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Abstract: Our gut microbiome is constituted by trillions of
microorganisms including bacteria, archaea and eukary-
otic microbes. Nowadays, gut microbiome has been grad-
ually recognized as a new organ system that systemically
and biochemically interact with the host. Accumulating
evidence suggests that the imbalanced gut microbiome
contributes to the dysregulation of immune system and the
disruption of cardiovascular homeostasis. Specific micro-
biome profiles and altered intestinal permeability are
often observed in the pathophysiology of cardiovascular
diseases. Gut-derived metabolites, toxins, peptides and
immune cell-derived cytokines play pivotal roles in the
induction of inflammation and the pathogenesis of
dysfunction of heart and vasculature. Impaired crosstalk
between gutmicrobiome andmultiple organ systems, such
as gut-vascular, heart-gut, gut-liver and brain-gut axes, are
associated with higher cardiovascular risks. Medications
and strategies that restore healthy gut microbiome might
therefore represent novel therapeutic options to lower the
incidence of cardiovascular and metabolic disorders.

Keywords: cardiovascular diseases; dysbiosis; endothe-
lium; endotoxin; fecal microbiota transplantation; gut
microbiome.

Introduction

During the lengthy evolutionary history of life, a delicate
balance, usually a symbiotic relationship, develops between

host organisms and microbial communities [1]. Our gastro-

intestinal tract harbors trillions of residents, of which some

behave like a ‘friendly neighborhood’ while some act as a
‘potential threat’ to host homeostasis [2]. The residential mi-

crobes in the digestive tract, collectively termed as gut

microbiome, are constituted by diverse microorganisms,

including archaea, bacteria and eukaryotic microbes [3].

These tiny residents intimately interact with the host to pro-
foundly impact essential aspects of host fitness, such as

lifespan, metabolism, development and fecundity [4]. Any

imbalance between the commensal and pathogenic mi-

crobes, termed as dysbiosis, poses threat to host health [5].
With the emergence of basic research and clinical findings on

gut microbiome-host crosstalk, we increasingly consider the

gut microbiome as a new organ system [6]. Of noted, this

newly recognized organ system affects host homeostasis and

disease pathophysiology through close communication with
multiple host organs. This review article primarily focuses on

addressing the tight linkage between gutmicrobiome and the

cardiovascular system (gut-cardiovascular connection) and

providing novel therapeutic insights to the treatment of car-

diovascular complications.
Cardiovascular disease is the leading cause of mor-

tality in China, accounting for approximately 40% of
overall deaths in the Chinese population [7]. The rising
morbidity and mortality of cardiovascular diseases indi-
cate the urgency for improving pre-existing and devel-
oping new therapeutic strategies. The gut-cardiovascular
connection has been recently proposed to represent one
of the newest druggable targets for the prevention
and treatment of cardiovascular disorders [8]. Across the
intestinal barrier, the systemic circulation of the cardio-
vascular system is probably the closest neighbor to the
gastrointestinal tract and its tiny residents. The close dis-
tance correlates to higher sensitivity and vulnerability of
the cardiovascular system to gut microbiome imbalance.
In other words, dysbiosis increases cardiovascular risks by
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exerting harmful effects on the heart and vasculature [9].
However, it is not a one-way action that gut microbiome
profiles unidirectionally influencehost health status to alter
disease pathogenesis. The host health status can also
reversely shape gut microbiome [10]. For instance, host
aging is associated with the dynamic shift of gut micro-
biome profiles, which predisposes host to aging-associated
diseases (e.g. cardiovascular complications) [11]. Mean-
while, many murine studies supported the casual role of
dysbiosis in the development of obesity and diabetes, two
critical risk factors in cardiovascular diseases [12]. Due to
limited evidence on the causality in human subjects, it
therefore remains a chicken-and-egg debate on the exact
pathological sequence of gutmicrobiome and host status in
the disease development (Figure 1).

During the development of dysbiosis-accelerated car-
diovascular pathogenesis, multiple key players or crucial
contributors are sequentially present, including the gut
microbiome, intestinal permeability, gut-derived substances
(e.g. metabolites, toxins, and peptides), immune system and
the cellular components of the cardiovascular system. Across
the intestinal barrier, the imbalanced gut microbiome con-
tributes to the altered metabolite and cytokine pool of the
host [13], which consequently cause stress on the cellular
components of heart and vasculature, namely endothelial
cells, vascular smooth muscle cells (VSMCs) and

cardiomyocytes, to elevate cardiovascular risks (Figure 1).
This general pattern could be observed in various cardio-
vascular complications, including but not limited to athero-
sclerosis, hypertension, myocardial infarction (MI), coronary
heart disease (CHD) and stroke. In addition to the gut-
vascular and heart-gut axes, the gut microbiome could
possibly impair cardiovascular homeostasis via the gut-liver
and brain-gut axes [14]. Medications and therapeutic strate-
gies that could restore or reshape the dysregulated gut
microbiome of the host would therefore reduce cardiovas-
cular risks. Fecal microbiota transplantation (FMT), the
transfer of microbes from healthy donors to high risk in-
dividuals orpatients [15],might representnovelpreventiveand
therapeutic opportunities for the treatment of cardiovascular
diseases. This review article provides a brief overview on some
potential therapeutic options for cardiovascular disorders in
related to gut microbiology.

Gutmicrobiome and cardiovascular diseases

Host microbiome and cardiovascular risks

Different cardiovascular complications are associated with
specialized alterations in gut microbiome composition.
Extensive efforts in both basic and clinical studies have

Figure 1: Interplay between the host status
and gut microbiome.
Host statuses such as obesity, diabetes,
and aging,may alter gut microbiome profile
of the host. On the other hand, imbalance of
gut microbiome alters metabolite pool and
cytokine pool of the body, which
consequently impair the host homeostasis
(e.g. cardiovascular homeostasis).
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beenmade to link a particular cardiovascular disease to the
outgrowth and the decline in certain microbial strains. In
these studies, some critical metabolites were highlighted
for their potential roles in the development of cardiovas-
cular complications (Table 1). Such gut microbiome alter-
ations, in terms of diversity and abundance, might serve as
either a predictor or index on the onset or the severity of
some major cardiovascular diseases.

Atherosclerosis and its devastating complications, espe-
cially CHD, peripheral artery disease andMI, represent one of
the leading causes of global mortality [16]. Characterized by
plaque formation that is the accumulation of fatty substances,
cellular components, and fibrous elements within the arterial
intima [17], atherosclerosis is a chronic inflammatory disorder
of thearterialwall [18].Atherosclerosis is theprimary cause for
the forementioned fatal cardiovascular diseases, where
extensive basic research and clinical study are still seeking to
uncover its comprehensive molecular signature. In recent
years, the rapid development of gut microbiome research has
facilitated the identification of novel biomarkers for athero-
sclerotic vascular diseases. Disrupted gut microbiome was
shown to favor the conversion of dietary choline to tri-
methylamine N-oxide (TMAO) [19], a circulating toxic
biomarker which positively correlates with atheroscle-
rotic lesions [20]. In addition, gut microbiome imbalance
could aggravate atherosclerotic progression by lowering
the abundance of short-chain fatty acids (SCFAs; e.g. ac-
etate, proprionate and butyrate) [21], which normally
serve as the suppressors of vascular inflammation [22]. In
patients with atherosclerotic vascular diseases, their
dysregulated fecal microbiome profiles were correlated
with impaired cholesterol metabolism and enhanced in-
flammatory response [23, 24]. Although previous litera-
ture suggested thatmicrobial regulation of bile acids shall
play a role in the development of atherosclerosis [25],
consolidated findings are still lacking. Further efforts are
needed to explore and verify the alterations in the
metabolite pool of human subjects.

Hypertension, the most significant risk for global
morbidity andmortality, servesas amajor risk factor causing
cardiovascular diseases. Due to the silent nature of hyper-
tension in its early stages, many un-diagnosed patients are
usually unaware of the need for early and adequate treat-
ment [26]. Recently, the gut microbiome has been suggested
to participate in the regulation of blood pressure (BP) and
hence the development of hypertension [27]. Colonization of
germ-free mice with conventional gut microbiome aggra-
vated angiotensin II-induced endothelial dysfunction and
arterial hypertension [28], highlighting the contribution of
gut microbiome in hypertensive cardiovascular diseases. By
contrast, colonization of germ-free mice with L. murinus

significantly inhibited autoimmunity and salt-induced hy-
pertension [29]. These important findings imply the opposite
effects of pathogenic and commensal microbes in the devel-
opment of hypertension. Amicrobiome study on 529 middle-
aged participants showed a positive correlation between
hypertension and certain bacterial genera (i.e. Anaerovorax,
Clostridium IV, Oscillibacter, and Sporobacter) [30]. Another
cohort study on human subjects reported that the Lactoba-
cillus species was negatively correlated with both arterial BP
and sodium uptake [31]. A previous study on spontaneously
hypertensive rats (SHRs) indicated that dysbiosis was pro-
inflammatory during hypertension, probably by mediating
microbial release of SCFAs [32]. Moreover, the increased
level of lipopolysaccharide (LPS) may underlie dysbiosis-
associated hypertension [33].

