pesticides, herbicides, fungicides, veterinary drugs and 
persistent organic pollutants with a high concentration level and a high 
detection frequency in blood (plasma/serum) or food reported in the 
literatures were collected in our test list. Exogenous chemical residues 
with health effects or carcinogenicity were preferentially retained if they 
are included in the U.S. Environmental Protection Agency and Interna-
tional Cancer Research Center health assessment data list. Finally, 106 
exogenous chemical residues were sorted out. Their detailed informa-
tion is given in Table S1. 

3.1. Quality assurance and quality control 

In the exposomics analysis for 106 exogenous chemical residues, the 
method validation was implemented to ensure the reliability of the 
developed method, and internal standard and quality control moni-
toring samples were used to ensure the reliability of sample analysis. 
98.1% of the total exogenous chemical residues have the limit of 
quantitation (LOQ) ≤ 10 ng/mL. All exogenous chemical residues 
showed excellent linearity, and the square of the correlation coefficient 
was ≥ 0.99 in the linear regression model of both with and without 
weighting factor of 1/x (x represents concentration) (Table S4). For the 
accuracy and precision tests, recoveries of all exogenous chemical resi-
dues ranged from 70 to 130%. 93.4% of exogenous chemical residues 
possessed inter day precision RSD% < 20%, and all of them had intra- 
and inter- day precisions with RSD% < 30%. 86.8% of exogenous 
chemical residues had an extraction recovery greater than 80%. The 
matrix effect of 93.4% exogenous chemical residues was ranged from 
− 20% to 20% (Table S4). 43 quality control samples were inserted in the 
targeted analysis sequence, 42 of them distributed within 2 standard 
deviations (Fig. S1A). In QC samples, 89% and 97% of the exogenous 
chemical residues had an RSD% of < 20% and < 30%, respectively after 
quantification based on the calibration curve (Fig. S1B). Additionally, 
the sensitivity of most exogenous chemical residues in this method was 
comparable with previous reports (Chang et al., 2017; Donat-Vargas 
et al., 2019). While the sensitivity of a few exogenous chemical resi-
dues was sacrificed such as perfluoroundecanoic acid (PFUnDA), 
chlorothalonil, etc., which was a compromise solution for targeting 
numerous exogenous chemical residues in serum. Meanwhile, most of 
exogenous chemical residues showed acceptable results in accuracy and 
precision, which ensured accurate quantification of exogenous chemical 
residues. 

In the metabolomics analysis, internal standard and QC monitoring 
samples were also applied to ensure the stability of batch sample oper-
ation. Total of 582 metabolites were annotated, detail information is 
presented in Table S5 and Fig. S2. Based on the annotated metabolites, 
all QC samples distributed to within two standard deviations, which 
showed the stability and the reliability of metabolomics analysis 
(Fig. S1C). 95% of annotated metabolites had RSD% <30% after 
normalized to a suitable internal standard (Fig. S1D). Moreover, 385 
annotated metabolites were involved in lipid pathway (Fig. S3A), and 
96% of them could be stably detected with RSD < 30% in the QC 
samples (Fig. S3B). These results demonstrated the reliability and sta-
bility of both exposomics and metabolomics analyses. 

3.2. Detection frequencies and distribution characteristics of exogenous 
chemical residues in human serum 

81 out of 106 exogenous chemical residues were detected in this 
batch of serum samples, and 11 exogenous chemical residues had the 
detection frequency greater than 30% which were considered as the 
high frequency detected exogenous chemical residues in this study. 
PFASs were detected at high frequencies, detection frequencies of 
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perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), per-
fluorodecanoic acid (PFDA), PFUnDA, perfluorohexane sulfonate 
(PFHxS) and perfluorooctane sulfonate (PFOS) were 99.60%, 69.76%, 
70.77%, 40.32%, 100%, and 100%, respectively. Furthermore, PFASs 
were divided into 3 groups including total PFAS (

∑
PFAS), per-

fluoroalkyl carboxylic acid (
∑

PFCA) and perfluorosulfonic acid 
(
∑

PFSA). The other exogenous chemical residues detected at high fre-
quency included doxycycline, furaltadone, prochloraz, 2-ethylhexyl 
diphenyl phosphate (EHDPP) and 4-chlorophenoxyacetate (4-CPA). 
The detailed grouping information of PFASs and detection frequency for 
other exogenous chemical residues in serum are presented in Table S6. 

