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Abstract: 

Glucagon-like peptide-1 receptor agonists (GLP-1RA) are used to treat diabetes and obesity 

and reduce rates of major cardiovascular events such as stroke and myocardial infarction. 

Nevertheless, the identity of GLP-1R-expressing cell types mediating the cardiovascular 

benefits of GLP-1RA remains incompletely characterized. Herein, we investigated the 

importance of murine Glp1r expression within endothelial and hematopoietic cells. Mice with 

targeted inactivation of the Glp1r in Tie2+ cells exhibited reduced levels of Glp1r mRNA 

transcripts in aorta, liver, spleen, blood and gut. Glp1r expression in bone marrow cells was very 

low, and not further reduced in Glp1rTie2-/- mice. The GLP-1RA semaglutide reduced the 

development of atherosclerosis induced by viral PCSK9 expression in both Glp1rTie2+/+ and 

Glp1rTie2-/- mice. Hepatic Glp1r mRNA transcripts were reduced in Glp1rTie2-/- mice and liver Glp1r 

expression was localized to  T cells. Moreover, semaglutide reduced hepatic Tnf, Abcg1, 

Tgfb1, Cd3g, Ccl2, and Il2 expression, triglyceride content and collagen accumulation in high fat 

high cholesterol (HFHC) diet-fed Glp1rTie2+/+ but not Glp1rTie2-/- mice. Collectively, these findings 

demonstrate that Tie2+ endothelial or hematopoietic cell GLP-1Rs are dispensable for the anti-

atherogenic actions of GLP-1RA, whereas Tie2-targeted GLP-1R+ cells are required for a 

subset of the anti-inflammatory actions of semaglutide in the liver. 
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 Introduction 

Glucagon-like peptide-1 (GLP-1) is a gut-derived incretin hormone secreted at low levels 

in the inter-prandial state, with circulating levels of GLP-1 rising briskly within minutes of meal 

ingestion (1, 2). The original description of GLP-1 action focused on its role as an incretin 

hormone that potentiated glucose-dependent insulin secretion (3, 4), findings subsequently 

extended to encompass the inhibition of glucagon secretion (5). GLP-1 also inhibits gastric 

emptying (6) and reduces appetite and food intake (7), leading to weight loss with chronic 

administration. Collectively, these mechanisms of action supported the clinical development of 

degradation-resistant GLP-1RA for the treatment of type 2 diabetes (T2D) and obesity (1, 2).  

 The actions of GLP-1 are mediated by a single G protein coupled receptor (GPCR), a 

member of the class B GPCR family (8). The GLP-1R is widely expressed in several organs and 

cell types not classically linked to control of glucose homeostasis, including immune cells, 

endothelial and vascular smooth muscle cells, Brunner’s glands, and a subpopulation of 

cardiomyocytes (9). Notably, studies of GLP-1 action in animals and humans have 

demonstrated that GLP-1 decreases renal inflammation and albuminuria, reduces the extent of 

myocardial injury, attenuates the severity of experimental stroke, lowers blood pressure and 

postprandial lipemia, and exhibits anti-atherogenic activity in sensitized mouse models prone to 

the development of atherosclerosis (10). These actions do not appear to be secondary to 

reduction of glycemia, as they have been detected in animals with normal glucose control. 

 Analysis of the time course of actions of glucose-lowering agents in outcome studies 

reveals that unlike the rapid cardioprotective effects detected with use of sodium-glucose 

cotransporter protein-2 (SGLT-2) inhibitors (11), the cardiovascular benefits of GLP-1RA take 

longer to emerge (10, 12), suggesting distinct mechanisms for these 2 classes of agents. 

Whereas SGLT-2 inhibitors are postulated to act in part through hemodynamic mechanisms, 

GLP-1RA have been hypothesized to exert their cardiovascular benefits in part by attenuating 

the development of atherosclerosis. Indeed, studies of Apoe-/- and Ldlr-/- mice demonstrate that 

GLP-1RA reduce the development of aortic root atherosclerosis, findings associated with 

evidence for reduced tissue and systemic inflammation (13, 14). Nevertheless, the precise GLP-

1R+ cell types transducing signals leading to the reduction of atherosclerosis remain unclear. 

 Here, we hypothesized that the actions of GLP-1RA to attenuate the extent of 

atherosclerosis require functional GLP-1Rs on endothelial (EC) and/or hematopoietic lineage 

(HL) cells. Hence, we crossed Glp1rflx/flx mice with mice expressing Cre recombinase under the 

control of the Tek receptor tyrosine kinase (Tie2) promoter to generate Glp1rTie2-/- mice. We 

observed that loss of GLP-1Rs within the Tie2+ expression domain does not modify the 
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development of experimental atherosclerosis, or the anti-atherogenic activity of the GLP-1RA 

semaglutide. Unexpectedly, we detected reduction of hepatic Glp1r expression in Glp1rTie2-/- 

mice. Analysis of purified cell populations identified Glp1r expression by qPCR and by RT-PCR 

using primers that span the entire open reading frame, in a subset of intrahepatic  T cells. 

Semaglutide reduced hepatic cytokine expression in Glp1rTie2+/+mice, however, these actions 

were blunted in Glp1rTie2-/- mice. Moreover, the GLP-1RA exendin-4 directly reduced Ifng mRNA 

transcripts in non-hepatocyte liver cells isolated from Glp1rTie2+/+ mice but not from cells isolated 

from Glp1rTie2-/- mice. Collectively, these findings demonstrate that the anti-atherogenic actions 

of GLP-1RA do not require GLP-1Rs within EC or HL cells, however reduction of Glp1r 

expression within cells targeted by Tie2-Cre attenuates semaglutide-mediated reduction of 

cytokine expression, triglyceride accumulation and fibrosis in the high fat high cholesterol 

(HFHC) diet-fed mouse liver. 
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Results 

GLP-1R agonism with liraglutide reduces atherosclerosis in Low density lipoprotein receptor 

(Ldlr)-/- mice. Our previous studies of atherosclerosis failed to demonstrate a clear reduction in 

aortic plaque burden in Apoe-/- mice treated with the long-acting GLP-1RA taspoglutide (15). 

