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remodeling in high-fat-fed mice after a mild myocardial
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BACKGROUND: Obesity increases the risk of developing impaired glucose tolerance (IGT) and type 2 diabetes (T2D) after
myocardial infarction (MI). Brown adipose tissue (BAT) is important to combat obesity and T2D, and increasing BAT mass by
transplantation improves glucose metabolism and cardiac function. The objective of this study was to determine if BAT had a
protective effect on glucose tolerance and cardiac function in high-fat diet (HFD) fed mice subjected to a mild MI.
METHODS: Male C57BL/6 mice were fed a HFD for eight weeks and then divided into Sham (Sham-operated) and +BAT (mice
receiving 0.1 g BAT into their visceral cavity). Sixteen weeks post-transplantation, mice were further subdivided into ±MI (Sham;
Sham-MI; +BAT; +BAT-MI) and maintained on a HFD. Cardiac (echocardiography) and metabolic function (glucose and insulin
tolerance tests, body composition and exercise tolerance) were assessed throughout 22 weeks post-MI. Quantitative PCR (qPCR)
was performed to determine the expression of genes related to metabolic function of perigonadal adipose tissue (pgWAT),
subcutaneous white adipose tissue (scWAT), liver, heart, tibialis anterior skeletal muscle (TA); and BAT.
RESULTS: +BAT prevented the increase in left ventricle mass (LVM) and exercise intolerance in response to MI. Similar to what is
observed in humans, Sham-MI mice developed IGT post-MI, but this was negated in +BAT-MI mice. IGT was independent of
changes in body composition. Genes involved in inflammation, insulin resistance, and metabolism were significantly altered in
pgWAT, scWAT, and liver in Sham-MI mice compared to all other groups.
CONCLUSIONS: BAT transplantation prevents IGT, the increase in LVM, and exercise intolerance following MI. MI alters the
expression of several metabolic-related genes in WAT and liver in Sham-MI mice, suggesting that these tissues may contribute to
the impaired metabolic response. Increasing BAT may be an important intervention to prevent the development of IGT or T2D and
cardiac remodeling in obese patients post-MI.
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INTRODUCTION
Obesity is a complex disease that is rapidly increasing in the United
States and worldwide [1]. Obesity affects whole-body metabolism
and is associated with an increased risk of type 2 diabetes (T2D)
and cardiovascular disease (CVD), including myocardial infarction
(MI) [2]. MI occurs when reduced blood flow to the heart causes
myocardial injury due to lack of oxygen [3]. The ischemic heart
undergoes loss of cardiomyocytes, left ventricular (LV) remodeling,
and hypertrophy, all of which play an important role in the
progression of heart failure (HF) [4]. Although advances in
cardiovascular research have resulted in significantly reduced
mortality rates in MI patients over the last few decades [5], patients
who survive an MI continue to require appropriate interventions to
prevent substantial disability and recurrent coronary events [5, 6].

There are several risk factors that determine the severity of MI,
including advanced age, coexistence of previous coronary disease,
and metabolic disease, including obesity and type 2 diabetes
[7–9]. Several recent studies have demonstrated that obese
patients are more likely to develop insulin resistance (IR) and
impaired glucose tolerance (IGT) post-MI [10–14], but the reasons
for this are not completely understood. It has been postulated that
MI-induced catecholamine stress alters glucose and lipid meta-
bolism, resulting in impaired insulin sensitivity in peripheral
tissues such as white adipose tissue, liver, and skeletal muscle [13].
Patients with visceral obesity are more likely to develop IGT and
type 2 diabetes, which in turn increases the likelihood of recurrent
cardiac ischemic events post-MI [13–15]. In fact, IR, IGT, and
dysglycemia may also contribute to the development of adverse
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LV remodeling post-MI [14, 16] which is recognized as the
predominant pathological process in the development of heart
failure [17]. Furthermore, studies have shown direct association
between IR, IGT, type 2 diabetes, and increased risk of subsequent
MIs and the development of heart failure post-MI [11, 12, 18].
Thus, new therapeutic strategies to reduce the risk of MI-induced
insulin resistance, glucose intolerance, and type 2 diabetes are
essential to improve life expectancy and quality of life in patients
who suffer from MI.
An important tissue to combat the development of obesity,