Stroke, a sudden focal injury to the area within the
central nervous system (CNS) because of brain arterial
occlusion, remains the second leading cause of mortality
and third leading cause of disability globally, affecting
nearly 25% of adults during their lifetime [34]. Of noted,
cerebral infarction during stroke and post-stroke recovery
might be related to the altered gut microbiome profile [35].
Remarkably, transplantation of dysbioticmicrobiome from
brain-injured donor mice resulted in larger infarct size
and poorer post-stroke outcome in mice [36]. By contrast,
a healthy gut microbiome, characterized by higher abun-
dance of SCFA-producing bacteria (e.g. Bifidobacterium
longum, Clostridium symbiosum, and Lactobacillus fer-
mentum) are found to accelerate post-stroke recovery [37].
A previous clinical study also implied that a reduced level
of gut-derived SCFA could serve as a potential prognostic
marker for acute ischemic stroke [38]. Importantly, the
elevated content of gut microbiome-dependent TMAO
correlates with a higher incidence of adverse cardiovas-
cular events (e.g. recurrent stroke, MI and cardiovascular
mortality) [39]. In addition, the existing experimental
findings suggest a contributory role of gut microbiome in
arterial thrombosis, the precursor event of ischemic stroke.
The gut microbiome-dependent TMAO production mecha-
nistically links to a higher thrombosis potential [40]. In a
toll-like receptor-2 (TLR2)-dependent mechanism, gut
microbiome regulates the synthesis of von Willebrand
factor from hepatic endothelial cells to promote throm-
bosis formation [41]. Therefore, a dysbiotic microbiome are
more likely to serve as a prognostic factor for ischemic
stroke, while restoration of a healthy microbiome might
enhance the post-stroke recovery of the host.

CHD, or coronary artery disease, refers to the narrowing
or evenblockageof coronaryarteries. Thebuild-upofplaques
underneath the wall of coronary arteries highlights the
atherosclerotic and inflammatory nature of CHD [42].
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Table : Cardiovascular disease and host microbiome.

Cardiovascular
disease

Sample Microbiome profile Key substance(s) Mechanism Ref.

Atherosclerosis ApoE−/− mouse Bacteroidetes ↓, Firmicutes ↑ Proteo-
bacteria ↑

TMAO Choline diet→ TMAO↑ → lesion↑ []

Ldlr−/− mouse Akkermansia↓, Christensenellaceae ↓
Odoribacter ↓

SCFA Systemic inflammation↑ []

Human Bacteroidetes ↓ Actinobacteria ↑ Unknown Endotoxin ↑, Cholesterol
metabolism↓

[]

Human Enterobacteriaceae ↑ Streptococcus↑ Unknown Inflammatory response↑ []
Hypertension CBL/J mouse Unknown Cytokine (IL-) Inflammatory response↑ endothe-

lial dysfunction↑, blood pressure↑
[]

CBL/J mouse Lactobacillus ↓. Unknown High salt → T helper  cells↑ in-
flammatory response↑

[]

Human Anaerovorax ↑, Clostridium IV ↑
Oscillibacter ↑, Sporobacter ↑

Unknown Unknown []

Human Lactobacillus ↓ Unknown Sodium uptake↑ []
SHR Bifidobacterium ↓ Streptococcus ↑ SCFA Inflammatory response↑ []
Human Prevotella ↑, Klebsiella ↑, Porphyr-

omonas ↑, Actinomyces ↑ Faecalibacte-
rium ↓, Roseburia↓ Bifidobacterium ↓,
Butyrivibrio ↓

LPS SCFA Inflammatory response↑ []

Stroke CBL/J mouse Firmicutes ↑, Bacteroidetes ↑ Cytokines Pro-inflammatory T cell
polarization↑

[]

Rag−/−mouse Actinobacteria ↑ (IL- and IFN-γ) Infarct volume↑, post-stroke
outcome↓

CBL/ mouse Bifidobacterium ↓, Clostridium ↓, Fae-
calibacterium↓, Lactobacillus ↓

SCFA Inflammatory response↑ []

Human Lactobacillaceae↑, Akkermansia ↑
Enterobacteriaceae ↑, Porphyr-
omonadaceae ↑

SCFA Inflammatory response↑ []

Human CBL/J
mouse

Unknown TMAO TMAO↑ adverse cardiovascular
event↑

[]

Human CBL/J
mouse

Coriobacteriaceae ↑ Erysipelo-
trichaceae↑, Allobaculum ↑

TMAO TMAO↑ thrombosis potential↑ []

CB/ mouse
Tlr−/− mouse

Unknown von Willebrand
factor

von Willebrand factor↑ thrombosis
potential↑

[]

Coronary heart
disease

Human Bacteroidetes ↓, Firmicutes ↑
LactobaciNales ↑

Unknown Unknown []

Human Clostridium ↑ GlcNAc--P Sugar metabolism []
Streptococcus ↑ Mannitol → Cardiovascular

activity
CBL/J mouse Cbstridium symbiosum ↑ Eggerthella ↑ Bile acids Cyto-

kine (IL-)
Bile acids↓ → Circulatory choles-
terol↑ inflammatory response↑

[]

Human Unknown TMAO TMAO ↑ adverse cardiovascular
event↑

[]

Perpheral artery
disease

Human Unknown TMAO TMAO↑ adverse cardiovascular
event↑

[]

Myocardial
infarction

Human LactobaciHus↑, Bacteroides ↑
Streptococcus ↑

LPS D-lactate Systemic inflammation↑ []

Dahl S rats Unknown Aromatic amino
acids

Activation of survival pathways in
heart

[]

Human Lachnospiraceae ↓, Aerococcaceae ↑,
Ruminococcaceae ↑

TMAO TMAO↑ adverse cardiovascular
event↑

[]

CBL/J mouse Unknown Unknown Presence of microbiota
→ ejection fraction↑
myocardial infarction↓

[]
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Notably, the incidence of CHD also correlates with the gut
microbiome profile [43]. Clinically, CHD patients were asso-
ciated with elevated Firmicutes/Bacteroidetes ratio and
increased abundance of the order Lactobacillales in their in-
testinal microbiome, which were often detected in obese and
diabetic individuals [44]. Another clinical study suggested
that gut microbiome-derived N-acetylglucosamine-6-phos-
phate(GlcNAc-6-P) and mannitol could be metabolic bio-
markers for CHD [45]. Recently, Liu et al. [46] proposed that
CHD-associated dysbiosis potentially leads to bile acid
imbalance, and hence impaired cholesterol homeostasis.
As for an atherosclerotic cardiovascular disease, gut
microbiome-derived TMAO can also be considered as a risk
biomarker for CHD [47]. Sharing major risk factors and
pathophysiologic mechanisms with CHD [48], peripheral ar-
tery disease (PAD), a chronic disorder characterized by
atherosclerosis of the abdominal aorta and lower extremity
arteries affects more than 200 million people globally [49].
Similar to CHD, TMAO level could be a risk predictor for
PAD [50]. However, very few studies have solely explored the
relationship between intestinal microbiome and PAD.

MI is pathologically defined as the death of myocardial
cells upon prolonged ischemia in myocardium [51]. By 2030,
the number of MI patients in China is expected to be
approximately 23 million [52]. Recent studies attempt to
address the poor prognosis and recovery of MI on a
microbiome perspective. In 2018, Zhou et al. [53] were
among the first to indicate that the post-MI cardiovascular
outcomes were affected by the translocation of gut micro-
biome into systemic circulation (i.e. endotoxin). Another
group suggested that the severity of MI was related to the
metabolites (e.g. amino acids) derived by intestinal
microbiome, hinting the diagnostic potential [54]. Thus the
gut microbiome-derived TMAO could serve as a predictive
marker for adverse cardiovascular events post-MI [55]. By
contrast, the presence of certain commensal microbes may
confer a cardioprotective role. For instance, conventionally
raised mice were associated with higher ejection fraction
when compared to germ-free mice upon ligation of left
anterior descending artery [56]. This in vivo finding implied

the presence of certain commensalmicrobes in eliciting the
anti-myocardial infarction effects.

Aneurysm is an irreversible and permanent change of
aortic wall structure, resulting from the degradation of
extracellular matrix and loss of VSMCs. The mortality rate
of abdominal aortic aneurysm (AAA) rupture strikingly
reaches 50% [57]. In mouse model of AAA, a positive
correlation between AAA diameter and the dysbiotic gut
microbiome was reported [58]. Strongly associated with
aortic aneurysm [59], intracranial aneurysm could be
worsened by dysbiosis. Gut microbiome depletion by
antibiotics alleviated intracranial aneurysm in mice [60].
In 2020, Li et al. [61] demonstrated that H. hathewayi-
associated depletion of taurine promotes the progression
of intracranial aneurysm. More interrogations on the gut
microbiome composition of other types of aneurysm, such
as AAA and thoracic aortic aneurysm, are urged.