Accordingly, prior to undertaking more detailed studies of the GLP-1R and atherosclerosis using 

mouse genetics, we first investigated the effects of daily administration of liraglutide (Lira), a 

GLP-1RA shown to i) reduce experimental atherosclerosis in mice (16, 17) and ii) decrease 

major adverse cardiovascular events in humans (12). Liraglutide administration (200 g/kg/day) 

for 18 weeks reduced aortic plaque area in HFHC diet-fed Ldlr-/- mice (Supplemental Figure 1A). 

Notably, liraglutide-treated mice also exhibited reduced body weight, fat mass, lean mass and 

liver weights (Supplemental Figure 1B-D).  

 Glp1r mRNA transcripts are enriched within Tie2+ aortic endothelial cells. Considering 

roles for GLP-1R+ cells in atherosclerosis, GLP1-R expression has been described within EC 

(18)  and vascular smooth muscle cells (19, 20), and within immune cell populations (21), with 

the highest levels of immune cell GLP-1R expression detected within intestinal intraepithelial 

lymphocytes (IELs) (22). Notably, the anti-atherogenic activity of GLP-1RA has been linked to 

direct reduction of vascular smooth muscle cell proliferation (16). Nevertheless, precise 

identification of vascular GLP1R+ cell types linked to the reduction of atherosclerosis following 

treatment with GLP-1RA remains uncertain (9). We used enzymatic and mechanical digestion of 

mouse aortas, followed by fluorescence activated cell sorting (FACS) cytometry to collect major 

cell types for mRNA analysis. Expression of the Glp1r was enriched in CD31+ ECs isolated from 

both healthy aortas, as well as from atherosclerotic aortas from Ldlr-/- mice fed a HFHC diet 

(Figure 1A,B). Interestingly, levels of Glp1r mRNA transcripts were reduced in CD31+ cells 

isolated from HFHC diet-fed Ldlr-/- mouse aortas (Figure 1B). Accordingly, to target the Glp1r 

within the CD31+ EC population, we crossed Glp1rflx/flx mice with mice expressing Cre 

recombinase under the Tie2 (Endothelial-specific receptor tyrosine kinase (TEK)) promoter to 

generate Glp1rTie2-/- mice. Analysis of tissues from Glp1rTie2-/- mice revealed knockdown of the 

Glp1r in the aorta, spleen, liver, peripheral blood mononuclear cells (PBMC) and lung, but not in 

bone marrow (Figure 1C). Notably, pancreatic Glp1r expression was unchanged, whereas Glp1r 

expression was markedly reduced in lung tissue from Glp1rTie2-/- mice (Figure 1C). Consistent 

with expression of Tie2-Cre within HL cells (23), we also observed reduction of Glp1r mRNA 

transcripts in jejunum and in purified small bowel IELs, the major GLP-1R+ cell type within the 

small bowel. Analysis of Itgae and Cd3g mRNA was used to demonstrate successful 

enrichment of gut IELs (Figure 1D). 
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GLP1-RAs attenuate atherosclerosis independent of the endothelial and hematopoietic Glp1r. 

We next assessed whether semaglutide, a GLP-1RA approved for the treatment of T2D and 

obesity, would reduce the development of atherosclerosis to a similar extent in Glp1rTie2+/+ vs. 

Glp1rTie2-/- mice.  To promote the development of atherosclerosis, HFHC diet-fed mice were 

administered proprotein convertase subtilisin-kexin type-adeno associated virus 9 (PCSK9-

AAV) followed by daily administration of semaglutide or saline (control) for 18 weeks. 

Semaglutide-treated mice exhibited reduced aortic atherosclerotic plaque area measured by 

whole aorta en face staining (Figure 2A). Notably, in the absence of semaglutide, the extent of 

atherosclerosis was not different in Glp1rTie2-/- vs. Glp1rTie2+/+ mice (Figure 2A). Body weight was 

reduced in both Glp1rTie2-/- and Glp1rTie2+/+ mice after 18 weeks of daily semaglutide 

administration (Figure 2B). Semaglutide therapy reduced fat but not lean mass (Figure 2C), and 

decreased liver weight, but not spleen weight, irrespective of genotype (Figure 2D). Consistent 

with previous findings (24, 25), pancreatic weight was increased following semaglutide 

administration (Figure 2D).   

 Metabolic studies revealed that semaglutide reduced glycemic excursion after oral 

glucose administration in both Glp1rTie2+/+ and Glp1rTie2-/- mice (Figure 3A). Blood lipid analysis 

revealed that semaglutide reduced both triglyceride and cholesterol levels; reduction of 

circulating lipoproteins following semaglutide was evident within both very low density 

lipoprotein (VLDL) and low density lipoprotein (LDL) subfractions, with minor differences 

between genotypes (Figure 3B-C). As GLP-1RA reduce tissue and systemic inflammation in the 

context of experimental atherosclerosis (14, 26), we assessed circulating levels of plasma 

cytokines. Semaglutide-treatment increased levels of IL-5 and decreased levels of IL-6 in both 

Glp1rTie2+/+ and Glp1rTie2-/- mice (Figure 3D). Interestingly, semaglutide reduced plasma levels of 

KC/GRO (CXCL1) and TNFα in Glp1rTie2+/+ but not in Glp1rTie2-/- mice, whereas no treatment or 

genotype effects were evident in analysis of circulating IL-10 (Figure 3D).  