Mean levels of detected exogenous chemical residues in human 
serum range from 0.00076 to 20.1 ng/mL (Table S6). For exogenous 
chemical residues detected at high frequency, mean concentrations of 
PFOA, doxycycline and PFOS were 20.1 ng/mL, 11 ng/mL and 9.1 ng/ 
mL, respectively (Table S6). The concentration levels of these exogenous 
chemical residues in chronic diseases are presented in Fig. 2, the con-
centrations of each individual PFAS and 

∑
PFAS in hyperuricemia were 

significantly higher than those in the control group (Fig. 2A~2G). Fur-
altadone and 4-CPA significantly increased and decreased in diabetes, 
respectively (Fig. 2H, 2I), no significant differences were observed in 
doxycycline, EHDPP, and prochloraz among 5 chronic diseases (Fig. 2J, 
2 K, 2L). In addition, the concentrations of PFASs presented gender 
difference (Fig. S2). All of the PFASs were elevated in male in the 
exposomics analysis and the differences of PFOA, PFNA, PFHxS and 
PFOS were significant (Fig. S4A), and similar findings were also 

observed in the metabolomics analysis (Fig. S4B). Moreover, relatively 
strong positive correlations were observed among all PFASs with the 
correlation coefficient ranging from 0.46 to 0.98, and no significant 
association was observed in other exogenous chemical residues 
(Fig. 3A). 

For the exploration on the impact of serum exogenous chemical 
residues on chronic diseases, exogenous chemical residues with high 
detection frequency are more worthy of attention. Among them, 6 PFASs 
with long-chain or sulfonated group were detected at a high frequency, 
which were more likely to be accumulated (Conder et al., 2008), and the 
detection frequency is comparable to that reported in the literature 
(Donat-Vargas et al., 2019). Moreover, the concentration levels of serum 
PFASs in this study were close to those in Nanjing City (Jiangsu, China) 
reported in pervious study (Wang et al., 2018). In addition, PFASs 
concentrations were found higher in men than those in women, which is 
consistent with previous study in obesity and hypertension population 
(Jain and Ducatman, 2019; Bao et al., 2017), and this difference might 
be related to the impact of life-style, dietary habits and menstruation on 
the excretion of PFASs (Seo et al., 2018). Finally, associations observed 
among PFASs were probably due to co-exposure to these chemicals, 
which are contained in different products (Kannan et al., 2004). 

Fig. 2. Concentration levels of serum exogenous chemical residues in a cohort with 5 major chronic diseases. Error bars present standard error of mean. * 
represents p < 0.05, ** represents p < 0.01, *** represents p < 0.001. 
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3.3. Association between serum exogenous chemical residues with high 
detection frequency and 5 major chronic diseases 

3.3.1. Correlation between exogenous chemical residues, epidemiological 
factors and chronic diseases 

Correlation analysis demonstrated that all of the PFASs including 
PFOA, PFNA, PFDA, PFUnDA, PFOS, PFHxS were positively correlated 
with hyperuricemia. Furaltadone was positively correlated with obesity, 
hypertension, diabetes and chronic diseases, while 4-CPA was inversely 
correlated with diabetes (Fig. 3B). Overall, the most significant corre-
lation was found between PFASs and hyperuricemia. As for epidemio-
logical information, gender was the most influential factor and male was 
positively correlated with the risk of each chronic disease (when 
calculating the spearman correlation, woman was assigned a value of 1 

and man was assigned a value of 2). Alcohol drinking history was the 
second important factor of chronic diseases including hypertension, 
diabetes, hyperuricemia and total chronic disease. Next was age and 
cigarette smoking history (Fig. 3B). Therefore, gender, age, BMI, alcohol 
drinking and cigarette smoking history were confounding factors 
(Andersen et al., 2016) which should be adjusted in logistic regression. 