Maternal microbiome and cardiovascular risks

The transmission of maternal microbiome to infants was
clinically proven as infants can acquire microbes from in-
testine, skin, vagina and oral cavity of their mothers [62].
More importantly, the maternal microbiome profile and the
resultant metabolite pool contribute to the programming of
gut microbiome and immunity of fetus. Briefly, there is a
translocation of microbes from the maternal intestine to the
placenta, resulting in the microbial colonization in fetus.
Moreover, the gut-derived metabolites from mother, particu-
larly SCFAs, could cause epigenetic alterations and subse-
quent immune programming in fetus [63]. Therefore, it is
possible that maternal dysbiosis may predispose a child to
higher cardiovascular risk (Table 2).

In 2020, Kimura et al. [64] provided clues that
maternal gutmicrobiomewas crucial to the development
of metabolic syndrome (e.g. obesity and insulin resis-
tance) in offspring, which is a multiplex cardiovascular
risk factor. An intergenerational concordance of dys-
biotic gut microbiome was observed in pregnant women
and neonates suffering from gestational diabetes

Table : (continued)

Cardiovascular
disease

Sample Microbiome profile Key substance(s) Mechanism Ref.

Aneurysm CBL ApoE−/−

mouse
Akkermansia↓, Odoribacter↑ Heli-
cobacter↑, Ruminococcus ↑

Unknown Inflammatory response↑ []

CBL/J mouse Unknown Cytokines (IL-β.
IL-. MCP-)

Inflammatory response↑ []

Human CBL/N
mouse

H. hathewayi↓ Taurine Taurine↓
→Inflammatory response↑

[]

IL: interleukin; LPS: lipopolysaccharide; MCP: monocyte chemoattractant protein; SCFA: short-chain fatty acid; TMAO: trimethylamine N-oxide.
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mellitus [65], potentially implying a higher risk of type 2
diabetes mellitus, obesity and cardiovascular compli-
cations in offspring. Interestingly, maternal exercise could
boost SCFA-producing microbes in maternal microbiome to
improve insulin sensitivity and metabolic disorders in
offspring [66], conferring a lower cardiovascular risk.Offspring
hypertension risk appears to be modulated by the maternal
gut microbiome. Maternal supplementation of N-acetylcys-
teine could markedly ameliorate hypertension in SHR
offspring through increasing the production of hydrogen sul-
fide (H2S) [67]. Meanwhile, maternal treatment of captopril
could lower BP in SHR offspring via a gut-brain axis [68].
Maternal administration of probiotic also protects SHR
offspring against hypertension [69]. These important findings
highlight the transfer of cardiovascular risks between genera-
tions from a microbial perspective. Notably, long-term follow-
up studies on the effect of maternal microbiome on offspring
cardiovascular health in human subjects are at present
lacking. Whether transmission of dysbiotic microbiome could
aggravate the progression of atherosclerotic cardiovascular
diseases in offspring requires further investigation.

Intestinal permeability

Loss of balance between commensal and pathogenic mi-
crobes in our gut microbiome causes damage on intestinal

lining, in which the pathogenic microbes generate ‘holes’
and ‘pores’ in the intestinal barrier [70]. The increased in-
testinal permeability, termed as ‘leaky’, is characterized by
loose tight junctions between adjacent epithelial cells and a
damaged intestinal mucus layer [71]. When the intestine be-
comes leaky, antigens, bacteria, endotoxins, and toxins from
the lumen would readily enter the systemic circulation [72].
Importantly, the leaky gut is often observed along with
various diseases, including cardiovascular complications,
diabetes mellitus, carcinoma and neurological disorders [73].
Improper lifestyles favored by a sedentary pattern, dis-
rupted circadian rhythm and imbalanced diet (e.g. high fat,
high glucose, lowfiber) prompt the loss of intestinal integrity.
Aging is generally accompanied by a gradual decline of in-
testinal permeability and low-grade inflammation [74]. Such
lifestyles and aging, as a results, increase the host vulnera-
bility to dysbiosis-related chronic diseases.

Higher cardiovascular risk is correlated with the
impaired intestinal permeability. The leaky gut accelerates
the progression of dysbiosis-related cardiovascular diseases
by facilitating endotoxin influx, resulting in the alterations
in the metabolite and cytokine pools in the host systemic
circulation (Figure 2). Overgrowth of certain pathogenic
microbes (e.g. Helicobacter pylori [75], Clostridium spp [24],
Enterococcus faecalis [76], and Staphylococcus spp [77])were
often recognized upon leaky gut and cardiovascular dis-
eases. The influx of endotoxin (i.e. LPS) fromGram-negative

Table : Cardiovascular risk and maternal microbiome.

Condition(s) Sample Microbiome profile Key substance(s) Mechanism Ref.

Metabolic syndrome Germ-free ICR
mouse
CBL/J
mouse

Unknown SCFA (e.g. Proprionate) Maternal SCFA↓
→Embryonic GPR and
GPR
→Insulin resistance, obesity
→Cardiovascular risk↑

[]

Gestational diabetes
mellitus

Human Prevotella ↑, Streptococcus ↑
Bacteroides↑, Lactobacillus ↑

Viruses (e.g. herpesvirus,
mastadenovirus)

Viral infection↑ []

Metabolic
abnormalities + exercise

CBL/
mouse

Odoribacter ↑ Helicobacter↑
Clostridium XIVb↑

SCFA Maternal SCFA↑
→Insulin sensitivity, body
weight↓
→Cardiovascular risk↓

[]

Hypertension +
N-acetylcysteine

SHR rat Verrucomicrobia ↓, Actino-
bacteria ↑ Turicibacter ↓, Akker-
mansia↓ Bifidobacterium ↑,
Allobaculum ↑

Hydrogen sulfide (HS) HSt ↑
→Hypertension↓

[]

Hypertension + captopril SHR rat Erysipelotrichia ↑, Erysipelo-
trichaceae ↑ Clostridials ↑,
Clostridia ↑ Allobaculum ↑

LPS Cytokines
(e.g. TNF-α GlcNAc--P: N-
acetylglucosamine--
phosphate, IL-β)

Gut inflammation and perme-
ability↓ Neuroinflammation↓
sympathetic activity↓

[]

Hypertension + probiotic SHR rat Lactobacillus casei ↑ SCFA Maternal SCFA↑
→BP↓
→Cardiovascular risk↓

[]

BP: blood pressure; HS: hydrogen sulfide; IL: interleukin; LPS: lipopolysaccharide; SCFA: short-chain fatty acid; SHR: spontaneously
hypertensive rat; TNF: tumour necrosis factor.
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bacteria induce host systemic inflammation, causing
dysfunction of the cardiovascular system [78]. Recogni-
tion of endotoxins by sensors, such as TLRs and receptor
for advanced glycation end products (RAGE) [79],
remarkably boosts the production of cytokines (e.g. TNFα,
interleukin(IL)-1β, IL-6 and IFNγ) [80]. Elevated cytokine
levels trigger arterial inflammation, the hallmark of many
cardiovascular complications (e.g. atherosclerosis, hy-
pertension and CHD) [81].

The leakage of gut-derived metabolites into the host
circulation may pose significant threat to the cardiovas-
cular health. High level of gut-derived lactate in the host
circulation is predictive to major adverse cardiovascular
events [53]. Lactate accumulation in circulation causes
lactic acidosis, which flushes the cellular components of
cardiovascular system with acidic microenvironment and
hence directly hinders cardiovascular function [82]. Be-
sides, leakage of gut-derived succinate also impairs car-
diovascular homeostasis. The oxidation of succinate
causes oxidative damage to cardiovascular tissues, espe-
cially during myocardial ischemia-reperfusion [83]. As
aforementioned, TMAO level serves as an established risk
factor for cardiovascular diseases. A leaky gut increases the
circulatory level of gut-derived trimethylamine (TMA),
which is further metabolized to TMAO for igniting

endothelial activation and atherogenesis [84]. Healthy
lifestyles (e.g. regular exercise), certain medications and
probiotics that improve intestinal integrity may therefore
partially confer protection to the cardiovascular system.