glucose intolerance, and insulin resistance is brown adipose tissue
(BAT) [19, 20]. Upon activation, BAT increases energy expenditure
and promotes glucose and fatty acid uptake, making the tissue a
potential therapeutic target for patients with obesity, IR, and type
2 diabetes [20]. While BAT mass and activity are reduced with
obesity [21, 22], studies have shown that increasing BAT mass by
transplantation improves glucose metabolism and insulin sensi-
tivity in rodents [23, 24]. Recent work from our laboratory
identified a role for BAT to mediate cardiac function [25], but
the effects of BAT on metabolic health or cardiac function after MI
have not been investigated.
Here, we investigated a role for BAT transplantation (+BAT) to

preserve cardiac health and protect against the development of
glucose intolerance post-MI in mice. Our results show that while
there was no difference in cardiac ejection fraction, MI increased
LV mass (LVM) and reduced exercise tolerance at 22 weeks post-
MI. The LV hypertrophy and exercise intolerance were not seen in
MI mice who received BAT transplantation (+BAT-MI). Moreover,
MI mice who did not receive BAT (Sham-MI) developed glucose
intolerance at 22 weeks post-MI, while +BAT-MI mice were
completely protected from the development of glucose intoler-
ance. MI increased the expression of several genes related to
inflammation, lipid, and glucose metabolism in the perigonadal
white adipose tissue (pgWAT) and liver of Sham-MI mice, but BAT
transplantation (+BAT-MI) negated these alterations. These data
indicate that increasing BAT protects against the detrimental
effects of MI on LV hypertrophy, exercise intolerance, and
impaired glucose metabolism, providing a potential therapeutic
role for BAT with significant translational ramifications.

EXPERIMENTAL METHODS
Mice and BAT transplantation
Male C57Bl/6 mice (six- weeks old) (Charles River Laboratories)
were placed on a high-fat diet (HFD) (60% kcal from fat) for eight
weeks and then divided into two groups: Sham operated (Sham)
or mice that received BAT transplantation (+BAT). Transplanta-
tion of BAT was performed as previously described [23, 25].
Briefly, aged-matched male C57BL/6 donor mice were

euthanized with isoflurane followed by cervical dislocation,
BAT was removed from the interscapular region and incubated
in a solution of 10 mL saline at 37 °C for 20–30 min. Recipient
mice (+BAT) were anesthetized by isoflurane inhalation in
oxygen (3% isoflurane in 97% oxygen). For each recipient
mouse, 0.1 g donor BAT was transplanted into the visceral cavity.
The transplant was carefully lodged deep between folds within
the endogenous epididymal fat of the recipient. Mice that were
sham-operated (Sham) underwent the same procedure, but
instead of receiving BAT, their epididymal fat pad was located,
exposed, and then replaced. Mice were maintained on an HFD
throughout 52 weeks of age (22 weeks post-MI). The experi-
mental design is shown in Fig. 1.

Myocardial Infarction
Sixteen weeks post-transplantation, mice were further subdivided
into four groups with half of the mice undergoing myocardial
infarction (MI) surgery: Sham, +BAT, Sham-MI, and +BAT-MI. MI
was induced in the Sham-MI and +BAT-MI mice by a low suture in
the left anterior descending (LAD) coronary artery, as described
previously [26, 27]. Briefly, permanent MI surgery was performed
by anaesthetizing mice with 2% isoflurane in 98% O2 and
mechanical ventilation. After a left thoracotomy, the fourth
intercostal space and the lungs were retracted. The LAD coronary
artery was permanently ligated with an 8-0 silk low suture 0.6 mm
distal to the atrioventricular junction [27]. The low occlusion
allowed for a substantial proportion of the left ventricle to remain
perfused and functional, representing a mild MI [27]. The Sham
and +BAT groups were subjected to all the procedures except the
LAD ligation. Post-MI echocardiography was performed at
22 weeks post MI, and all mice determined to be in heart failure
(ejection fraction of <35) post-MI were removed from the study
and did not undergo further analyses.