3.3.2. Risk of exogenous chemical residues to chronic diseases 
To explore the risk of exogenous chemical residues with the high 

detection frequency to 5 major chronic diseases, odds ratio (OR) was 
estimated by per one standard deviation increment of natural logarith-
mic transformed exogenous chemical residues concentrations 
(Table S7). All of the PFASs were positively associated with the hyper-
uricemia risk in the unadjusted model. After confounding factors of 

Fig. 3. Correlation among serum exogenous chemical residues, diseases and epidemiological factors. (A) Spearman correlations between exogenous chemical 
residues. (B) Correlation network of exogenous chemical residues, diseases and epidemiological information. (C) Odds ratios (ORs) per 1 standard deviation increase 
in logarithms transformed concentrations of each individual PFAS and 3 PFAS groups and 95% confidence interval (CI) base on hyperuricemia patients. (D) ORs per 1 
standard deviation increase in logarithms transformed concentrations of each individual PFAS and 3 PFAS groups and 95% CI base on high serum uric acid patients 
screened by trisection in the whole chronic disease patients. Model 1 represents logistic regression model unadjusted for confounding factors, model 2 represents 
logistic regression model adjusted for gender, age, BMI, sampling time, cigarette smoking history and alcohol drinking history. Red represents the risk was significant. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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gender, age, BMI, cigarette and alcohol were adjusted. PFOA, PFNA, 
PFDA, PFUnDA, 

∑
PFAS and 

∑
PFCA were still associated with the risk 

of hyperuricemia while other exogenous chemical residues presented no 
significant correlation with the risk of chronic diseases (except fur-
altadone and diabetes) (Table S7). Considering the correlation between 
sampling time and hyperuricemia (Fig. 3B), sampling time was also 
adjusted, PFOA, PFNA, PFDA, PFUnDA, 

∑
PFAS and 

∑
PFCA were still 

positively associated with the risk of hyperuricemia in the new model 
(Fig. 3C). Therefore, we focused on the risk of PFASs to hyperuricemia. 

Previous epidemiological studies have reported that PFASs were 
positively correlated with the risk of hyperuricemia (Arrebola et al., 
2019; Qin et al., 2016; Scinicariello et al., 2020; Shankar et al., 2011; 
Steenland et al., 2010), although conclusions were not exactly the same 
when they were refined to individual PFAS. Some studies found that 
only PFOA showed a significant effect on increasing risk of hyperuri-
cemia (Arrebola et al., 2019; Qin et al., 2016; Scinicariello et al., 2020; 
Steenland et al., 2010). Other studies found PFOS, PFNA and PFHxS 
were also associated with higher odds of hyperuricemia besides PFOA 
(Shankar et al., 2011; Scinicariello et al., 2020). In this study, besides 
previously reported PFOA and PFNA, the risk of PFDA and PFUnDA to 
hyperuricemia was also found. When stratified by sex, the association 
between PFASs and hyperuricemia was evident only in male (Fig. S5A, 
S5B). Except PFHxS, all of the other PFASs were the risk factors of hy-
peruricemia in male (Fig. S5A), while no obvious association in female 
(Fig. S5B). The gender differences of the effect of PFASs exposure on 
hyperuricemia have been reported in previous studies but the conclu-
sion was controversial and the reason was unknown (Lin et al., 2020; 
Qin et al., 2016; Seo et al., 2018). Herein, high levels of both PFASs and 
serum uric acid were observed in male (Fig. S4A, S4B, S6A), hence, it 
was speculated that the gender differences might be related to different 
levels of PFASs exposure, and future study is needed to gain insights into 
this point. 

3.3.3. The risk of PFASs to high serum uric acid 
Epidemiological studies have shown that serum uric acid is a risk 

factor not only for hyperuricemia but also for hypertension, type 2 
diabetes and hyperlipidemia (Mortada, 2017; Sharaf El Din et al., 2017), 
hence the risk of PFASs to high serum uric acid was also explored, which 
is of great significance to understand the relationship between PFASs 
exposure and multiple chronic diseases. Significant high serum uric acid 
was observed in all chronic disease groups (Fig. S6B). Then the entire 
population was divided into three parts according to uric acid levels, and 
the lowest tertile and the highest tertile were used to calculate ORs 
(Fig. S6C). Positive correlation between PFASs and high serum uric acid 
was observed, which was consistent with previous studies (Gleason 
et al., 2015; Lin et al., 2019; Seo et al., 2018). PFOA, PFNA, PFUnDA, 
PFOS, 

∑
PFAS, 

∑
PFCA and 

∑
PFSA were the risk factors of high serum 

uric acid after adjusting confounders (Fig. 3D). Overall, all of the PFASs 
showed a positive correlation with the risk of hyperuricemia or high 
serum uric acid except PFHxS. Thus, mWAS for PFASs and hyperurice-
mia was performed (Fig. 1) to explore the related underlying mechanism 
at the metabolic level. 