Endothelium: the first-line barrier

The inner lining of blood vessels is formed with a mono-
layer of endothelial cells, which continually experience
biomechanical and biochemical stimuli in the circulatory
system [85]. Endothelial cells play pivotal roles in the
modulation of vascular tone, and the trafficking of sub-
stances between circulation and underlying vascular
cells [86]. Dysfunction of endothelial cells is an early event
predisposing the development of both cardiac and vascular
complications, particularly atherosclerotic cardiovascular
disease [87]. The molecular features of endothelial dysfunc-
tion include diminished NO bioavailability, augmented
oxidative stress, enhanced inflammation and increased
cellular senescence [88]. Endothelial dysfunction results in
the dysregulated communication between endothelial cells
and proximal cellular components of the cardiovascular
system (e.g. VSMCs and cardiomyocytes), and accelerates
disease progression [89]. Upon a damaged intestinal barrier,

Figure 2: Intestinal permeability and
cardiovascular risk.
Improper lifestyles contribute to the
increased intestinal permeability (leaky
gut), which leads to the influx of endotoxin
and microbiome-derived metabolites into
the systemic circulation. Endotoxin influx
induces the immune cells to secrete pro-
inflammatory cytokines. The altered
metabolite pool and cytokine pool cause
damage on cellular components of the
cardiovascular system to increase
cardiovascular risks. IFN: interferon; IL:
interleukin; TMAO: trimethylamine N-oxide;
TNF: tumor necrosis factor.
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the endothelial cells are exposed to endotoxin, cytokines and
gut-derived metabolites, and are therefore prone to endo-
thelial dysfunction (Figure 3).

Exposure to endotoxin directly injures endothelial
cells and induces endothelial dysfunction. In addition to
oxidative damage and inflammatory response [90], endo-
toxin even triggers endothelial-to-mesenchymal transition
(EndoMT) [91], the loss of normal endothelial phenotype
alongside the gain of mesenchymal markers in endothelial
cells. The morphological change in endothelial cells sig-
nifies the loss of normal endothelial function. The
endotoxemia-induced cytokine production also impairs
endothelial function. The association between inflamma-
tory cytokines and endothelial dysfunction highlight the
underlying mechanisms of many cardiovascular diseases.
Such endotoxin-associated link is common in endothelial
cells during atherosclerotic cardiovascular diseases [92].
Cytokine-induced EndoMT remarkably injuries endothelial
function and correlates with the incidence of multiple
cardiovascular diseases, such as atherosclerosis and pul-
monary hypertension [93]. Prevention of endotoxemia
represents one of the therapeutic perspectives for main-
taining endothelial homeostasis.

Gut-derived metabolites modulate endothelial ho-
meostasis. Certain metabolites that serve as biomarkers for
dysbiosis-related cardiovascular diseases often cause
damage to endothelial cells. TMAO causes endothelial

dysfunction by lowering nitric oxide (NO) production [94].
The gut microbiome can metabolize the aromatic amino
acids to form uremic toxins (e.g. indoxyl sulfate and
p-cresyl sulfate). Leakage of uremic toxins is hazardous to
endothelial health. Both indoxyl sulfate and p-cresyl sul-
fate were shown to be pro-inflammatory in endothelial
cells [95, 96]. In addition, indoxyl sulfate lowers endothe-
lial viability and induces endothelial dysfunction, as
revealed by increased generation of reactive oxygen spe-
cies (ROS) and decreased NO bioavailability [97]. Although
acidosis results in the apoptosis of coronary endothelial
cells [98], whether dysbiosis-associated lactic acidosis
disrupts endothelial homeostasis remains elusive. How-
ever, gut-derived metabolites are not always harmful to
endothelial health.

Gut-derived SCFAs and gaseous metabolites can be
beneficial to endothelial function. Multiple groups have
provided clues to elucidate the direct beneficial effects of
SCFAs on endothelial cells. In 2019, Bartolomaeus et al. [99]
demonstrated the antihypertensive effects of propionate in
murine, via the improvement on endothelial function.
Furthermore, acetate and butyrate were described to pro-
tect endothelial function against angiotensin II insult by
facilitating NO production [100]. Our intestine is one of the
biological sources of the gaseous molecule H2S, which is
also beneficial to the endothelial health. The various ben-
efits of H2S in the cardiovascular function, such as its

Figure 3: Gut-derived substances and endothelial homeostasis.
Healthy gut microbiome and normal intestinal permeability protect endothelial function. On the other hand, dysbiosis and leaky gut trigger
endothelial dysfunction via causing entry of endotoxin, cytokines, andmetabolites into the bloodstream. GLP-1: Glucagon-like peptide 1; H2S:
hydrogen sulfide;MT: endothelial-tomesenchymal-transition; NO: nitric oxide; SCFAs: short-chain fatty acids; TMAO: trimethylamineN-oxide.
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vasodilatory, anti-inflammatory, antioxidant and antihy-
pertensive effects, have been well-established [101].
Administration of sulfate prebiotic was shown to increase
colonic H2S content, which subsequently stimulates
glucagon-like peptide-1 (GLP-1) production from intestinal
L-cells [102]. Importantly, endothelial cells can sense GLP-1
by GLP-1 receptor tomediate vasodilatory, antioxidant and
anti-inflammatory effects [103]. The endothelial cells serve
as the first-line interface for signal transduction from gut-
derived metabolites to the cardiovascular system.

Vascular smoothmuscle and gutmicrobiome

VSMCs are the stromal components in the medial layer of
vascular wall, playing critical role in arterial pathophysi-
ology. In response to different vasoactive substances (e.g.
neurotransmitters, metabolites and hormones), VSMCs
dynamically contract and relax to modulate vascular tone,
local blood flow and BP [104]. Importantly, the tight
endothelial cell-VSMC communication is crucial to the
vascular homeostasis, contributing to the vasoreactivity
and the structural integrity of the vascular wall. Dysregu-
lated endothelial cell-VSMC interaction restricts vasodila-
tion, increases oxidative stress, andpromotes inflammation
in the vascularwall [105]. Plasticity ofmatureVSMCs allows
their phenotypic alterations in response to stimuli. Physi-
ologically, mature VSMCs exhibit limited proliferation,
restrictedmigration and enhanced expression of contractile
proteins. Notably, VSMCs can de-differentiate to a ‘syn-
thetic’ phenotype, characterized by hyperactive prolifera-
tion and migration, upon biochemical stimulation and
vascular injury [106]. Such synthetic phenotype is
constructive to vascular repair at the injured site, but
excessive synthetic activity causes undesirable remodeling
of vascular structure. Dysregulated endothelial cell-VSMC
interaction and dysfunctional VSMCs elevate the risk of hy-
pertensive andatherosclerotic cardiovascular diseases [107].

Overgrowth of pathogenic microbes and damaged in-
testinal integrity can impair VSMChomeostasis anddisrupt
the communication between endothelial cells and
VSMCs (Figure 4). As forementioned, endotoxemia and
gut-derivedmetabolites can cause endothelial dysfunction
with less NO diffusing to the underlying VSMCs, encour-
aging VSMC contractility and proliferation [88]. In a
ROS-dependent mechanism, dysfunctional endothelial
cells could stimulate inflammation, ROS overproduction
and calcification of VSMCs [108]. At the injured site of
vasculature, dysfunctional endothelial cells also drive
VSMC inflammation by enhancing the recruitment of and

permeability to immune cells (e.g. leukocytes) [109]. In a
paracrinemanner (e.g. miRNAs and extracellular vesicles),
dysfunctional endothelial cells are able to induce an in-
flammatory and senescent phenotype of VSMCs [110]. The
close proximity and interaction between endothelial cells
and VSMCs shall not be negligible during endotoxemia-
associated cardiovascular diseases.

Similar to endothelial cells, exposure of VSMCs to the
substances derived by pathogenicmicrobes also corresponds
to a higher cardiovascular risk. Endotoxin could directly
trigger vascular inflammation by upregulating TLR4 expres-
sion in human aortic smooth muscle cells, highlighting the
risk of atherosclerosis and restenosis [111]. Through aToll-like
receptor (TLR4)/Akt pathway, LPS could stimulate the pro-
liferation ofVSMCs [112]. As a sensor for endotoxin, activation
of TLR2 promotes the de-differentiation of VSMCs to the
synthetic phenotype, associated with inflammation and
calcification [113]. Additionally, endotoxemia-associated
cytokine production may further aggravate the inflamma-
tion and phenotypic shift in VSMCs [114]. Endotoxemia and
its associated cytokineproduction shall be responsible for the
loss of stability and functionality of VSMCs during the
development of dysbiosis-related cardiovascular diseases.