 Semaglutide does not promote regression of established atherosclerosis in PCSK9-

AAV-treated HFHC diet-fed mice. To determine whether semaglutide administration is capable 

of promoting regression of already established atherosclerosis, wildtype (WT) mice were 

injected with PCSK9-AAV, maintained for 16 weeks on a HFHC diet, then switched to regular 

chow for a one-week washout period. Groups of mice were then randomized to receive either 

daily semaglutide (10µg/kg/day) or an equal volume of once daily saline as a vehicle control for 

6 weeks (Supplemental Figure 2A). Whole aorta en face imaging showed that neither vehicle- 

nor semaglutide-treated groups exhibited reduced aorta plaque area compared to the baseline 
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control (Supplemental Figure 2B), even though semaglutide administration caused body weight 

loss but did not reduce liver or spleen weight (Supplemental Figure 2C,D).   

   Semaglutide reduces markers of liver injury and inflammation in PCSK9-AAV-treated 

HFHC-fed mice. The detection of reduced Glp1r expression in the liver of Glp1rTie2-/- mice 

(Figure 1C) prompted us to assess whether hepatic indices of metabolism or inflammation were 

differentially regulated in atherosclerosis prone, PCSK9-AAV-treated HFHC diet-fed mice 

treated with or without semaglutide. Semaglutide treatment reduced hepatic Col1a1 expression 

in both Glp1rTie2+/+ and Glp1rTie2-/- mice (Figure 4A). The extent of picrosirius red (PSR) positive 

collagen staining was reduced in semaglutide-treated Glp1rTie2+/+ but not in Glp1rTie2-/- mice 

(Figure 4B,C). Semaglutide reduced liver triglyceride levels in Glp1rTie2+/+ but not in Glp1rTie2-/- 

mice (Figure 4D). Interestingly, chronic daily treatment with semaglutide for 18 weeks reduced 

Glp1r expression in the liver of Glp1rTie2+/+mice (Figure 4E). Levels of mRNAs for liver-specific 

fatty acid transport protein 5 (Fatp5) encoded by Slc27a5 and hepatic lipase (Lipc) were 

increased by semaglutide treatment independent of genotype, whereas hepatic Abcg1 mRNA 

transcripts were decreased in livers from Glp1rTie2+/+ but not Glp1rTie2-/- mice (Figure 4E).  Further 

genotype-dependent differences were evident upon analysis of hepatic biomarkers of 

inflammation. Semaglutide reduced levels of Tnf, Ccl2, Tgfb1, Cd3g and Il2 mRNA transcripts in 

livers from Glp1rTie2+/+ but not Glp1rTie2-/- mice (Figure 4F), whereas levels of hepatic Crp mRNA 

transcripts were higher in semaglutide-treated Glp1rTie2-/- mice. 2-way ANOVA analysis indicated 

that semaglutide increased levels of hepatic Il4 mRNA, whereas Cxcr2 mRNA transcripts were 

higher in the liver from Glp1rTie2-/- mice (Figure 4E).   

 Loss of the endothelial and hematopoietic Glp1r does not affect levels of circulating 

endogenous GLP-1. Recent studies of integrin 7-/- mice revealed that loss of the IEL 

population, including GLP-1R+ IELs, was associated with increased circulating levels of GLP-1 

(27). As Glp1rTie2-/- mice exhibited marked reduction in IEL Glp1r expression (Figure 1D), we 

assessed whether more selective reduction of IEL GLP-1R expression, as opposed to loss of 

the entire IEL population and systemic consequences arising from loss of integrin7, would 

upregulate plasma levels of GLP-1. Notably, basal levels of circulating GLP-1 were not different 

in HFHC- fed Glp1rTie2-/- mice, and oral administration of glucose or olive oil induced plasma 

levels of total GLP-1 to a similar extent in both Glp1rTie2+/+ and Glp1rTie2-/- mice (Supplemental 

Figure 3). Hence, reduction of the IEL Glp1r is not sufficient to enhance basal or nutrient-

stimulated L cell GLP-1 secretion in Glp1rTie2-/- mice. 

 The liver Glp1r localizes to a subset of T cells. The detection and cellular localization of 

Glp1r expression in the liver has been the subject of some controversy (9). Whereas several 
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studies failed to detect Glp1r mRNA transcripts encoding a canonical functional GLP-1R in liver 

and isolated hepatocytes (28, 29), low level expression of the Glp1r has been detected in RNA 

from mouse liver (9, 15), previously localized to neural fibers in the proximity of the hepatic 

portal vein (30, 31). To ascertain the identity of Glp1r+ cells in the liver, we performed 

fluorescence activated cell sorting (FACS) cytometry of cells obtained following liver perfusion 

and enzymatic digestion, isolating fractions for EC (CD31+), Kupffer cells (CD45+AF+), non-

Kupffer immune cells (CD45+AF-), and unstained cells (CD31-CD45-) (Supplemental Figure 

4A). Enrichment of Glp1r expression was detected in CD45-CD31+ ECs and CD45+AF- non-

Kupffer immune cells (Supplemental Figure 4B). Glp1r mRNA transcripts were not enriched in 

liver NK cells (Supplemental Figure 4C,D) or NKT cells (Supplemental Figure 4E,F ). Analysis of 

Rag2/Il2rg double knockout mice known to exhibit absence of functional T, B and NK cells 

showed reduced hepatic Glp1r expression compared to WT controls (Supplemental Figure 4G).  