In vivo cardiac function
All mice underwent echocardiography at baseline and 22 weeks
post MI. Mice were anesthetized with 1-2% isoflurane and
echocardiography was conducted using a Vevo 2100 Ultrasound
as described previously [26]. Echocardiogram data was analyzed
using VevoLab software to determine left ventricle (LV) ejection
fraction, LV mass, End Diastolic Dimension (EDD), End Diastolic
Volume (EDV), and LV diastolic diameter.

Exercise tolerance test
Exercise tolerance for cardiovascular fitness was determined by an
exercise tolerance test [28]. At 20 weeks post-MI, all mice were first
acclimated to the treadmill for three consecutive days. During
acclimation, mice were placed in the treadmill for 3 min, after
which the shock grid was activated (3 Hz and 1.5 mA). Next, the

Fig. 1 Experimental design. Six-week-old C57BL/6 mice were placed on a HFD for 8 weeks then subjected to brown adipose tissue
transplantation (BAT-Tx). Sixteen-weeks post BAT-Tx transplantation mice were subjected to either a Sham or myocardial infarction (MI)
surgery. Two weeks before MI, mice were subjected to echocardiography and body composition assessment. At 4, 10, and 22 post MI, mice
were subjected to body composition assessment, and glucose tolerance tests (GTT). Insulin tolerance tests (ITT) and exercise tolerance tests
were performed at 21 weeks post MI, and echocardiography was performed at 22 weeks post MI. At 22 weeks post MI, mice were euthanized,
and tissues were collected for assessment of gene expression and biochemical methods.
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treadmill was engaged to a walking speed of 6 m/min for 5 min
and progressively increased up to 12m/min for a total duration of
12min of exercise. After one week of acclimation, mice were
subjected to the exercise tolerance test, which consisted of
placing the mice on the treadmill at 0° incline with the shock grid
activated. The treadmill speeds were then increased until
exhaustion as follows: (speed, duration, grade)—(0 m/min, 3 min,
0°), (6 m/min, 3 min, 0°), (9 m/min, 3 min, 5°), (12 m/min, 3 min,
10°), (15 m/min, 3 min, 15°), (18, 21, 23, 24m/min, 3 min, 15°), and
(+1m/min, each 1min thereafter, 15°). The endpoint for treadmill
cessation was defined as the time at which mice maintained
continuous contact with the shock grid for 5 s [28].

Metabolic characterization
Body weight was measured weekly. Food intake was measured
over the first 10 weeks post MI. Body composition was determined
using EchoMRI (EchoMRITM3-in-1) at two weeks before MI, and 4,
10, and 22 weeks post MI. Glucose tolerance tests (GTT) were
performed at 4, 10, and 22 weeks post MI. Mice fasted for 11 h
(22:00–9:00) with free access to drinking water [23]. A baseline
blood sample was collected from the tail of fully conscious mice,
followed by i.p. injection of glucose (2.0 g/kg body weight), and
blood was taken from the tail at 15, 30, 60, and 120min after
injection. Insulin tolerance tests (ITTs) were performed 21 weeks
post-MI. Mice were fasted for 2 h (10:00–12:00), and baseline
blood samples were collected from the tail of fully conscious mice.
Insulin (1 U/kg body weight) (Humulin; Eli Lilly) was administered
by i.p. injection, and blood samples were taken from the tail at 10,
15, 30, 45, and 60min after injection [23]. Glucose concentrations
were determined using an OneTouch Ultra-portable glucometer
(LifeScan).

Biochemical methods
Tissue processing and quantitative PCR (qPCR) were performed on
tissue isolated from mice that were sacrificed at 52 weeks of age
(22 weeks post-MI) as previously described [29]. The tissue was
flash frozen and stored at −80 °C until processing. mRNA was
measured by qRT-PCR (Roche LightCycler 480II) using SYBR Green
detection (QuantaBio). Sigma-Aldrich custom primers were used
for genes of interest with the sequences shown in Supplementary
Table 1 [30]. Gene expression was normalized to the house-
keeping gene GAPDH (perigonadal WAT, subcutaneous WAT,
tibialis anterior skeletal muscle, and BAT), TBP (Liver), or RPL7a
(heart). Circulating plasma insulin, triglycerides, and total choles-
terol were measured using standard ELISA kits (Cayman
Chemicals).

