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As the worldwide prevalence of diabetes and obesity
continues to rise, so does the risk of debilitating cardio-
vascular complications. Given the significant associa-
tion between diabetes and cardiovascular risk, the
actions of glucose-lowering therapies within the cardio-
vascular system must be clearly defined. Incretin hor-
mones, including GLP-1 (glucagon-like peptide 1) and
GIP (glucose-dependent insulinotropic polypeptide), are
gut hormones secreted in response to nutrient intake that
maintain glycemic control by regulating insulin and gluca-
gon release. GLP-1 receptor agonists (GLP-1Ras) and
dipeptidyl peptidase 4 inhibitors (DPP-4is) represent two
drug classes used for the treatment of type 2 diabetesmel-
litus (T2DM) that improve glucose regulation through stim-
ulating the actions of gut-derived incretin hormones or
inhibiting their degradation, respectively. Despite both
classes acting to potentiate the incretin response, the
potential cardioprotective benefits afforded by GLP-1Ras
have not been recapitulated in cardiovascular outcome tri-
als (CVOTs) evaluating DPP-4is. This review provides
insights through discussion of clinical and preclinical stud-
ies to illuminate the physiological mechanisms that may
underlie and reconcile observations from GLP-1Ra and
DPP-4i CVOTs. Furthermore, critical knowledge gaps and
areas for further investigation will be emphasized to guide
future studies and, ultimately, facilitate improved clinical
management of cardiovascular disease in T2DM.

The gastrointestinal tract coordinates nutrient intake
and utilization by peripheral tissues, and unraveling the

integrative physiological network connecting these func-
tions has revealed several drug targets. Glucagon-like
peptide 1 (GLP-1) and glucose-dependent insulinotropic
polypeptide (GIP) are hormones released in response to
nutrient intake that potentiate glucose-stimulated insulin
secretion (1). Their hormonal action is limited to the
postprandial period because of their rapid inactivation by
dipeptidyl peptidase 4 (DPP-4), a serine protease that
cleaves two N-terminal amino acids, and subsequent
renal elimination. Two classes of drugs that potentiate
the effects of gut-derived hormones have been developed
for type 2 diabetes mellitus (T2DM): GLP-1 receptor ago-
nists (GLP-1Ras), which are peptides based on human or
nonmammalian structures, and DPP-4 inhibitors (DPP-
4is), which stabilize endogenous GLP-1 and other sub-
strates, including GIP.

While glucose-lowering therapies have demonstrated
efficacy in reducing microvascular events in patients
with T2DM, preventing macrovascular complications has
proven more difficult. The number of pharmacological
tools available to endocrinologists has increased in recent
years, with significant advancements in effective glucose-
lowering drugs. Since the introduction of these incretin-
based therapies to the market, DPP-4is have been widely
adopted to manage glucose levels with few side effects,
and the use of GLP-1Ras is steadily increasing (2). In
agreement with the 2008 guidance of the U.S. Food
and Drug Administration, cardiovascular outcome trials
(CVOTs) have been performed to evaluate the cardiovas-
cular safety of these agents. Most use the 3-point major
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adverse cardiovascular end point (MACE), comprised of
cardiovascular mortality, nonfatal myocardial infarction
(MI), and nonfatal stroke. Here, we review the results of
incretin therapy CVOTs and provide molecular insights
into potential mechanisms using smaller clinical studies
and translationally relevant studies in animal and cellular
models.

GLP-1Ras and Cardiovascular Outcomes
The first completed GLP-1Ra CVOT, the Evaluation of
Lixisenatide in Acute Coronary Syndrome (ELIXA), dem-
onstrated that lixisenatide treatment of subjects with
T2DM was noninferior to placebo for 3-point MACE, with
similar observations reported in the Exenatide Study of
Cardiovascular Event Lowering (EXSCEL). Conversely, 3-
point MACE results from CVOTs on the longer-acting
GLP-1Ras liraglutide (Liraglutide Effect and Action in Dia-
betes: Evaluation of Cardiovascular Outcome Results
[LEADER]), semaglutide (Trial to Evaluate Cardiovascular
and Other Long-Term Outcomes with Semaglutide in
Subjects with Type 2 Diabetes [SUSTAIN-6]), albiglutide
(Harmony Outcomes), and dulaglutide (Researching Car-
diovascular Events with a Weekly Incretin in Diabetes
[REWIND]) were quite positive (Fig. 1A). GLP-1Ra CVOTs
have also demonstrated inconsistencies regarding the sec-
ondary outcome of hospitalization for heart failure (HF),
whereby the LEADER and Harmony Outcomes CVOTs
reported trends toward reduced hospitalization rates,
whereas the SUSTAIN-6 and REWIND CVOTs reported
no differences, as reviewed in Gopal et al. (3).