 Analysis of FACS-sorted CD3+ T-cell subpopulations revealed that Glp1r mRNA 

transcripts were enriched within CD8+ and γδ-T cells (Figure 5A,B), with cellular identities 

confirmed through analysis of Adgre1 (macrophages), Cd3g (T cells), Glp2r (hepatic stellate 

cells) and Crp (hepatocytes) expression (Figure 5C). We next utilized conventional PCR to 

amplify a transcript spanning the Glp1r mRNA open reading frame sequence. These 

experiments detected a Glp1r mRNA transcript capable of encoding a GLP-1R protein in liver 

and purified T cell populations, but not in the non-hepatocyte (NH) fraction of WT mice (Figure 

5D). To test the capacity of GLP-1R to functionally modulate T cell activation, we cultured NH 

preparations from Glp1rTie2+/+ and Glp1rTie2-/- mice with overnight (20hr) anti-CD3/28 stimulation 

and paired samples cultured with and without exendin-4 (Ex-4; 50nM); Ifng expression, 

indicative of T cell activation, was significantly reduced by Ex-4 in Glp1rTie2+/+ but not in Glp1rTie2-

/- cells (Figure 5E).  
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Discussion 

The development of atherosclerosis is a complex process involving contributions from 

vascular ECs and smooth muscle cells, HL immune cells including macrophages, lipoprotein 

particles, local and systemic inflammatory mediators, circulating blood cells, and a host of local 

and systemic factors that impact blood vessel health (32). GLP-1 is known to modify several risk 

factors for atherosclerosis, including systemic and vascular inflammation, blood pressure, and 

circulating levels of triglyceride-rich lipoproteins (10). We hypothesized that either EC or HL 

cells could mediate important actions of GLP-1RA in atherosclerosis and metabolic disease. 

ECs play multiple roles in the development of vascular pathology, enabling leukocyte infiltration 

of vascular lesions and paracrine regulation of vascular smooth muscle, as well as contributing 

to control of inflammation in atherosclerotic lesions (33). HL leukocytes, most prominently 

infiltrating monocytes and macrophages, are central mediators of atherosclerosis plaque 

progression; however, roles for platelets, eosinophils, T cells, and diverse immune cells have 

also been described (34). Accordingly, we utilized the Tie2 promoter to direct Cre expression 

within both EC and HL cells (35). Our data indicate that CD45+ cells (representative of the 

majority of non-erythroid HL cells) isolated from the healthy or diseased mouse aorta, do not 

express appreciable levels of the Glp1r. We used female mice for the majority of this study 

except for Ldlr-/- mice (Supplemental figure 1) which were males. We gave preference to female 

mice for these chronic studies because they are less likely to fight under conditions of chronic 

housing and daily injections, and female Ldlr-/- mice were reported to have greater 

atherosclerosis burden compared to males (36). Notably, GLP-1RA therapy has not been 

shown to display sex-dependent effects in the control of glucose metabolism or 

cardioprotection.  

 Analysis of Glp1r expression in organs from Glp1rTie2-/- mice revealed reduced Glp1r 

expression in the aorta, spleen, liver, PBMCs and lung. Knockdown of Glp1r mRNA in the 

Glp1rTie2-/- aorta is consistent with our detection of Glp1r expression within purified ECs isolated 

from the aorta. Similarly, marked reduction of Glp1r mRNA transcripts in the lung of Glp1rTie2-/- 

mice is in agreement with previous detection of Glp1r expression within mouse lung ECs (18) 

and with independent reports of EC Glp1r expression in a mouse lung single cell RNA-seq 

dataset (37). The expression of Glp1r is extremely low, and not reduced in Glp1rTie2-/- mouse 

bone marrow. In contrast, and consistent with previous reports (22, 27), the Glp1r is readily 

detectable in small bowel IELs, and markedly reduced in IELs isolated from Glp1rTie2-/- mice.   

 An unresolved question is the extent to which weight loss associated with GLP-1RA 

utilized in animal studies contributes to the attenuation of atherosclerosis. Here we employed a 
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dose of 10 µg/kg/day of semaglutide, demonstrating that reduction of aortic atherosclerosis 

does not require a functional GLP-1R within EC or HL cells using the PCSK9-AAV+HFHC diet 

model of atherosclerosis, which closely mimics the phenotypes exhibited by Ldlr-/- mice (38). 

Mice treated with semaglutide exhibited improved glucose tolerance, decreased blood lipids, 

and reduced body weight, consistent with the actions of GLP-1RA in people with T2D. We 

chose this dose of semaglutide because it was in a range previously shown to cause 

atherosclerosis reduction in Ldlr-/- mice over a similar treatment schedule (14). Considering that 

our primary aim was to determine if any effects of semaglutide treatment were lost with selective 

deletion of the GLP-1R, we chose to not attempt to further reduce the semaglutide dose to an 

extent that would eliminate body weight loss, and risk obscuring the importance of Glp1rTie2+/+ 

cells.  

          Several studies using GLP-1RA to attenuate atherosclerosis in Apoe-/- or Ldlr-/- mice have 

also reported concomitant weight loss (14, 17, 39). However, a substantial number of studies 

demonstrate weight loss-independent anti-atherogenic actions of GLP-1RA in mice (40, 41). For 

example, Rakipovski et al employed weight-matched controls, generated using treatment with a 

food intake reducing agent, to infer that the anti-atherogenic effects of liraglutide were 

independent of changes in body weight in Apoe-/- mice (14). Furthermore, Bruen and colleagues 

demonstrated attenuation of atherosclerosis in liraglutide-treated Apoe-/- mice without 

differences in body weight between groups (26).  