Statistical analysis
The data are presented as means ± SEM. One-way and Two-way
ANOVA with Tukey post hoc analysis were performed using
GraphPad Prism software 7.0 (GraphPad Prism Software Inc., San
Diego-CA). Student t-tests were performed to compare differences
between Sham vs +BAT mice at 12 weeks post-transplantation
(prior to MI). Kaplan–Meyer survival curve was plotted to identify
the survival rate of Sham-MI vs +BAT-MI. Values of P < 0.05 were
considered statistically significant.

RESULTS
BAT transplantation minimally affected cardiac function post-
MI
To determine the effect of BAT transplantation on the cardiac
function post-MI, echocardiography was performed in aged-
matched Chow-fed, Sham, Sham-MI, +BAT, and +BAT-MI mice
at baseline and 22 weeks post MI. There was no difference in
ejection fraction measurements prior to MI between Chow-fed,
Sham, and +BAT groups, but multiple parameters of cardiac
remodeling were adversely affected by a high-fat diet (Figure S1A;

Supplemental Table 2). We hypothesized that a severe MI would
have a detrimental effect on cardiac function that could not be
rescued by BAT transplantation, thus we were interested in
investigating the effects of mild-MI. Because of this, we excluded
mice who were in heart failure, or those with an ejection fraction
(EF) of less than 35% (Figure S1B). This included Sham mice with
an EF < 35, which was likely due to a chronic high-fat diet over a
46 week period. There were no +BAT mice with an EF less than
35%. There was a difference in heart failure incidence among MI
groups, with more +BAT-MI mice having an EF < 35 (Figure S1B),
however, this is likely because more Sham-MI mice died in the first
week post surgery and throughout the study compared to +BAT-
MI mice (Figure S1C). There was no difference in EF among groups
that had an EF > 35%, including no effect of HFD or increasing BAT
(+BAT) when compared to age-matched chow-fed controls
(Fig. 2A).
MI leads to adverse cardiac remodeling and impaired cardiac

function over time [31]. To determine if cardiac remodeling was
affected by BAT transplantation or HFD, left ventricular mass
(LVM), end diastolic diameter (EDD), end diastolic volume (EDV),
and other cardiac parameters were measured 22 weeks post-MI
(Fig. 2B–D; Supplemental Table 3). LVM was increased in Sham-MI
mice compared to chow-fed, aged-matched mice, but this was not
seen in +BAT-MI mice (Fig. 2B–D; Supplemental Table 3). There
was no additional effect of MI or BAT transplantation on EDD or
EDV. These data indicate a protective role of BAT transplantation
on LV hypertrophy post-MI.

BAT preserves exercise tolerance post-MI
MI results in exercise intolerance in humans and rodents [32, 33].
To determine if BAT protects against the MI-induced exercise
intolerance in mice, mice underwent exercise tolerance test at 21-
weeks post MI [28]. Exercise tolerance was decreased in Sham-MI
mice compared to all other groups. Of importance, the +BAT-MI
mice were protected from this effect, as they had a similar exercise
tolerance to Sham and +BAT mice (Fig. 2E). Exercise intolerance is
a hallmark of the development of heart failure post-MI [34, 35],
and these data indicate that BAT preserves exercise tolerance at
21 weeks post-MI.

BAT protects against glucose intolerance induced by MI
Obese humans develop insulin resistance (IR) and impaired
glucose tolerance (IGT) one year after a mild MI [13]. The onset
of IR is associated with activated inflammatory response and
increased circulating fatty acids due to catecholamine stress
caused by MI injury [11, 13]. BAT mediates whole-body glucose
and insulin sensitivity, and increasing BAT by transplantation
improves whole-body glucose homeostasis in mice [23]. Thus, we
investigated whether BAT protects against the MI-induced
impairment in glucose tolerance. Prior to MI, there was no
difference in glucose tolerance between Sham and +BAT mice,
but insulin tolerance was improved in +BAT mice (Figure 2SA-B).
Similar to what is observed in humans [13], Sham-MI mice
developed a progressive worsening of glucose tolerance com-
pared to all other groups (Fig. 3A), and it was most prominent at
22 weeks post-MI (Fig. 3A, B). This impairment in glucose tolerance
was completely negated by BAT transplantation in +BAT-MI mice
(Fig. 3A, B). In fact, glucose tolerance in +BAT-MI mice was similar
to Sham and +BAT mice. This preservation in glucose tolerance
was independent of changes in body weight, fat mass, lean mass,
and food intake, which were not different among groups
(Figure S2C–F).
To determine if MI affected insulin sensitivity in mice, insulin