Figure 4: Dysbiosis-associated VSMC dysfunction.
Dysbiosis may cause VSMC dysfunction by directly impairing VSMC
homeostasis, and by disrupting the communication between
endothelial cells and VSMCs. Reduced NO bioavailability, increased
oxidative stress, and pronounced inflammation in endothelial cells
would drive the dysfunction of VSMCs. Dysfunctional VSMCs are
associated with increased contractility, syntheticity, inflammation,
ROS overproduction, calcification, proliferation, and migration. NO:
nitric oxide; ROS: reactive oxygen species; VSMC: vascular smooth
muscle cell.
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Metabolites, such as uremic toxins, derived from the
gut microbiome also impair the homeostasis of VSMCs.
Indoxyl sulfate was shown to induce VSMC proliferation,
migration, and ROS overproduction through platelet-
derived growth factor-β receptors [115]. p-cresyl sulfate
could aggravate the formation of atherosclerotic plaques in
ApoE−/−mice by enhancing the proliferation andmigration
of VSMCs [116]. Higher level of TMAO, the gut microbiome-
dependent product, also triggers inflammation and calci-
fication of VSMCs by activating both nuclear factor-κB
(NF-κB) and nucleotide-binding domain, leucine-rich-
containing family, pyrin domain-containing-3 (NLRP3)
inflammasome [117]. Remarkably, a microenvironment
rich in lactate can promote the synthetic phenotype of
VSMCs [118]. It is therefore reasonable to postulate that the
abnormal outgrowth of lactic acid-producing bacteria
would be a potential hazard toVSMChomeostasis. In short,
a dysbiotic gut microbiome and impaired intestinal integ-
rity are risky to health and functionality of both endothe-
lium and vascular smooth muscle.

Gut-heart connection: gut microbiome and
cardiac homeostasis

Human heart can be segregated into a compendium of 5
major cell types, namely cardiomyocytes, endothelial
cells, fibroblasts, smooth muscle cells (SMCs) and mac-
rophages [119]. Dysbiosis has been clinically shown to be
associated with the severity or outcomes of cardiac com-
plications, such as CHD and MI [44, 53]. The relatively
novel concept of the ‘gut-heart axis’ has been proposed to
describe the connection between the gut microbiome
profile and cardiac homeostasis. Upon intestinal ab-
sorption, gut-derived substances flow through the heart
before entering the arterial circulation. Theoretically, the
hearts shall be more vulnerable or sensitive to the higher
concentrations of endotoxin and metabolites than the
peripheral vascular system. Substances derived from the
gut microbiome reach the heart to bring about stressful
challenges, such as inflammatory injury and oxidative
damage, on different cardiac cells, including the car-
diomyocytes, fibroblasts, endothelial cells, and SMCs.

The endothelial cells and SMCs of the coronary
vascular system are the frontline cells that first encounter
the stream of gut-derived substances. Dysfunction of
these cells underlie the progressive deterioration in the
functionality and blockage of coronary arteries, leading to
ischemia of cardiac tissue (i.e. CHD). Mechanistically,
endotoxin and gut-derived toxic substances could induce
the dysfunction of these cells of the coronary arteries, as

illustrated in Figures 3 and 4. In addition, these harmful
substances could also potentially impair the functionality
of cardiomyocytes, the fundamental unit of cardiac
muscles, and hence the cardiac homeostasis (Figure 5). As
a hallmark of cardiac complications (e.g. MI, heart failure
and ischemia/reperfusion), cardiomyocyte dysfunction
generally describes the decreased active relaxation and
undesirable remodeling (i.e. hypertrophy and fibrosis) of
cardiomyocytes [120]. A healthier gut microbiome and
intestinal barrier function shall reduce the burden on
coronary arteries and cardiac muscles, implying a lower
risk of CHD and heart failure.

Endotoxin exposure causes dysfunction and apoptosis
in cardiomyocytes in vivo [121], in which a lower number of
functional cardiomyocytes corresponds to a higher risk of
heart failure. Furthermore, endotoxin augments total and
mitochondrial ROS production to disrupt redox homeostasis
in cardiomyocytes [122], a prerequisite to fibrosis and hy-
pertrophy of cardiomyocytes [123]. Endotoxemia also

Figure 5: Gut-heart axis and cardiomyocyte homeostasis.
Commensal and pathogenic microbes resident in the intestine can
generate both beneficial and toxic substances and release them into
the circulation. The beneficial substances sustain cardiomyocyte
homeostasis, while the toxic agents promote cardiomyocyte
dysfunction. H2S: hydrogen sulfide; PCA: protocatechuic acid;
SCFAs: short-chain fatty acids; TMAO: trimethylamine N-oxide.
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stimulates the autocrine secretion of pro-inflammatory cy-
tokines (e.g. IL-1β, IL-6 and TNFα) by cardiomyocytes [121].
Attracted by the injured cardiomyocytes, infiltrated im-
mune cells (e.g. monocytes and macrophages) also
contribute to the cytokine production [124]. Collectively,
the autocrine and paracrine production of cytokines
provide an inflammatory microenvironment favorable to
cardiomyocyte remodeling [125]. Notably, disrupted endo-
thelial cell-cardiomyocyte and fibroblast-cardiomyocyte in-
teractions might also participate in the development of
cardiomyocyte dysfunction [126], although the comprehen-
sive mechanism still remains elusive.

Exposure to the elevated concentration of gut-derived
toxic substances poses threat to the cardiomyocytes. Gut-
derived TMAO impairs cardiomyocyte function by inducing
fibrosis and hypertrophy [127], possibly via the activation of
NLRP3 inflammasome [128]. On the other hand, pharmaco-
logical inhibition of the microbial synthesis of TMAO by
iodomethylcholine, the choline trimethylamine lyase in-
hibitor, could repair cardiac remodeling and function in
murine [129]. Indoxyl sulfate, the uremic toxin, has been
demonstrated to elicit pro-inflammatory, pro-hypertrophic
and pro-fibrotic effects in cardiomyocytes [130]. In vitro
findings also suggest that indoxyl sulfate triggers apoptosis
of human cardiomyocytes by increasing endoplasmic retic-
ulum (ER) stress [131]. p-cresyl sulfate, another uremic toxin,
was also found to be pro-apoptotic to cardiomyocytes in a
ROS-dependent manner [132]. The tight linkage between the
build-up of intracellular oxidative stress and ER stressmight
imply a similar mechanism of these gut-derived uremic
toxins. High levels of these toxic substances in the circula-
tion might serve as a predictive value for cardiac disorders.

Production of compounds or molecules by commensal
microbes could confer cardioprotection against cardiac
disorders. SCFAs, major gut-derived metabolites from di-
etary fibers, are generally beneficial to cardiomyocytes.
Butyrate treatment can prevent the enlargement of human
cardiomyocytes against angiotensin II insult [133]. In mu-
rine, propionate administration significantly alleviated
cardiacfibrosis andhypertrophy [99]. Generated bybothgut
microbiome and intestinal epithelial cells from cysteine,
the gaseous compound H2S is associated with various
cardioprotective benefits. The anti-hypertrophic, anti-
apoptotic, anti-fibrotic, and anti-inflammatory effects ofH2S
have been well documented [134]. Fluctuation in the levels
of gut-derived bile acids can disrupt the homeostasis of the
cardiovascular system [135]. For instance, excessive bile
acids can cause cardiac hypertrophy and dysfunction by
hindering the fatty acid oxidation by cardiomyocytes [136].
Further efforts are needed to define the threshold concen-
tration between the beneficial and harmful roles of bile acids

on cardiovascular homeostasis. In addition, the gut micro-
biome can convert the dietary anthocyanin to protocatechuic
acid (PCA) [137], a phenolic compound shown to suppress
oxidative stress and apoptosis in cardiomyocytes [138].
These findings highlight the importance of balance be-
tween commensal and pathogenic microbes in maintain-
ing cardiac homeostasis.

Gut-liver axis and cardiovascular
homeostasis

After intestinal absorption, gut-derived substances are
transferred to liver via portal vein, prior to the exportation
to heart for systemic circulation. Liver functions as an
organic ‘factory’ to modify or detoxify the absorbed sub-
stances before they are transferred to other organs. The
concept ‘gut-liver axis’ describes the bidirectional inter-
play between gut, in conjunction with gut microbiome,
and liver [139]. The gut-liver axis is believed to be involved
in the pathogenesis of multiple hepatic complications,
including alcoholic liver disease (ALD), nonalcoholic
fatty liver disease (NAFLD), nonalcoholic steatohepatitis
(NASH), cirrhosis and hepatocellular carcinoma [140]. In
addition to hepatic disorders, the gut-liver axis could also
participate in the pathogenesis of cardiovascular com-
plications (Figure 6). By metabolizing the gut-derived
substances, the liver eventually generates a spectrum of
metabolic products that could be harmful to the cellular
components of the cardiovascular system. Moreover,
dysbiosis-related hepatic diseases could also serve as a
potential risk factor to cardiovascular diseases.