3.4. Metabolite markers of PFASs exposure 

In order to further clarify the metabolic disturbance associated with 
PFASs exposure, changes of metabolic profiling acquired by nontargeted 
metabolomics technology was investigated. Based on the 582 annotated 
metabolites (Table S5), 240 endogenous metabolite markers were 
significantly associated with at least one PFAS based on spearman cor-
relation with pFDR < 0.05 and multiple linear regression adjusting 
confounders including gender, age, BMI, sampling time, location, edu-
cation level, cigarette smoking and alcohol drinking history. 88, 111, 93, 
146, and 115 metabolites were respectively associated with serum 
PFOA, PFNA, PFDA, PFUnDA, and PFOS (Table S8). The changed me-
tabolites were amino acid, peptide, nucleotide, sterol lipid, bile acid, 

carnitines, fatty acid metabolism, glycerides, ceramide, sphingolipid, 
and glycerophospholipids (Fig. S7A). Specifically, 157 out of 240 
endogenous metabolic markers were positively correlated with PFASs 
and 83were negatively correlated with PFASs (Fig. S7A, Table S8). 

Overall, metabolite markers for PFASs exposure were mainly located 
in lipid metabolism, and previous studies have confirmed that PFASs 
could induce toxicity via their interaction with peroxisome proliferator- 
activated receptors (PPARs) which can regulate lipid metabolism and 
participate in fat formation and storage (Wolf et al., 2008; Rosen et al., 
2017; Szilagyi et al., 2020). Herein, glycerophospholipid metabolism 
was the pathway with the strongest correlation with PFASs, which was 
consistent with other human studies (Alderete et al., 2019; Salihovic 
et al., 2019), while more glycerophospholipids were found to be asso-
ciated with PFASs in this study (Table S7, Fig. S7A). As for glycerides, 
only positive correlation between glycerides and PFASs exposure was 
found (Fig. S7A), which could be supported by cell experiment (Lanaspa 
et al., 2012) although the result of population-based studies has not been 
reported. Additionally, amino acid metabolism was found also to be 
correlated with PFASs exposure, and some evidences can be found from 
previous studies, such as proline, and creatine (Chen et al., 2020; Jin 
et al., 2020). To sum up, our results indicated that PFASs exposure was 
related to the increase of multiple lipids, amino acids, etc. 

3.5. Metabolite markers of hyperuricemia 

Metabolite markers of hyperuricemia and metabolic pathway dis-
turbances were investigated based on all annotated metabolites. In total 
145 endogenous differential metabolites were defined in univariate 
analysis by pFDR < 0.05 between control and hyperuricemia, and 87 
metabolites increased with fold change > 1.15 while 10 metabolites 
decreased with fold change < 0.85 (Table S9). In order to further refine 
the metabolites related to risk of hyperuricemia, binary logistic regres-
sion was used and the model was adjusted to gender, age, BMI, cigarette, 
alcohol, and sampling time. 84 metabolic markers related to the risk of 
hyperuricemia were defined as disease markers in logistic regression by 
pFDR < 0.05 (Table S9). Among them, 79 metabolites were positively 
correlated with risk for hyperuricemia including amino acid, carnitines, 
ceramides, glycerides, glycerophospholipids, fatty acid and oxidized 
fatty acid, sterol lipids and part of sphingolipid. Only 5 metabolites were 
negatively correlated with risk for hyperuricemia including ether 
phosphatidylcholine, part of sphingolipid, and FFAD 22:1 (Fig. S7B, 
Table S9). Finally, disturbed pathways related to hyperuricemia were 
mapped based on above differential metabolites. The changed metabo-
lites are mainly in amino acid and nucleotide metabolism (Fig. 4A) and 
lipid metabolism pathways (Fig. 4B). 

In amino acid metabolism pathway, the elevation of downstream 
metabolites in arginine and proline metabolism pathway was observed 
(Fig. 4A), and the significant up-regulation of creatine has rarely been 
reported, while up-regulation of creatinine levels has been widely re-
ported in hyperuricemia as a valuable markers of kidney injury (Han 
et al., 2020; Wang et al., 2016). For the nucleotide metabolism, except 
that uric acid was significantly increased in the hyperuricemia, other 
nucleotide metabolites did not change significantly (Fig. 4A). Serum uric 
acid is an important biomarker not only for hyperuricemia but also for 
other chronic diseases (see 3.3.3). 