tolerance was measured 21 weeks post-MI. +BAT mice had
improved insulin tolerance compared to Sham at 22 weeks post-
MI, but there was no effect of MI on insulin tolerance (Fig. 3C, D).
Biochemical markers such as serum insulin, triglycerides, and total
cholesterol were measured to determine if they were altered by
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MI or BAT transplantation. There was no effect of MI or BAT
transplantation on circulating insulin, triglycerides or total
cholesterol 22 weeks post MI (Fig. 3E–G).

BAT transplantation negates the effect of MI on the
expression of genes involved in inflammation and insulin
resistance in white adipose tissue and liver
Given the protective role of BAT transplantation on glucose
tolerance post-MI, we investigated possible mechanisms and
tissues that mediate the improved whole-body glucose tolerance.
We analyzed genes involved in inflammation, fibrosis, redox state,
senescence, insulin signaling, glucose and lipid metabolism,
mitochondrial biogenesis and mitochondrial function in perigo-
nadal white adipose tissue (pgWAT), subcutaneous white adipose
tissue (scWAT), liver, brown adipose tissue (BAT), tibialis anterior
skeletal muscle (TA) and heart. In total, expression of 93 genes
were measured (Supplemental Table 1). There were striking
increases in several genes involved in inflammation (Tnf-α; NfkB;
Nfat), insulin resistance (Creb), insulin signaling (Irs1; Pi3k; Akt;
Mtor; S6k); and glucose metabolism (Gpi1; Pfkp; Aldoa) in response
to MI in pgWAT and scWAT (Fig. 4A–F, Supplemental Fig. 3A–F).
There were also multiple genes involved in mitochondrial
biogenesis (Nrf1;Nrf2) and macrophage differentiation (Csf1; Csf1R)

that were decreased in pgWAT in response to MI. Expression of
these genes was not altered in +BAT-MI mice (Fig. 4A–F,
Supplemental Fig. 3A–F).
In the liver, expression of select genes related to fibrosis (Icam;

Vim); gluconeogenesis (Creb); glucose metabolism (Aldoa; Eno3),
and lipid transport (Fabp3; Fabp5) were increased in Sham-MI
mice compared to all other groups (Fig. 4G–I; Supplemental Figs.
3G–J, 4A,B). Importantly, BAT transplantation in MI mice negated
this effect in the liver (Fig. 4G–I). In the heart, markers of fibrosis
including Mmp9, S6k, and Ddr2 were increased in Sham-MI mice,
and this effect was suppressed by BAT transplantation in +BAT-
MI mice (Supplemental Fig. 4D). The expression of the
antioxidant enzymes SOD1-3 was increased in +BAT-MI com-
pared to all groups (Supplemental Fig. 4C–G). Minimal effects of
MI or BAT transplantation were observed in TA (Supplemental
figure 5A–D) and interscapular BAT (Supplemental Figures
5E–H). Together these data suggest that mild MI alters gene
expression in peripheral tissues including pgWAT, scWAT and
liver, which could contribute to the impaired whole-body
glucose metabolism. BAT transplantation protects against these
adverse effects, which might be mediated through improve-
ments in peripheral tissue inflammation, insulin signaling, and
mitochondrial metabolism.