Potential Mechanisms Underlying GLP-1Ra–Mediated
Cardioprotection

GLP-1Ras and Atherosclerosis
Post hoc analysis of the LEADER trial demonstrated that
patients with a history of MI, stroke, or established dis-
ease demonstrate more significant cardiovascular benefit
using liraglutide than subjects with elevated risk factors
alone (4). Patients enrolled in these CVOTs receive stan-
dard-of-care measures, including optimal lipid lowering
and antihypertensives; therefore, together with the time-
line required for protection, GLP-1Ras are likely antia-
therogenic (5). Consistent with this, preclinical mouse
studies have described the reduced progression of athero-
sclerosis with liraglutide and semaglutide through reduced
residual inflammation in the atherosclerotic plaques of
Western diet (WD)-fed Ldlr�/� and Apoe�/� mice (6).
Dulaglutide treatment reduced the atherosclerotic plaque
area and aortic arch macrophage infiltration in Apoe�/�

mice with streptozotocin (STZ)-induced experimental
type 1 diabetes (7). This benefit was also associated with
reduced aortic expression of markers of inflammation and
increased plaque stability. Interestingly, the antiathero-
genic effect of dulaglutide was more pronounced when
administered to younger diabetic mice (at 10–18 weeks
old rather than 18–26 weeks old). As assessed in the

brachiocephalic artery by iMAP intravascular ultrasound,
plaque stability was increased with lixisenatide in Wata-
nabe heritable hyperlipidemic rabbits (8). Moreover,
lixisenatide decreased circulating lymphocytes and inter-
leukin-6 levels in Apoe�/�:Irs21/� mice, and plaque
macrophages displayed increased arginase and decreased
inducible nitric oxide (NO) synthase expression, indicat-
ing an anti-inflammatory (M2) phenotype (9). However,
establishing reductions in atherogenesis or plaque compo-
sition in patients with T2DM has proven more challeng-
ing. Treatment of subjects with exenatide once weekly for
up to 18 months improved glycemic control but did not
significantly alter the volume of carotid plaque (MRI) or
the lipid-rich necrotic core or calcification (10). Explor-
atory analysis of the LEADER trial evaluating factors con-
tributing to the time to first MACE identified several
factors, including HbA1c, body weight, systolic blood pres-
sure (BP), and LDL cholesterol (11). Nevertheless, preclin-
ical studies demonstrated that reduced lesion progression
with GLP-1Ras was independent of changes in body
weight or total cholesterol (6). Additionally, the collective
effect size on atherogenic LDL cholesterol in the MACE
trials is modest (12). Postprandial triacylglycerol-rich
lipoproteins are reduced by GLP-1Ra (13), and treatment
with liraglutide in a prospective 18-month real-world
study did reduce carotid intermedial thickness, which was
associated with reduced plasma triacylglycerols (14). How-
ever, the contribution of reduced triacylglycerol-rich lipo-
proteins to reduced atherogenesis is currently unclear.

GLP-1Ras and Hypertension
GLP-1Ras frequently produce antihypertensive effects in
murine hypertension models and in T2DM MACE trials,
which may contribute to their cardioprotective properties
(11), independent of glucose lowering and weight loss
(15). Liraglutide-mediated reductions in systolic and dia-
stolic BP in angiotensin II–infused C57BL/6J mice were
due to atrial natriuretic peptide (ANP) release from atrial
cardiomyocytes, which relaxes the vasculature (16).
Intriguingly, liraglutide failed to lower systolic and dia-
stolic BP in angiotensin II–infused ANP-deficient mice.
Nonetheless, the clinical relevance of the proposed GLP-
1r–ANP axis in reducing human BP is questionable, as lir-
aglutide increased plasma ANP levels in subjects with
T2DM in some studies (17) but not in others (18). The
enhancement of the vasodilatory response may also
explain the antihypertensive effects of GLP-1Ras through
direct GLP-1R activation in the vasculature. Endothelium-
dependent vasodilation in response to acetylcholine was
improved in preconstricted aortic rings isolated from WD-
fed Apoe�/� mice treated with liraglutide versus the con-
trol, which was abolished by cotreatment with the GLP-
1R antagonist exendin(9-39) (19). Conversely, intracoro-
nary infusion of GLP-1(7-36) did not augment coronary
flow in open-chest, anesthetized dogs and failed to induce
vasodilation in preconstricted coronary artery rings (20).
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GLP-1Ras may also reduce BP by decreasing vascular
inflammation. In C57BL/6J mice infused with angiotensin
II for 1 week, liraglutide treatment attenuated aortic wall
infiltration by LY6G�:LY6C1 monocytes (where LY6G is
lymphocyte antigen 6 complex, locus G) and LY6G1:LY6C1

neutrophils while decreasing systolic BP (21). Furthermore,

these effects were associated with decreased aortic lev-
els of proinflammatory mediators (nuclear factor kB
[NF-kB] and tumor necrosis factor-a) and leukocyte
adhesion molecules (vascular cell adhesion molecule 1
and intercellular adhesion molecule 1). Interestingly,
these beneficial effects were abolished in mice with