 Among the new insights reported here is the localization of hepatic Glp1r expression to a 

subset of  T cells. Glp1r expression is extremely low or reported as undetectable in whole liver 

RNA, often below the threshold level of detection using RNASeq (9, 42). Glp1r transcriptional 

sequences directed low level expression of a fluorescent tdTomato reporter protein within 

murine hepatic endothelial cells, however, whether endogenous Glp1r mRNA transcripts are 

also detected in these cells was not examined (43). Interestingly, we observed that hepatic 

Glp1r expression was reduced in semaglutide-treated HFHC diet-fed mice. Importantly, 

semaglutide also reduced the hepatic expression of biomarkers of inflammation and metabolic 

regulation, fibrosis, and hepatic triglyceride levels in HFHC diet-fed Glp1rTie2+/+ but not in 

Glp1rTie2-/- mice, despite comparable weight loss in these two groups of mice. Hence, GLP-1R+ 

cells within the Tie2 expression domain contribute to the anti-inflammatory and anti-steatotic 

actions of semaglutide in the mouse liver. Interestingly, vehicle treated Glp1rTie2-/- mice mirrored 

Glp1rTie2+/+ mice in most hepatic parameters assessed, with a trend of lower levels of some 

mRNA transcripts, including Tnf, Ccl2 Tgfb1, Cd3g and Il2. Whether basal levels of GLP-1Rs 
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within Tie2+ cells are important for regulation of hepatic cytokine expression is not clear and 

requires further study. 

The current experimental design does not allow us to infer whether the anti-inflammatory 

actions of semaglutide engage GLP-1Rs within intrahepatic  T cells, gut IELs, ECs, circulating 

PBMCs or other Tie2+ cell populations. Ascertaining the putative importance of GLP-1R 

expression within  T cell subtypes is likely to be challenging, considering the low abundance 

of  T cells in most secondary lymphoid organs, and the relatively low expression levels of the 

Glp1r within these cells.  T cells may contribute to IL-17A or INFγ production in some settings 

depending on their lineage (44). We found that IL-17A levels were very low in blood plasma (20 

samples below detection limit, 15 samples between 0.6 and 21.0 pg/ml). Similarly, hepatic Il17a 

mRNA transcripts were marginally detectable in liver (24 samples undetectable, 11 samples 

with CT values of 36-39) in our PCSK9-AAV HFHC treated mice. Hence, our present data is 

very limited in this regard and we cannot rule out a possible role for GLP-1RA treatment in 

modulating IL-17A in this or other settings. Further studies will be required to characterize the 

subtype and identity of GLP-1R-expressing  T cells in mice and their similarities and 

differences to human  T cells. 

 Studies of integrin β7-/- mice revealed protection from atherosclerosis, findings attributed 

to elevated levels of endogenous GLP-1 secondary to loss of the GLP-1R+ IEL population. 

Intriguingly, absence of GLP-1R+ IELs in these mice was associated with upregulation of 

enteroendocrine L cell number and enhanced GLP-1 synthesis and secretion (27). In contrast to 

phenotypes observed in integrin β7-/- mice, Glp1rTie2-/- mice with marked reduction of IEL Glp1r 

expression did not exhibit any differences in circulating levels of GLP-1 nor any baseline 

differences in atherosclerosis plaque burden. Moreover, integrin β7-/- mice exhibited increased 

food intake, energy expenditure and body temperature, whereas body weight differences were 

not detected in Glp1rTie2-/- mice (Figure 2B). Hence, our current data reveals that knockdown of 

the Glp1r within IELs does not phenocopy key findings arising in integrin β7-/- mice with 

complete elimination of the GLP-1R+ IEL population. Moreover, the actions of semaglutide to 

reduce body weight, improve glucose tolerance, and decrease circulating levels of triglyceride-

enriched lipoproteins, were not diminished in Glp1rTie2-/- mice, revealing GLP-1Rs within the Tie2 

expression domain, including the IEL GLP-1R, are not required for these metabolic actions of 

semaglutide. 

 The majority of preclinical studies examining how GLP-1RA modify atherosclerosis have 

employed treatment regimens focused on attenuation of the development of atherosclerosis in 

genetically sensitized mice. In contrast, Bruen and colleagues demonstrated regression of aortic 
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atherosclerosis following 4 weeks of liraglutide administration in Apoe-/- mice (26). We detected 

attenuation of atherosclerosis in HFHC diet-fed mice with AAV PCSK9-induced atherosclerosis 

following 18 weeks of semaglutide treatment, yet we were not able to detect regression of aortic 

atherosclerosis using a 6 week semaglutide treatment regimen. Although human studies 

examining atherosclerosis remission with GLP-1RA are limited, open label observational studies 

of several hundred people with T2D treated with liraglutide (45) or exenatide once weekly (46) 

detected reduction in carotid intima media thickness assessed by carotid Doppler examination. 

In contrast, no change in carotid artery plaque volume or composition assessed by carotid MRI 

was detected in 631 people with T2D randomized to receive placebo or exenatide once weekly 

for 18 months (47). Hence, it seems premature, based on the available evidence, to conclude 

that GLP-1RA are uniformly capable of inducing atherosclerosis regression. 

 Limitations of the work. We have utilized mRNA transcript analysis to characterize 

elimination of the Glp1r in various Tie2+ cell populations. We cannot be certain that these 

transcript levels always correspond with functional GLP-1R protein levels. Although we 

determined that a wide range of Tie2+ EC and HL cells are not required for the anti-atherogenic 

actions of semaglutide, our studies did not identify the precise GLP-1R+ cells required for GLP-

1RA to attenuate atherosclerosis. Similarly, although our data implicates one or more Tie2+ cell 

types as essential for the semaglutide-mediated reduction of hepatic inflammation and fibrosis, 

the precise identity of these GLP-1R+ cells remains to be determined. Selective elimination of 

the GLP-1R in γδ T cell lineages would be useful to further delineate the relevance of these 

cells to the immunomodulatory actions of GLP-1RAs. Moreover, although semaglutide did not 

induce regression of atherosclerosis, we were unable to detect any regression in mice switched 

back to a less atherogenic diet, limiting the available conclusions. Nevertheless, taken together, 

the current data set advances our understanding of the potential roles of Tie2+ GLP-1R+ cells 

as targets of GLP-1 action, being dispensable for the anti-atherogenic actions of GLP-1, while 

critical for a subset of anti-inflammatory actions in the liver. 
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Methods 