In lipid metabolism pathway, an obvious up-regulated lipid meta-
bolism was observed including carnitines, fatty acids, glycer-
ophospholipids, glycerides, etc. (Fig. 4B). The significant increase of 
carnitines, fatty acids and oxidized fatty acids in hyperuricemia might be 
related to an active energy metabolism because carnitine is important 
substances participating in energy metabolism of the cells (Nakamura 
et al., 2014). Moreover, increased level of fatty acid in hyperuricemia 
was probably due to increased synthesis (lipid breakdown) and/or 
decreased decomposition (FA beta oxidation). In this study, the decrease 
of carnitines C2/C0 could provide evidence for impaired FA beta- 
oxidation (Fig. S8). As for other lipids, glycerophospholipids, 
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glycerides and cholesterol were elevated in hyperuricemia while ether 
phosphatidylcholine decreased (Fig. 4B, Table S9). The increased glyc-
erophospholipids in hyperuricemia have been reported both in rat- and 
human-based studies, and lipid-lowering therapy could provide a sup-
plementary role in slowing the development of hyperuricemia (Tan 
et al., 2021; Zhang et al., 2018) while the decreased ether phosphati-
dylcholine in hyperuricemia have not been reported. Meanwhile, it is 
worth mentioning that the increase of cholesterol, similar to uric acid, 
indicated risk for multiple chronic diseases, such as dyslipidemia (Szabó 
et al., 2017), diabetes (Rhee et al., 2017), heart and vascular disease 
(Varbo et al., 2013). Therefore, uric acid and cholesterol are important 
and effective markers for estimating the risk of many chronic diseases. 

3.6. PFASs exposure related metabolic changes and their risk to 
hyperuricemia 

A “meeting-in-the-middle” approach (Chadeau-Hyam et al., 2011) 
was adopted to investigate PFASs exposure related metabolic changes 
and their risk to hyperuricemia with putative effective markers. Most of 

the effective markers were positively correlated with PFASs and asso-
ciated with increased risk to hyperuricemia (Fig. 5). 

Specifically, amino acids (indole-3-carboxaldehyde, 3-methy-his-
tine, creatine, creatinine, phe-phe, pro-ile,), uric acid, cholesterol, car-
nitines, glycerides, glycerophospholipids, fatty acids, ceramides and SM 
36:1;2O and SM 32:1;2O were positively correlated with PFASs and 
associated with increased risk for hyperuricemia. SM 40:2;2O and FFAD 
22:1 were negatively correlated with PFASs and inversely associated 
with risk for hyperuricemia. PC-O 40:8 and PC-O 34:3 were positively 
correlated with PFASs and inversely associated with risk for hyperuri-
cemia. Phosphatidylethanolamine was positively associated with risk 
for hyperuricemia with opposite PFASs associations (Fig. 5). 

In order to further study the correlation between above effective 
markers with exposure and epidemiological factors, as well as their risk 
to the disease, a modified triplot analysis was used to integrate multiple 
factors on the risk of hyperuricemia (Fig. 6). The hyperuricemia and 
control could be distinguished well with effective markers. Principal 
component 1 (PC1) showed the strongest association with hyperurice-
mia in the positive direction. PC1 and principal component 2 (PC2) 