The liver is responsible for the metabolism of gut-
derived materials. In the intestine, the microbes convert
dietary choline to TMA, which is further metabolized to
TMAO in the liver [141]. As aforementioned, TMAO is a
predictive biomarker of cardiovascular complications,
promoting the dysfunction of endothelial cells, VSMCs and
cardiomyocytes. The uremic toxins follow a similar meta-
bolic fate as to TMAO. The intestinal microbes first degrade
the dietary tryptophan into indole, which is further
metabolized to indoxyl sulfate by liver [142]. Meanwhile,
dietary tyrosine is transformed to p-cresol, which is then
converted to p-cresyl sulfate by sulfotransferase in the
liver [143]. These twouremic toxins, as previouslydescribed,
are pro-inflammatory and pro-atherosclerotic, and are
positively correlated with cardiovascular mortality in pa-
tients with chronic kidney disease [132]. By contrast, the
SCFAs derived by microbe-mediated carbohydrate fermen-
tation can reduce hepatic lipogenesis [144], exerting anti-
atherogenic effects on vasculature. Limited dietary intake of
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choline and aromatic amino acid may be preventive to
reduce cardiovascular diseases, through the gut-liver axis.

Bile acids are involved in the bidirectional communi-
cation between liver and intestine [140]. In the liver, pri-
mary bile acids, cholic acid and chenodeoxycholic acid,
are synthesized from cholesterol. The conjugated primary
bile acids are released to the intestine through the bile duct
for microbe-mediated deconjugation and dehydroxylation
to form secondary bile acids, deoxycholic acid (DCA) and
lithocholic acid (LCA) [145]. Most secondary bile acids are
reabsorbed into liver via portal vein to constitute the bile
acid pool, along with primary bile acids. A small propor-
tion (5%–10%) of the total bile acid pool enters the sys-
temic circulation to act on different organs by agonistic
activation of corresponding receptors [e.g. farnesoid X re-
ceptor (FXR) and membrane Takeda G protein-coupled

receptor 5 (TGR5)] [146]. The role of bile acids in the car-
diovascular system remains debatable. Doubtful findings
are present to show that circulatory bile acids promote
cardiac dysfunction [145], but they improve endothelial
function [147]. Uncertain ratios between primary and sec-
ondary bile acids, and differential expression of bile acid
receptors in different cells may underlie the controversial
roles of bile acids. Clinically, a higher ratio of secondary to
primary bile acids correlated to higher mortality rate in
patients with chronic heart failure [148]. More pre-clinical
and clinical studies are required to resolve the uncertainty
in the cardiovascular role of bile acids.

Endotoxin from the leaky gut can lead to the patho-
genesis of hepatic diseases. Both LPS, the component on
the outer membrane of Gram-negative bacteria, and lip-
oteichoic acid (LTA), the component on the cell wall of
Gram-positive bacteria, can be recognized by TLR2 and
TLR4 [149]. Docking to TLRs ignite innate immunity and
trigger fibrosis in liver, promoting the development of he-
patic disorders, like NAFLD, NASH and cirrhosis [150].
Endotoxin exposure also enhances the progression of he-
patocellular carcinoma [151]. Epidemiologically, these he-
patic diseases are the risk factors for cardiovascular
diseases. Patients with these hepatic disorders are more
vulnerable to endothelial dysfunction, arterial calcifica-
tion, and carotid thickening [152]. Although the detailed
molecular mechanisms on the causality of hepatic disorders
on cardiovascular diseases are not fully elucidated, hepatic
dysfunction-associated systemic inflammation and oxida-
tive stress shall increase the burden on the cardiovascular
system [153]. Recently, another concept ‘liver-heart axis’ has
been postulated to describe the potential molecular cross-
talk between liver and the cardiovascular system [154].

In brief, the dysbiotic gut microbiome can impair the
homeostasis of cardiovascular system through liver-
mediated metabolic modification, and potentially through
sequential impairment on the liver and then on the cardio-
vascular function (Figure 6). Comparative study on the gut
microbiome profiles of patients with hepatic disorders, and
those with cardiovascular diseases may imply some mech-
anistic commonality between these two distinct types of
disorders. In other words, the dysbiotic microbiome profile
observed inpatientswith hepatic diseasesmight bepartially
predictive to reduce the risk of cardiovascular diseases.

Brain-gut axis and cardiovascular
homeostasis

The ‘brain-gut axis’ describes the bidirectional connections
between the gut microbiome and CNS. Chemical

Figure 6: Gut-liver axis and cardiovascular risk.
Dysbiosis leads to the influx of more gut-derived precursor
metabolites, which are further metabolized by the liver to form
cytotoxic chemicals to impair the cardiovascular function. In
addition, leaky gut causes the leakage of endotoxin into the portal
vein, damaging the liver function. The occurrence of hepatic
disorders increase the cardiovascular risk. LPS: lipopolysaccharide;
LTA: lipoteichoic acid; MA: trimethylamine; TMAO: trimethylamine
N-oxide.
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transmitters, neural pathways and the immune system are
believed to be the pivotal contributors to the brain-gut axis.
This axis is particularly important to the homeostasis of
both intestinal and nervous systems of the host [155]. Since
the signal transducers participating in the brain-gut axis
and the immune cells of the immune system are trans-
ported via the systemic circulation, it is reasonable to
postulate that the brain-gut axis somehowwould affect the
cardiovascular function. As observed in some novel find-
ings, the brain-gut axis eventually influence some cardio-
vascular parameters of the host. The bidirectional interplay
between the intestine and the brain may incidentally affect
the cardiovascular system (Figure 7). The ‘brain-gut-heart’
and ‘brain-gut-vascular’ axesmay potentially participate in
the development of cardiovascular diseases.

The dysbiotic intestine may be associated with the
morbidity of neurological disorders. Subsequently, dysfunc-
tion of the CNS affects the cardiovascular function via the
circulatory system. One possible example is the Crohn’s dis-
ease, a type of inflammatory bowel disease. Notably, the
chronic inflammation of the intestine is often associated with
dysbiosis and impaired intestinal barrier [156]. Patients with
Crohn’s disease are more vulnerable to anxiety and depres-
sion disorders [157]. Endotoxemia is believed to arouse pe-
ripheral inflammation in the host, which then spreads to the
CNS to cause neuroinflammation, a prerequisite of neuro-
logical dysfunction [158]. Moreover, in patients with Crohn’s
disease, anxiety was clinically found positively correlated
with blood pressure and aortic stiffness [14]. The stress- or
anxiety-related secretion of hormones, such as cortisol and
insulin [159], into the bloodstream directly cause burdens on
cellular components of cardiovascular system (e.g. endothe-
lial cells and cardiomyocytes) [160, 161]. These interesting
observations imply a complex network between gut micro-
biome and the cardiovascular system.

In an opposite fashion, the stressed CNS may elicit
detrimental effects on the intestine, which eventually

increases the cardiovascular risks via the gut-
cardiovascular communication. Psychological stress on
the CNS could raise the permeability of intestinal barrier
through hormonal control and sympathetic nerve stimu-
lation, leading to endotoxemia and systemic low-grade
inflammation [162]. Importantly, mental disorder (e.g.
depression) could reversely raise the risk of inflammatory
bowel disease [163], which further exaggerates neuro-
inflammation [164]. In other words, a vicious cycle may
exist between the diseased CNS and the inflammatory
intestine (Figure 7). In spite of the sequential order,
unhealthy states of both the CNS and intestine increase the
risk of cardiovascular diseases. In recent years, a healthier
dietary intervention has been shown to improve mental
health through favorable modulation of the host gut
microbiome [165]. Thus, a healthier dietary pattern is
beneficial not only to the cardiovascular function, but also
to the CNS health. However, extensive future studies are
needed to deepen our understanding of the molecular
basis involving the brain-gut axis during the development
of cardiovascular complications.

Drug–microbiome interaction and
cardiovascular health

In the past decades, tremendous amount of efforts have
been devoted to develop medications and supplements to
improve cardiovascular health. The molecular mecha-
nisms and pathways of many cardiovascular drugs have
been extensively investigated and elucidated. In recent
years, the importance of gut microbiome has been raised
that such microbial communities might serve as a new
organ system in human body [6]. Dietary nutrients can
interact with the gut microbiome [166], so the ingested
medications and supplements do. In a bidirectional
manner, the drugs can alter the gut microbiome profile of

Figure 7: Bidirectionality in brain-gut axis
and cardiovascular risk.
The vicious cycle between the inflammatory
intestine and the inflammatory CNS.
Chemical transmitters, neural pathways
and the immune system may collectively
participate in the pathogenesis of
cardiovascular dysfunction. CNS: central
nervous system.
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the host, while the intestinal microbes are also involved in
the metabolism of drugs to become pharmacologically
active [167]. Such drug–microbiome interaction might
provide novel mechanistic insights into the pharmacolog-
ical properties of cardiovascular drugs. Herein we aimed to
revisit themechanisms of cardiovascular benefits of certain
drugs, which has been previously investigated, from the
perspective of drug–microbiome interface (Table 3).