Fig. 2 BAT transplantation minimally affected cardiac function post-MI. Cardiac function and structure were measured by (A) ejection
fraction, (B) left ventricle mass, (C) end diastolic diameter, (D) end diastolic volume, and (E) time to exhaustion in exercise test in Chow-fed
(n= 12), Sham (n= 9), Sham-MI (n= 6), +BAT (n= 10) and +BAT-MI (n= 5) mice that had EF over 35%. Data are presented as mean + S.E.M.
One-way ANOVA was used with Tukey’s multiple comparisons tests. * represents p < 0.05 compared to Sham mice; # represents p < 0.05
compared to BAT-MI mice, and $ represents p < 0.05 compared to Chow-fed mice.
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DISCUSSION
Here, we investigated the protective role of BAT against the
detrimental effects of MI on LV hypertrophy and glucose
metabolism in male mice. We found that increasing BAT mass
by transplantation prevents the increased LV mass, decreased
exercise tolerance, and impaired glucose tolerance after a mild MI
in a mouse model of HFD-induced obesity.
Obesity is caused by alterations in energy balance in which

energy intake exceeds energy expenditure [36]. This imbalance
leads to adipose tissue accumulation and metabolic alterations
that can result in cardiovascular disease (CVD) and type 2 diabetes

[1, 37, 38]. Studies in rodents and humans have demonstrated that
increased BAT mass is associated with improved metabolic health
[19, 20, 39], and BAT mass and activity are decreased with obesity
[21, 22]. A recent study in human subjects has shown that reduced
BAT mass is associated with increased incidence of T2D and
cardiovascular disease [40]. We and others have previously shown
that increasing BAT mass by transplantation improves metabolic
health in obese rodents [23, 24, 41–43]. Thus, the objective of this
study was to determine if obese mice with increased BAT mass are
protected against progressive glucose intolerance and cardiac
hypertrophy after a MI. In the current study, we demonstrated that

Fig. 3 BAT transplantation protects against glucose intolerance induced by MI. Whole-body glucose homeostasis was assessed by glucose
tolerance tests (GTT), and insulin tolerance test (ITT). A Area under curve (AUC) of glucose tolerance test (GTT) at weeks 4, 10, and 22 weeks
post MI. B GTT excursion curve at 22 weeks post MI. C Insulin tolerance test (ITT) AUC at 21-weeks post MI. D ITT excursion curve at 21 weeks
post MI. Biochemical measurements were performed after euthanasia at 22 weeks post MI: (E) Fasting insulin, (F) fasting triglycerides, and (G)
total cholesterol (Sham n= 9, Sham-MI n= 5, +BAT n= 8, +BAT-MI n= 5). Data are presented as mean+ S.E.M. Two-way ANOVA was used
with Tukey’s multiple comparisons tests for (A, C, E, F, and G). Repeated measures two-way ANOVA was used for (B) and (D) with Tukey’s
multiple comparisons tests. * symbols represent difference of Sham-MI or +BAT vs. Sham mice (*p < 0.05). # symbols represent difference of
Sham-MI versus +BAT-MI mice (#p < 0.05).
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Fig. 4 BAT attenuates expression of genes involved in inflammation and insulin resistance increased by MI in white adipose tissue and
liver. Quantitative PCR (qPCR) was performed on tissue isolated from mice that were sacrificed at 52 weeks of age (22 weeks post-MI). Genes
related to inflammation and fibrosis, insulin signaling and glucose metabolism, fatty acid metabolism, and mitochondrial biogenesis were
accessed in (A–C) pgWAT, (D–F) scWAT, and (G–I) liver of Sham (n= 8), Sham-MI (n= 3–5), +BAT (n= 5–8), and +BAT-MI (n= 4–5). Data
are presented as mean+ S.E.M (n= 5–9/group). Two-way ANOVA was used with Tukey’s multiple comparisons tests. *symbols represent the
difference of Sham-MI or +BAT vs. Sham mice (*p < 0.05). # symbols represent difference of Sham-MI versus +BAT-MI mice (#p < 0.05).
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the long-term beneficial effects of BAT transplantation on glucose
metabolism are independent of body mass and composition.
Thus, increasing BAT can prevent long-term metabolic alterations
which could have beneficial implications for obese patients
with CVD.
The number of patients that survive after an MI has increased