Fig. 4. Altered metabolic pathways in hyperuricemia. (A) Amino acid and nucleotide metabolism. (B) lipid metabolism. Red, green, black, and gray represent 
significant increase, significant decrease, no significant change, and undetected metabolites, respectively. Upward and downward arrows represent metabolites that 
are positively and negatively related to the risk of hyperuricemia, respectively. Asterisks represent metabolites related to PFASs. Abbreviations: G6P, glucose 6-phos-
phate; PPP, pentose phosphate pathway; ADP, adenosine diphosphate; AMP, adenosine monophosphate; IMP, inosine monophosphate; XMP, xanthosine mono-
phosphate; PI, phosphatidylinositol; LPI, lysophosphatidylinositol; PA, phosphatidic acid; LPA, lysophosphatidic acid; MG, monoacylglycerol; DG, diacylglycerol; TG, 
triacylglycerol; FA, fatty acid; oxFA, oxidized fatty acid; PC, phosphatidylcholine; PE, phosphatidylethanolamine; LPC, lysophosphatidylcholine; LPE, lysophos-
phatidylethanolamine; SM, sphingolipid; PS, phosphatidylserine; LPS, lysophosphatidylserine. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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could explain 28% and 6.8% of the variables, respectively. It was found 
that uric acid, creatine, creatinine carnitine and glycerides, glycer-
ophospholipids had the highest loading (Fig. 6). Except for PFHxS, other 
PFASs were positively correlated with PC1 and negatively correlated 
with PC2, indicating that exposures increased the risk of diseases on 
PC1. Moreover, PFASs and glycerophospholipids have the same direc-
tion (positive direction of PC1 and the negative direction of PC2), 
indicating that exposure to PFASs is closely related to disturbance of 
glycerophospholipid metabolism. The most influential epidemiological 
factor was gender which had a positive correlation with both PC1 and 
PC2 (Fig. 6). Nevertheless, after adjusting for this confounder in the 
binary logistic regression model, the risk of PFASs to hyperuricemia was 
still evident, which showed that the effect of PFASs on hyperuricemia 
was independent of genders. Finally, we found that uric acid, as the most 
important marker of hyperuricemia, has the highest loading in the 
positive direction of the two PCs, which was consistent with the risk of 2 

PCs to hyperuricemia, indicating the reliability of the model. The above 
results showed that the occurrence of hyperuricemia was the result of 
the combined effect of exogenous exposure and endogenous metabolic 
disorders. 

To further assess whether the putative effective markers mediated 
the relationship between PFASs exposure and hyperuricemia risk the 
mediation analysis was also performed. In single mediation analyses, 31, 
35, 36, 35, 41 out of 47 putative effective markers were mediators with 
significant mediating effects, and they mediated the association between 
PFOA, PFNA, PFDA, PFUnDA, PFOS and hyperuricemia, respectively 
(Table S10). High dimensional mediation analyses identified the most 
important markers from the above significant mediators. Creatine, 
creatinine, MG 18:1, PC 36:6, PE 40:6, cholesterol and SM 36:1;2O were 
selected, their mediation proportion ranged from 25% to 68% 
(Table S11). Except for creatine and creatinine, the other metabolites 
were all involved in the lipid pathways which indicated the importance 

Fig. 5. Associations between PFASs related metabolites and the risk to hyperuricemia. * represents p < 0.05, ** represents p < 0.01, *** represents p < 0.001. 
The risk was presented by ORs per 1 standard deviation increase in logarithms transformed levels of effective metabolic markers ± 95% CI. Correlations between 
PFASs and related effective metabolic markers was obtained by spearman correlation analysis. Shorthand notation of lipid structures was compliant with the Lip-
idomics Standards Initiative. 
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of lipids on mediating the correlations between PFAS concentrations and 
hyperuricemia risk. 

3.7. Underlying mechanisms of the positive correlation between PFASs 
and hyperuricemia at the metabolic level 

The metabolic mechanism of the positive correlation between PFASs 
exposure and the risk of hyperuricemia has been further clarified by 
mapping the above effective markers to related metabolic pathways 
(Fig. 4). Firstly, we found that most of the putative effective markers 
belong to lipid metabolism, which were not only positively correlated 
with PFASs exposure but also increase the risk of hyperuricemia (Fig. 4, 
Fig. 5). In Section 3.4, the relationship between PFASs exposure and 
abnormal lipid metabolism has been presented. Among the above lipids, 
the most significant change was glycerophospholipid, which is the main 
type of lipid in cell membranes (Han, 2016). Previous study indicated 
that binding to phospholipids might be the most important component 

in driving high cellular accumulation of PFASs (Sanchez Garcia et al., 
2018). Accumulated PFASs could regulate lipid metabolism via their 
interaction with PPARs (Szilagyi et al., 2020). Phospholipids were 
significantly positively associated with risk for hyperuricemia. There-
fore, glycerophospholipid is a kind of key metabolite that connects 
PFASs exposure and hyperuricemia. Moreover, PC 36:6 and PE 40:6 
showed significant mediation effects on this correlation. However, the 
specific mechanism needs to be further explored to reveal the causation. 

Glycerides are another key lipid metabolite that connects PFASs and 
hyperuricemia. They are not only positively correlated with PFASs 
exposure, but also increase the risk of hyperuricemia (Fig. 4, Fig. 5). The 
most significant mediator in glycerides was MG 18:1 with the mediation 
proportion ranging from 40% to 63% on the association of PFOA, PFDA, 
PFUnDA exposures and hyperuricemia risk. The mechanism of action 
may be similar to that in glycerophospholipids. 