Animal care, genotype and treatment 

Mouse studies were performed in accordance with protocols approved by the Sinai 

Health System and The Centre for Phenogenomics (TCP, Toronto, ON, Canada). All mice were 

fed ad libitum a regular chow diet (#2018, 18% kcal from fat; Harlan Teklad) and water, unless 

otherwise specified, and housed under 12hr dark/light cycles. C57BL/6 wild type (WT) mice 

were obtained from in-house breeding, and Ldlr-/- mice (Ldlrtm1Her) were purchased from Jackson 

Laboratory (Stock No: 002207). Mice with Glp1r deletion under the regulation of the Tie2 gene 

promoter (Tek) were generated by crossing Tg(Tek-Cre)1Ywa mice (Tie2-Cre) from Jackson 

Laboratory (Stock No: 008863) with  Glp1rFlox/Flox mice (48). Males with a single Tie2-Cre allele 

and homozygous for Glp1rFlox/Flox were crossed with females homozygous for Glp1rFlox/Flox to 

produce Glp1rFlox/Flox (Glp1rTie2+/+) and Glp1rFlox/Flox/Tie2-Cre (Glp1rTie2-/-) littermates. Rag2/Il2rg 

double knockout mice purchased from Jackson Laboratory (Stock No. 014593) were back 

crossed onto the BALB/c genetic background for 8+ generations with WT littermates used as 

controls. Rag2/Il2rg double knockout mice were propagated as described (49). 

HFHC feeding protocols utilized Envigo TD.88137, which has 42% calories from fat, and 

0.2% cholesterol. An established PCSK9-AAV method (38) of generating hypercholesterolemia 

and atherosclerosis was utilized in Glp1rTie2+/+ and Glp1rTie2-/- mice: mPCSK9 (plasmid #58376; 

donated by Jacob Bentzon (50)) was obtained from Addgene and produced with an AAV8 

vector by Penn Vector Labs (Full description: AAV8.ApoEHCR-hAAT.D377Y-mPCSK9.bGH). 

3x1011 genomes were delivered in a single tail vein injection.  

       For studies of atherosclerosis and the actions of liraglutide, male Ldlr-/- mice, starting at 8-9 

weeks of age, were fed HFHC diet or regular chow and received daily subcutaneous (S.C.) 

injection of liraglutide or equal volume vehicle in a volume of 4ml/kg for 18 weeks. Liraglutide 

dose was started at 50µg/kg/day for week 1, increased to 100µg/kg/day for week 2 and them 

maintained at 200µg/kg/day for the remainder of the study.  

Female Glp1rTie2+/+ and Glp1rTie2-/- mice received an injection of PCSK9-AAV at 8-9 

weeks old and were started on HFHC diet after 1 week. Mice were treated with daily S.C. 

injection of semaglutide or equal volume vehicle in a volume of 4ml/kg for 18 weeks. 

Semaglutide dosing was started at 2.5µg/kg/day for week 1, then 5µg/kg/day for week 2 and 

10µg/kg/day for the remainder of the study.  
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For a model of atherosclerosis regression, female WT mice received PCSK9-AAV at 8-9 

weeks old and were started on the HFHC diet after 1 week and continued for 16 weeks. Mice 

were then switched to chow diet for 1 week, followed by daily S.C. injection of 10µg/kg/day 

semaglutide or equal volume vehicle in a volume of 4ml/kg for 6 weeks. Body composition was 

measured using a nuclear magnetic resonance system (EchoMRI).  

Tissue collection 

Mice were euthanized by CO2 inhalation; frozen tissues were collected by snap freezing 

in liquid nitrogen. Blood was collected by cardiac puncture and mixed with 10% v/v TED 

(5,000KIU/ml Trasylol, 1.2mg/ml EDTA, 0.1nmol/l Diprotin A). Blood was spun at 12,000g for 5 

minutes for plasma collection.  

Whole aortas were fixed with 10% neutral buffered formalin overnight followed by 

staining of atherosclerotic lesions with Sudan IV (Sigma S-8756). All perivascular adipose tissue 

was removed and aortas were opened longitudinally and pinned flat for imaging. Images were 

taken with a Sony a5000 camera with 30mm F3.5 Macro lens. Aorta images were analyzed with 

image J for relative area of Sudan IV positive staining to total area. For liver histology, tissue 

was fixed in 10% neutral buffered formalin for 24hrs and transferred to 70% ethanol before 

paraffin imbedding and Picrosirius red (PSR) staining. Slides were scanned with an Olympus 

VS-120 slide scanner. Images were analyzed in QuPath using a thresholder function. All aorta 

and liver histology analysis was performed in a blinded manor.    

Glucose, lipid, Glp1 and cytokine measurements 

For oral glucose tolerance test (OGTT), mice were fasted for 5 hours with semaglutide or 

vehicle administered at the start of fasting. Oral glucose gavage was administered at 1.5g/kg 

with a concentration of 0.15g/mL glucose in water. Glucose measurements (Contour 

glucometer) from tail vein blood were taken at 0, 10, 20, 30, 60, 90 and 120 minutes after 

glucose gavage.  

Blood collection for plasma lipid profiling was performed in mice injected with PBS or 

semaglutide followed by a 5hr fasting period. Tail vein blood was collected in K3 EDTA coated 

capillary Microvette tubes (Sarstedt); fresh, unfrozen plasma was separated by fast protein 

liquid chromatography and analyzed for cholesterol and triglycerides as previously described 

(51). Fraction numbers 5-9 were labeled as VLDL, 10-18 as LDL and 19-25 as HDL. Liver tissue 

triglyceride levels were measured as previously described (52).  