over the last few decades [5, 44]. The patients who survive a
mild MI need preventive care for heart failure and treatment for
the long-term metabolic alterations, including development of
IR and IGT, caused by MI [5, 7, 8, 10–15]. In fact, abnormal
glucose tolerance is an independent predictor of cardiovascular
events such as recurrent MI, stroke, adverse cardiac remodeling,
and heart failure during a median follow-up time up to
34 months post MI [18, 45–47]. Similar to what is observed in
humans [13], we show that mild MI led to progressive glucose
intolerance in obese mice. Our study demonstrated that
increasing BAT mass prevents the development of IGT in
response to MI. These data represent a potential therapeutic
approach, protecting against the development of IGT and, if
applicable to humans, potentially preventing recurring cardio-
vascular events and development of heart failure that arise
following IGT and type 2 diabetes.
Exercise intolerance is a hallmark of heart failure and is

associated with a poor quality of life and increased mortality
[48]. Exercise intolerance is one of the primary chronic symptoms
in patients with heart failure with preserved ejection fraction, and
is associated with poor prognosis post MI [34, 35, 49, 50]. It is well
known that LV remodeling, including LV hypertrophy, may
contribute to exercise intolerance post MI [51, 52]. In our study,
BAT transplantation prevented the increased LV mass and exercise
intolerance caused by mild MI. Taken together, these data suggest
a potential role for BAT to prevent poor cardiac outcomes after a
mild myocardial infarction.
The mechanisms for IR and IGT to develop as a result of MI

have not been fully established. It has been suggested that the
post-MI catecholamine stress induces hyperglycemic, inflamma-
tory and lipolytic response, progressively affecting metabolism in
peripheral tissues, and may lead to the development of IR, IGT,
and type 2 diabetes, especially in obese subjects [11, 13, 53–55].
BAT activation consumes substantial amounts of glucose as fuel
for thermogenesis, contributing significantly to whole-body
glucose disposal [56]. There were no differences in the pre-MI
GTT, or in basal glucose among groups at 22 weeks post-MI. This,
as well as previous studies from our laboratory [23] indicate that
the transplanted BAT is not acting just as a glucose ‘sink’. These
data indicate that there is a complex endocrine/paracrine
signaling network where increasing BAT mass affects other
tissues and improves systemic glucose metabolism. To investi-
gate potential mechanisms for BAT to protect against the
development of IGT post-MI, we assessed the expression of more
than 90 genes in multiple tissues. Several genes were altered by
MI in WAT and liver, but were not changed in +BAT-MI mice. In
both pgWAT and scWAT, MI increased expression of the
inflammatory markers Tnf-α and NfkB. These inflammatory
markers are associated with increased local and systemic IR and
the development of type 2 diabetes [57, 58]. Several other genes
associated with the onset of IR were altered in WAT of Sham-MI
mice, such as the macrophage differentiation genes Csf1 and
Csf1R [54], and the pathway Pi3k/Akt/Mtor/S6k [59–62]. The cAMP-
responsive transcription factor CREB is associated with insulin
resistance and gluconeogenesis [63–65], and it was upregulated
in both WAT and liver of Sham-MI mice but not in +BAT-MI mice.
Interestingly, in the absence of MI, BAT transplantation had
minimal effect in the adipose tissue, and did not affect liver gene
expression, suggesting that BAT transplantation affects the
metabolic phenotype that is specifically induced by MI. These
data indicate that multiple pathways in WAT and liver could be
involved in the development of IGT post-MI and that increasing

BAT prior to MI affected tissue crosstalk by preventing MI-induced
alterations in WAT and liver. Further studies will investigate
mechanistically the effects of MI on the glucose metabolism and
the protective role of BAT.
This is the first study to demonstrate that increasing BAT mass

by transplantation prevents impaired glucose tolerance in HFD-
fed mice and is cardioprotective after a mild MI in male mice. This
is likely associated with the upregulation of several metabolic
genes induced by mild MI in WAT and liver gene regulation in the
heart and is independent of body composition. The mechanism
through which BAT exerts this protective effect on increased LV
mass, impaired glucose tolerance, insulin resistance, and type 2
diabetes is not clear and will be the focus of future investigations.
Together these data identify a therapeutic role for BAT to mediate
glucose metabolism post-MI and indicate that increasing BAT
could have significant translatable potential and great impact on
public health.
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