Metformin, the antidiabetic drug, is clinically used to
reduce the cardiovascularmorbidity andmortality in patients
with type 2 diabetes mellitus [168]. Mechanistically, Cheang
et al. [169] demonstrated that metformin can improve endo-
thelial function by alleviating ER stress through activation
of 5′ adenosine monophosphate-activated protein kinase
(AMPK). Prolonged treatment of metformin also protects the
cardiomyocytes against apoptosis and remodeling [170]. The
cardiovascular benefits of metformin can be interpreted in
terms of drug–microbiome interaction. In obese rats, met-
formin increased the abundance of SCFA-producing mi-
crobes (e.g.Allobaculum,Bacteriodes, andButyricoccus) [171],
in which SCFAs can activate AMPK [172]. Consistently, the
abundance of SCFA-producing genera was shown to be
greater in human trials on metformin [173]. Moreover, met-
formin can lower circulatory cholesterol levels via the mod-
ulation of gut microbiome [174], correlating with a lower
atherosclerotic risk. In addition, metformin treatment im-
proves the intestinal integrity in vivo [175]. These intestinal
benefits provide new mechanistic insights into the cardio-
vascular benefits of metformin.

GLP-1 analogues (e.g. exendin-4, semaglutide and lir-
aglutide), another group of well-established antidiabetic
drugs, can mitigate cardiovascular risks [176]. These ana-
logues can improve endothelial homeostasis by docking to
GLP-1 receptors on endothelial cells [177]. Particularly,
GLP-1 analogues can attenuate endothelial dysfunction by
AMPK activation and ER stress alleviation [178]. The GLP-1
analogue liraglutide elicits anti-atherogenic effects by
suppressing VSMC proliferation [179]. Of noted, GLP-1 an-
alogues can also modulate the gut microbiome profile. In
rats, liraglutide was shown to restrain hepatic lipogenesis
through themodulationof gutmicrobiome [180].Moreover,
liraglutide also reduces NAFLD by modulating gut micro-
biome [181], hinting that the GLP-1 analogues may confer
cardiovascular protection via the gut-liver axis. In human
subjects, liraglutide administration can both alter gut
microbiome profile and improve intestinal integrity [182].
Nevertheless, investigation into intestinal effects of other
GLP-1 analogues is required.

Dipeptidyl peptidase-4 (DPP-4) inhibitors, another
group of antidiabetic medications, improve glucose homeo-
stasis by inhibiting GLP-1 cleavage. DPP-4 inhibitors, such as

sitagliptin, were previously shown to be beneficial to the
homeostasis of endothelial cells [183]. Sitagliptin can pro-
mote SCFA production through modulating the gut micro-
biome [184]. Sitagliptin treatment in human subjects
increases the production of SCFAs [185], although the shift in
microbiomeprofile somehowcontradictory to that in rodents.
Resveratrol, the natural phenolic compound in red wine, is a
cardioprotective supplement which improves both cardiac
and vascular functions [186]. Resveratrol remarkably atten-
uates intestinal damage and inflammation in diabetic
mice [187], implying that resveratrol may confer car-
dioprotection through prohibiting systemic inflammation.
More importantly, resveratrol could limit TMAO production
by altering the gut microbiome profile to exert its anti-
atherogenic effect [188]. These findings highlight the
dietary benefits of resveratrol in counteracting cardiovascular
complications.

Berberine, the major active component of the Chinese
herb Coptis chinensis, elicits antidiabetic and car-
dioprotective effects [189]. Berberine can protect endothelial
function by ameliorating oxidative stress through down-
regulating cyclooxygenase-2 [190]. Berberine is also
involved in the mitochondrial homeostasis in car-
diomyocytes [191]. Recent microbiological studies extend
our mechanistic understanding of the cardiovascular ben-
efits of berberine. The anti-atherogenic effect of berberine
can be partially explained by the TMAO-lowering effect
through altering microbial composition [192]. Furthermore,
berberine may mediate its beneficial effects by altering mi-
crobial metabolism of bile acids, and hence the circulatory
bile acid pool [193]. Calcitriol, the vitamin D analogue, is the
commercially available supplement to boost cardiovascular
health. In renal arteries, calcitriol improves endothelial
function by suppressing oxidative damage [194]. The anti-
hypertrophic effect of calcitriol has been elucidated in pa-
tients with hyperparathyroidism [195]. There is a bidirec-
tional interaction between vitamin D and its homologues,
and gut microbiome. In particular, a higher body level of
vitamin D would enrich the butyrate-producing microbes
[196]. Intestinal deletion of vitamin D receptor aggravates
intestinal inflammation and dysbiosis [197], conditions that
correlate with higher cardiovascular risk. These findings
imply the importance of dietary supplementation of vitamin
D in providing cardiovascular benefits.

Statins, the lipid-lowering drugs, are commonly used
to prevent and treat CHD [198]. The anti-atherogenic
property of statins attributes to their cholesterol lowering
effect [199]. The recent novel findings on microbial
involvement significantly add new therapeutic insights
into the use of statins against cardiovascular complica-
tions. Clinically, statin therapy decreases the prevalence

14 Cheng and Huang: Gut microbiome and cardiovascular regulation



Table : Drug–microbiome interaction and host cardiovascular health.

Drug Sample Microbiome profile Key
substance(s)

Implication Ref.

Metformin Wistar rat Allobaculum↑, Bacteriodes↑, Blautia↑ SCFA SCFA↑ []
Butyricoccus↑, Phascolarctobacterium↑ Cardiovascular health↑

Human with Intestinibacter↓, Escherichia↑, A.
muciniphila↑

SCFA SCFA↑ []

Type  diabetes B. adolescentis↑, Bifidobacterium↑ Bile acids
CBL/J mouse Klebsiella↓, Escherichia↓, Sarcina↓ Cholesterol Cholesterol↓→Atherosclerosis↓ []

Lactobacillus↑, Enterococcus↓,
Achromobacter↓

Glucose

CBL/ mouse Unknown Endotoxin Intestinal integrity↑ []
GLP-
analogues

Wistar rat Firmicutes↓, Bacteroidetes↑ Lipid Lipogenesis↓→Atherosclerosis↓ []

(e.g.
liraglutide)

Goto-Kakizaki rat Bacteroidia↓, Clostridia↑

CBL/ mouse Helicobacter↓, Proteobacteria↑ SCFA Hepatic disorder→ []
Ob/ob mouse Akkermansia↑, Oscillospira↑,

Thermotogae↑
Cardiovascular risk↓

Human with Sutterella↓ Endotoxin Intestinal integrity↑ []
Type  diabetes Akkermansia↑, Christensenellaceae↑

DPP-
inhibitors

Zucker diabetic fatty
rat

Verrucomicrobia↓, Proteobacteria↓,
Bacteroidetes↓

SCFA SCFA↑ []

(e.g.
sitagliptin)

Lactobacillus↑, Firmicutes↑ Cardiovascular health↑

Human Firmicutes↓, Ruminococcaceae↓ SCFA SCFA↑ []
Bacteroidetes↑, Streptococcaceae↓ Bile acids Cardiovascular health↑

Resveratrol db/db mouse Bacteroides↑, Alistipes↑, Rikenella↑ Endotoxin Intestinal integrity↑ []
Odoribacter↑, Parabacteroides↑,
Alloprevotella↑

Cytokines Intestinal inflammation↓

ApoE−/− mouse Firmicutes↓, Lactobacillus↑ TMAO TMAO↓ []
Bacteroidetes↑, Bifidobacterium↑,
Akkermansia↑

Bile acids Cardiovascular risk↓

Berberine ApoE−/− mouse Roseburia↑, Blautia↑, Allobaculum↑ TMAO TMAO↓ []
Alistipes↑, Turicibacter↑ SCFA Cardiovascular risk↓

Human with Roseburia spp.↓, Ruminococcus bromii↓ Bile acids Cardiovascular risk↓ []
Type  diabetes Faecalibacterium prausnitzii↓, Bifido-

bacterium spp.↓
Bacteroides spp.↑, γ-Proteobacteria↑

Vitamin D Aged human Unknown SCFA SCFA↑ []
(e.g. butyrate) Cardiovascular health↑

Intestinal Bacteroides fragilis↑ Endotoxin Intestinal inflammation↑ []
Vitmain D receptor Butyrivibrio fibrisolvens↑ (e.g. LPS) Dysbiosis↑
Conditional knockout
mouse

Firmicutes peptostreptococcus↑ Bile acids Cardiovascular risk↑

Statin Obese human Eggerthella↓, Bacteroides↑ SCFA Dysbiosis↓ []
Akkermansia↑, Faecalibacterium↑ (e.g. butyrate) Systemic inflammation↓

CBL/N mouse Bacteroides↑, Butyricimonas↑ Cytokines Intestinal inflammation↓ []
Mucispirillum↑ (e.g. TGFβ,

IL-β)
Cardiovascular health↑

CBL/ mouse Mucispirillum↓, Acinetobacter↓,
Christensenella↓

Endotoxin Intestinal integrity↑ []