For total GLP-1 measurements in fasted and nutrient-stimulated states, PCSK9-AAV- 

treated, HFHC diet-fed mice (for 15 weeks) were fasted 5hrs before collecting tail blood in the 

fasted state and 10min after 2g/kg glucose in 20%w/v water given orally. One week later, 
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studies were repeated with 100µl olive oil given orally. Total GLP-1 was measured using V-

PLEX GLP-1 Total Kit Cat. No. K1503PD (Mesoscale). 

Blood plasma cytokines were measured in endpoint blood collected by cardiac puncture 

with V-PLEX Proinflammatory Panel 1 Mouse Kit, Cat. No. K15048D (Mesoscale), 10 cytokine 

panel for INFγ, IL-1β, IL-2, IL-4, IL-5, IL-6, KC/GRO, IL-10, IL-12p70 and TNF-α; INFγ, IL-1β, IL-

2 and IL-4 were largely below the limit of detection and not plotted. IL-17A detection by ELISA 

(Biolegend, Cat. No. 432504).  

Aorta and Liver cytometry; liver cell culture 

Freshly isolated whole aortas were cleaned of all perivascular adipose tissue and 

minced and mechanically disrupted with a GentleMACS dissociator Miltenyi Biotec; Cat. No. 

130-096-427), program 37C_m_TDK_2, using multi tissue dissociation kit digestion buffer (Cat. 

No. 130-110-201). Isolated cells were washed with FACS buffer (PBS with 2mM EDTA, 25mM 

HEPES, 2%v/v FBS). Fluorescent conjugated antibodies were obtained from Biolegend: CD31 

(clone 390); CD45 (clone 30-F11); TCRγδ (clone GL3); TCRβ (clone H57-597); CD4 (clone 

GK1.5); CD8α (clone 53-6.7); CD3 (clone 17A2); CXCR6 (clone SA051D1); CD19 (6D5). Cells 

were sorted with a MoFlo Astrios Cell Sorter (Beckman) into FBS coated tubes, pelleted and 

frozen for RNA analysis.  

Livers were processed for FACS cytometry using enzymatic perfusion or only 

mechanical disruption. Enzymatic perfusion was performed as previously described for studies 

illustrated in Supplemental Figure 4A,B (52).  Briefly, the liver was perfused with pronase and 

collagenase buffer via the inferior vena cava with the portal vein cut and the superior vena cava 

clamped. For specific collection of liver immune cells, a simplified mechanical disruption 

protocol was used in experiments depicted in Figure 5A,B and Supplemental Figure 4 C-F. 

Livers were first flushed by cutting the right atria and performing cardiac perfusion (35mmHg) 

with PBS for 1min. Liver tissue was then minced and pressed through successive 200micron 

and 70micron filters in 50mL cold RPMI+10% FBS media. The resulting cell suspension was 

pelleted (8min, 400g) and resuspended in 37.5% Percoll (Sigma) in RPMI media, (spun 20min, 

850g). Non-hepatocyte (NH) cell pellets were re-suspended in RBC lysis buffer (Biolegend) 

(10min, room temperature). Washing and subsequent immunostaining was performed in FACS 

buffer. All cytometry gating was performed with FMO controls.  

For ex vivo activation of liver NH cells, preparations as described above were re-

suspended in RPMI 1640 media (Gibco, Ref. 11875) supplemented with 10% FBS, 100µM 

HEPES (Gibco, Cat. No. 15630106), NEAA (Gibco, Cat. No. 11140050) 100U/ml 

penicillin/streptomycin (Gibco, Cat. No. 15140122), 1mM Pyruvate and (3.5µl/L) 2-
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mercaptoethanol and rested at 37° C for 30min. Cells were then plated on culture dishes pre-

coated with 5µg/ml anti-CD3 (clone 17A2) or isotype control (clone RTK4530) with 1µg/ml CD28 

(clone 37.51) or PMA-ionomycin (Biolegend Cat. No. 423301) and cultured overnight for 20 

hours.       

RNA isolation and analysis 

Frozen tissues or cells were homogenized in Tri Reagent (MRC) using a TissueLyser II 

(Qiagen). Pancreas tissue was freshly homogenized in Tri Reagent before freezing. cDNA 

synthesis by reverse transcription was performed with 500-1000ng of total RNA after first being 

treated with DNase I (Cat. No. EN0521; Thermo), using random hexamers (Cat No. 58875; 

Thermo) and SuperScript III (Cat. No. 1808044), followed by qPCR for gene expression or 

regular PCR for amplification of the full length Glp1r transcript. qPCR primers are shown in 

Supplemental Table 1. Gene expression was quantified for target genes compared to a 

reference gene using the 2-ΔCT method as specified in the figure legends. PCR amplification of a 

transcript encompassing the majority of the Glp1r coding region was performed with 5’-

AGAGACGGTGCAGAAATGGA-3’ forward primer and 5’-CTGTGGTCCTTGCTTCTGG-3’ 

reverse primer. After gel electrophoresis and transfer to a nylon membrane, blots were 

hybridized with a 32P-labeled (5′-GGATGGGCTCCTCTCCTAAT-3’) internal GLP-1R 

oligonucleotide probe. 

Graphing and statistical analysis 

Graphing of results and statistical analyses were performed using GraphPad Prism 9. 