In Section 3.5, we found that impaired fatty acid β-oxidation caused 
the increase of FAs which was positively associated with the risk of 

Fig. 6. Multivariate associations of effective markers with PFASs, epidemiological information and risk of hyperuricemia. The modified triplot (Schillemans 
et al., 2019) presents four-dimensional information including the observation scores of control and hyperuricemia samples, loadings of effective markers (metabolites 
with absolute loading > 0.5 are visualized by black arrows with label, whereas with absolute loading < 0.5 are represented by light grey arrows), correlations of 
observation scores with exposures (PFOA, PFNA, PFDA, PFUnDA, PFHxS and PFOS) as well as epidemiological factors (gender, age, BMI, cigarette, alcohol, sleeping 
time, education level, sampling time and location) and ORs to hyperuricemia. Correlations were calculated by Spearman correlations. ORs per 1 standard deviation 
increase in pattern score ± 95% CI were obtained from two binary logistic regression models: Model 1 was not adjusted for confounding factors. Model 2 was 
adjusted for gender, age, BMI, sampling time, cigarette and alcohol history. 
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hyperuricemia, which may also be related to PFASs exposure, because 
studies have shown that PFOS exposure reduced mitochondrial 
β-oxidation in rats (Wan et al., 2012). These data showed that the pos-
itive correlation between PFASs exposure and hyperuricemia can be 
attributed to the synergistic effect of exogenous chemical residues and 
endogenous lipid metabolism, especially glycerophospholipids. 

For nucleotide metabolism, except a significant increase of the final 
product of purine metabolism, uric acid, other metabolites in purine 
metabolism did not change significantly (Fig. 4). This might be attrib-
utable to insufficient excretion of kidneys rather than ‘overproduction’ 
of uric acid. This point can be partially proved by previous studies which 
showed that decreased extrarenal urate excretion caused by abnormally 
functioning gene (ABCG2) rather than uric acid ‘overproduction’ was a 
common mechanism of hyperuricemia (Ichida et al., 2012). More 
importantly, abnormal renal function is not only correlated to genetic 
factors, but also environmental factors such as PFASs exposure, and 
some experiments have shown the connection between PFASs exposure 
and kidney damage (Stanifer et al., 2018; Ferrari et al., 2019; Nakagawa 
et al., 2008). Moreover, in section 3.5 we found an abnormal increase in 
creatine and creatinine (Fig. 4), which was also considered as an 
important sign of kidney injury. These two metabolites were also 
important mediators of the association between PFAS exposure and 
hyperuricemia risk. Thus, more experiments need to be carried out to 
explore the relationship between PFASs exposure, kidney damage and 
uric acid accumulation in details. Additionally, the gender difference in 
PFASs exposure to the risk of hyperuricemia was discovered and dis-
cussed. The lower risk of hyperuricemia in women might be partly due 
to menstrual excretion which could partially compensate for insufficient 
renal excretion, and lifestyle might be the reason for the gender differ-
ence as well, which further demonstrated that disease was related to the 
imbalance among exogenous exposure, endogenous metabolism and 
excretion. 

4. Conclusions 

In summary, the interconnection between serum exogenous chemi-
cal residues and 5 main chronic diseases, including obesity, hyperuri-
cemia, hypertension, diabetes and dyslipidemia were investigated in this 
study. Next, mWAS combined with meeting-in-the-middle approach and 
mediation analysis was performed to reveal the metabolic perturbations 
related to exogenous chemical residues and chronic diseases, then 
further gain potential underlying mechanism insight at the metabolic 
level. Results demonstrated that PFASs were the risk factor for hyper-
uricemia. Putative effective markers including uric acid, amino acids, 
cholesterol and lipids were commonly associated with PFASs exposure 
and hyperuricemia. Among them, lipid species including glycer-
ophospholipids and glycerides presented the strongest correlation with 
exposure and disease, which were not only positively related to PFASs 
exposure but also the risk factor for hyperuricemia. To our best 
knowledge, this is the first population-based study on the relationship 
between PFAS-related metabolic abnormalities and their risk of hyper-
uricemia. Our research provides insights into clarifying the molecular 
mechanisms underlying the positive correlation between PFASs and 
hyperuricemia. 
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