Weissella↓, Streptophyta↓,
Anaerotruncus↑

SCFA Systemic inflammation↓

Sporobacter↑, Collinsella↑, Rubrobacter↑,
Microlunatus↑

Cytokines

Telmisartan ApoE−/− mouse Firmicutes↓ Endotoxin Intestinal integrity↑ []
Bacteroidetes↑, Helicobacter↑ (e.g. LPS)

IL: interleukin; LPS: lipopolysaccharide; SCFA: short-chain fatty acid; TGFβ: transforming growth factor β; TMAO: trimethylamine N-oxide.
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of dysbiosis [200]. Administration of atorvastatin and
rosuvastatin in murine can suppress intestinal inflam-
mation by lowering the level of pro-inflammatory cyto-
kines (e.g. IL-1β) [201]. Atorvastatin administration
facilitates post-stroke recovery by inhibiting endotox-
emia, increasing SCFA production and suppressing in-
flammatory response [202]. Gut-liver and brain-gut axes
may be also involved in statin-mediated cardiovascular
benefits. Telmisartan, a widely used antihypertensive
drug, is a highly selective antagonist for angiotensin II type 1
receptor [203]. Telmisartan increases NO production in
endothelial cells and restrains vasoconstriction [204]. Telmi-
sartan treatment can decrease atherosclerotic lesions in
ApoE−/− mice, partially through altering gut microbiome and
limiting endotoxemia [205].

In short, most of the aforementioned drugs confer
cardioprotection by modulating SCFA, intestinal perme-
ability and inflammatory response. However, fewer
studies focus on how the gut microbiome reversely
modulate the metabolism of these drugs. Since the gut
microbiome profile varies among individuals, which
would cause variation in the therapeutic efficacy of these
drugs among individuals. Potential preconditioning or
‘tuning’ of gut microbiome prior to drug therapy is
worthwhile consideration in order to amplify the thera-
peutic efficacy and cardiovascular benefits. In addition,
extensive efforts are still required to comprehensively
explore the underlying network among these drugs, the
gut microbiome, the cardiovascular system and other or-
gans potentially involved.

Fecal microbiota transplantation and
cardiovascular health

FMT refers to the strategy which transfers the intestinal
microbial content from a healthy donor to the gastroin-
testinal tract of an unhealthy recipient [206]. The thera-
peutic potential of FMT has been evaluated by a number of
pre-clinical and clinical studies in recent years. In murine
studies, FMT can be simply achieved by oral gavage of the
microbial content into the recipient mice [207]. However,
more rigorous considerations shall be given to optimize
the transfer approaches in human subjects. In human
recipients, FMT is often delivered to the colon by using
colonoscopy, or to the upper gastrointestinal tract by
capsules [208]. FMT may represent a novel therapeutic
strategy in cardiovascular therapy by improving the
metabolic profile and systemic inflammation of the re-
cipients. In particular, some investigations have provided

therapeutic insights against cardiovascular diseases (Ta-
ble 4), hinting that FMT may become a new therapeutic
option in addition to traditional classical medications.

The transfer of intestinal content from a healthy in-
dividual to improve the gut microbiome profile, and
hence the symptoms of diseased recipient is the general
gist. In a pre-clinical study, FMT could retard myocarditis
in recipient mice by repairing dysbiosis and cardiac
inflammation [209], implying the anti-inflammatory po-
tential of FMT. Levels of hazardous biomarker (e.g. TMAO)
can be reduced by FMT. In patients with metabolic syn-
drome, FMT from lean vegan-donors lowered the plasma
level of TMAO [210], implying reduced vascular inflam-
mation and atherosclerotic risk. FMT can also elicit anti-
hypertensive effects by modulating the gut microbiome
and improving the intestinal integrity [211]. Transfer of
intestinal content rich in SCFA can improve intestinal
integrity and alleviate the progression of ischemic stroke
in rats [212].

On the other hand, FMT from diseased donors would
result in the onset of disorders. FMT frompatients tomouse
models were commonly applied to interrogate the patho-
logical mechanisms of cardiovascular diseases. For
instance, FMT from pre-eclampsia patients trigger pre-
eclampsia phenotypes in recipientmice [213]. Additionally,
FMT from CHD patients impaired vascular function and
affected bile acid metabolism in recipient mice [46]. These
important findings confirm the therapeutic potential of
FMT in cardiovascular diseases. Of noted, similar pre-
conditioning or ‘tuning’ of gut microbiome profile might be
needed prior to the FMT regimen. Importantly, young
healthy donor with regular physical activity might serve as
the ‘ultimate’ donor of intestinalmicrobial content for FMT.
In future decades, it is reasonable to anticipate that ‘stool
donation’ would be as common as ‘blood donation’ for
wider therapeutic opportunities to target multiple disor-
ders, including cardiovascular diseases.

Future perspectives and conclusive
statement

In this review, we discuss the clinical relevance of the gut
microbiome to cardiovascular diseases, possible in-
teractions between gut microbiome and the cellular com-
ponents of the cardiovascular system, and therapeutic
opportunities on cardiovascular complications by target-
ing gut microbiome. During the discussion, some unsolved
questions underlying the gut-cardiovascular connection
are identified. Further efforts are still required to extend
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our understanding towards addressing these questions.
For instance, relatively fewer studies are available to
examine the role of gut microbiome in the development of
PAD. Besides, the complex network interconnecting the
brain-gut axis and cardiovascular system requires further
extensive investigation. In terms of drug–microbiome
interaction, more focus needs to be directed on how gut
microbiome modulate the metabolism of different drugs.
Procedures and efficacy of FMT regimen in human subjects
still require further optimization. Future efforts to unify the
preconditioning agent prior to FMT regimen, and to iden-
tify ‘ultimate’ donor to optimize therapeutic efficacy, might
be also needed.

Extensive efforts have been directed at evaluating the
profiles of gut microbiome in rodents and human during
the development of cardiovascular diseases. Certain critical
metabolites identified may serve as potentially useful prog-
nostic factors formultiple cardiovascular diseases. However,
the high level of those metabolites (e.g. TMAO) could
not specifically predict the risk of a particular cardiovascular
disorder. Further investigation is needed to confirm
the linkage between the unique set(s) of gut microbiome
profiles among individuals and the risk of a particular

cardio-metabolic disease, before applying microbiome
sequencing for future diagnostic purposes. To conclude, the
extensive pre-clinical and clinical studies have deepened our
understanding towards our ‘friendly neighborhood’, opening
up new therapeutic opportunities for different disorders,
such as cardiovascular diseases. We need to ‘love’ and ‘care’
them on a daily basis, preventing them from turning into
‘potential threats’ to our cardiovascular system.
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Table : Fecal microbiota transplantation and cardiovascular implications.

Study design Microbiome profile Phenotypic alterations Implication Ref.

Donor: BALB/c mouse Firmicutes↓ Dysbiosis↓ Myocarditis↓ []
↓
Recipient: BALB/c mouse with Bacteroidetes↑ Inflammatory infiltration↓ Cardiomyocyte health↑
Experimental autoimmune myocarditis
Donor: Lean vegan Lachnospiraceae↑ TMAO↓ Vascular inflammation↓ []
↓ Bryantella formatexigens↑
Recipient: patient with Megamonas hypermegale↑ Oxidized low‐density lipoprotein↓ Atherosclerotic risk↓
Metabolic syndrome L bovis↑
Donor: Wistar-Kyoto rat Blautia↑, Odoribacter↑ Systolic BP↓, diastolic BP↓ Endotoxin↓ []
↓ Pro-inflammatory cytokines↓ Vascular inflammation↓
Recipient: SHR rat Intestinal integrity↑ Hypertension↓
Donor: Sprague-Dawley rat Lactobacillus↑ SCFAs↑ Endotoxin↓ []
↓ Butyricicoccus↑ Infarct volume↓ Cardiovascular benefit↑
Recipient: Sprague-Dawley rat Meganonas↑ Intestinal integrity↑ Ischemic stroke↓
Donor: pre-eclampsia patient Faecalibacterium↓ pregestational BP↑, proteinuria↑ Endotoxin↑ []
↓ Akkermansia↓ Intestinal integrity↓ Systemic inflammation↑
Recipient: CBL/ mouse Fusobacterium↑ Pro-inflammatory cytokines↑ Hypertension↑
Donor: CHD patient Clostridium symbiosum↑ Bile acid balance↓ Systemic inflammation↑ []
↓ Eggerthella↑ Inflammatory response↑ Endothelial dysfunction↑
Recipient: CBL/J mouse Butyricimonas↑ Vascular stiffness↑ CHD risk↑

BP, blood pressure; CHD, coronary heart disease; SCFA, short-chain fatty acid; SHR, spontaneously hypertensive rat; TMAO, trimethylamine N-
oxide.
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