Biological replicates are shown as individual data points with a bar graph representing the mean 

and error bars showing standard deviation. Student’s t-test was performed for comparison 

between two groups. Experiments involving variables for both genotype and treatment were 

analyzed by 2-way ANOVA and multiple comparisons for treatment (Bonferroni’s multiple 

comparison test). Significance determined by multiple comparison is shown in graph 

annotations, with ANOVA results only shown if no significant differences were found with 

multiple comparison. Significance was indicated by P≤ 0.05. 
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Figure 1. Aortic endothelial cells are enriched for Glp1r expression, and Tie2-directed recombination 
reduces Glp1r mRNA in multiple organs. Isolated cells from mouse aortas were subjected to FACS 

cytometry collection. Gating strategy (A) and Glp1r vs Ppia expression levels in whole heart atria (Atr), whole 

aorta (Aor) and FACS collected cells that are endothelial cells (CD31+), immune cells (CD45+) or remaining 

cell types (CD31-/CD45-) from either chow-fed WT mice or 18-week HFHCdiet-fed Ldlr-/- mice (B). For whole 

tissue n=5; FACS-derived cells are isolated from aortas pooled from 5-9 mice to generate n=3-5. Glp1r 

expression was analyzed in tissues from Glp1rTie2+/+ and Glp1rTie2-/- mice and depicted relative to Ppia mRNA 

transcripts in whole aorta, spleen (Spl), liver (Liv), bone marrow (BM), peripheral blood mononuclear cells 

(PBMC) and lung (Lng) (C, left panel). For pancreas and lung, relative Glp1r mRNA was normalized to levels 

of Rpl32 (C, right panel) (n=6-9). Gut sections from the jejunum (Jej) and samples enriched for gut IELs were 

assessed for Glp1r vs Ppia expression and IEL markers Itgae and Cd3g, to confirm successful IEL purification 

(D) (n=5-8). Data presented as mean +/-SD with individual data points shown. *P<0.05 Student’s t-test for 

effect of Glp1rTie2+/+ vs. Glp1rTie2-/- genotype.  
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Figure 2: Aortic atherosclerosis is attenuated by semaglutide treatment in Glp1rTie2+/+ and Glp1rTie2-/- 

mice. Glp1rTie2+/+ and Glp1rTie2-/- mice were given a PCSK9-AAV injection, followed by HFHC-diet feeding and 

daily administration of either semaglutide (Sema; 10µg/kg) or equal volume PBS vehicle (veh) for 18 weeks 

(PCSK9+HFHC diet protocol). Whole en face mounted aortas stained with Sudan IV for atherosclerotic 

plaques; representative images and quantification (A). Weekly body weight over the treatment period (B). Body 

composition measured one week before the end of experiment (C). Liver (Liv), pancreas (Panc) and spleen 

(Spl) weights are shown relative to tibial length (D). (n=6-14). Data presented as mean +/-SD with individual 

data points shown. *P<0.05 for Sema effect in a two-way ANOVA multiple comparison test. 
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Figure 3. Semaglutide attenuates glycemic excursion and levels of circulating cholesterol, triglycerides 
and cytokines in Glp1rTie2+/+ and Glp1rTie2-/- mice. PCSK9-treated HFHC diet-fed mice were tested for 

glucose at weeks 12-13 of the 18 week PCSK9+HFHC diet protocol with daily vehicle (Veh) or Semaglutide 

(Sema; 10µg/kg) treatment. Mice were fasted for 5 hours followed by administration of 1.5g/kg glucose for an 

oral glucose tolerance test (OGTT). The area under the curve (AUC) was calculated to compare Veh to Sema 

treatment in Glp1rTie2+/+ and Glp1rTie2-/- mice (A). At weeks 16-17 of the treatment protocol, mice were fasted for 

5hrs and blood was collected for fast protein lipid chromatography: triglyceride (B) and cholesterol (C) levels in 

VLDL, LDL and HDL fractions were measured. Cytokines were measured in plasma obtained from terminal 

bleeds at the end of the experiment (D) (n=6-14). Data presented as mean +/-SD with individual data points 

shown.  *P<0.05 for Sema effect in a two-way ANOVA multiple comparison test. 
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Figure 4. Semaglutide reduces liver fibrosis and hepatic cytokine gene expression in Glp1rTie2+/+ but not 
in Glp1rTie2-/- mice. Analysis of liver tissue from PCSK9+HFHC-fed mice treated with vehicle (Veh) or 

semaglutide (Sema) for 18 weeks: Col1a1 (A) vs Ppia expression and Picrosirius red (PSR) positive collagen 

staining quantification (B) (n=5) and representative images; scale bar=500µm  (C). Liver tissue triglycerides 

(TG) (D) and liver expression of Glp1r and metabolic regulators (E) and inflammation markers vs Ppia (F). 

(n=6-14). Data presented as mean +/-SD with individual data points shown. *P<0.05 for Sema effect in a two-

way ANOVA multiple comparison test; #P<0.05 two-way ANOVA effect for treatment; ‡P<0.05 two-way 

ANOVA effect for genotype. 
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Figure 5. Glp1r expression in the liver is localized to CD8α and γδ T-cells. Cytometry gating strategy 

shown for liver T cell populations (A). Whole liver (Liv), Percoll-purified non-hepatocyte cells (NH), and FACS 

collected NH cells positive for CD3+TCRγδ or CD3+TCRβ (γδ-T) and either CD8α (CD8+) or CD4 (CD4+) 

were analyzed for expression of Glp1r (B), as well as Adgre1, Cd3g, Glp2r and Crp as markers of 

macrophages, T cells, stellate cells and hepatocytes, respectively vs Tbp (C) (n=4-5). Data presented as mean 

+/-SD with individual data points shown. Full length Glp1r transcript was amplified in liver, as well as CD8+ and 

TCR γδ+ T cell populations; lung (Lng) and Brunner’s glands (BG) are positive controls (representative of 3 

replicates) (D). Interferon gamma (Ifng) expression in freshly isolated NH cells from Glp1rTie2+/+ (n=7) and 

Glp1rTie2-/- (n=6) mice were cultured overnight with CD3/CD28 stimulation with or without Exendin-4 (Ex-4; 
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