Figure 1—Summary of CVOTs for GLP-1Ra and DPP-4i. A: Six large-scale randomized CVOTs evaluating cardiovascular safety/efficacy
of different GLP-1Ras in T2DM patients with established CVD : EXSCEL, LEADER, SUSTAIN-6, ELIXA, Harmony Outcomes, and REWIND.
A dagger indicates a composite of cardiovascular death (CD) or hospitalization for heart failure (HHF). An asterisk indicates hospitalization
for HF or an urgent visit. B: Five large-scale randomized CVOTs evaluating cardiovascular safety/efficacy of different DPP-4i in T2DM
patients with established CVD: EXAMINE, SAVOR-TIMI 53, TECOS, CARMELINA, and CAROLINA. Of note, the patients included in these
5 CVOTs already received standard care with cardiovascular protection (i.e., statins and antiplatelet agents) and T2DM management.
PCO, primary composite outcome; stroke, nonfatal stroke. The numbers provided represent the first occurrence of the primary composite
end point if data were available and thus may not match reported PCOs that include subjects who reached multiple end points.
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endothelium-specific but not myeloid-specific GLP-1R
deficiencies.

While these rodent studies have improved our poten-
tial understanding of antihypertensive mechanisms, as
already mentioned, GLP-1Ra-mediated reductions in BP
are not as potent in humans, and this is also observed in
larger animal species (e.g., pigs and dogs), as reviewed in
Ussher and Drucker (22). Therefore, BP reductions are
unlikely to be a major contributor to the cardioprotection
reported in GLP-1Ra CVOTs. Further emphasizing this
point, albiglutide had negligible actions on BP lowering
despite significant improvements in cardiovascular out-
comes in Harmony Outcomes, whereas exenatide signifi-
cantly lowered BP, albeit mildly, but did not improve
cardiovascular outcomes in EXSCEL.

GLP-1Ras and MI
In patients undergoing percutaneous coronary interven-
tion, a randomized, placebo-controlled study involving a
6-h exenatide infusion prior to reperfusion onset reported
an improved myocardial salvage index (23). This trans-
lated into a reduced infarct size if infusion occurred <132
min from the time of first medical contact to balloon
treatment, and benefits were observed in subjects with
and without diabetes. However, as mentioned previously,
the EXSCEL CVOT did not observe decreases in cardiovas-
cular outcomes or fatal/nonfatal MI events (24).

GLP-1 and GLP-1Ras decrease infarct size in mice, rats,
rabbits, and pigs following temporary ligation of the left
anterior descending (LAD) or circumflex coronary arteries
(22). However, a caveat to these studies is that nearly all
were performed in healthy young animals, with surpris-
ingly few studies performed in animals with experimental
obesity and/or T2DM. Likewise, similar to issues relating
to studying antihypertensive actions described previously,
the effect of GLP-1Ras on infarct size is not as reproduc-
ible in larger animal models, with several studies in pigs
reporting no benefit, though this could also be partially
due to their limited collateral circulation. It is possible
that decreased inflammation is responsible for increased
vascular function/coronary blood flow and attenuated
infarct size (25). GLP-1Ras may also decrease infarct size
during ischemia/reperfusion by inhibiting cardiomyocyte
apoptosis (26). Furthermore, albiglutide-mediated reduc-
tions in infarct size are associated with increased myocar-
dial glucose oxidation, which may improve cardiac
efficiency, as carbohydrates are a more oxygen-efficient
fuel (27).

GLP-1Ras and HF
While the LEADER and Harmony Outcomes trials demon-
strated trends toward reduced hospitalization rates for
HF, all other GLP-1Ra CVOTs have been neutral for this
end point. Furthermore, two randomized placebo-con-
trolled trials suggested no clear benefit and potential
adverse effects for liraglutide in HF subjects with reduced
ejection fraction (HFrEF). The Functional Impact of GLP-

1 for Heart Failure Treatment (FIGHT) trial included sub-
jects with HFrEF who were recently hospitalized for acute
HF and treated with either liraglutide or a placebo for 6
months (28). Although the FIGHT trial reported no
changes in HF-related outcomes or cardiac function, a
mild but nonsignificant signal for harm was observed for
liraglutide, which appeared greater in subjects with coexis-
tent T2DM. Similarly, the Effect of Liraglutide on Left
Ventricular Function in Stable Chronic Heart Failure
Patients (LIVE) trial demonstrated that treatment with
liraglutide for 24 weeks did not affect cardiac function in
subjects with stable HFrEF with or without T2DM (29).
However, a higher prevalence of serious adverse cardiac
events, including atrial fibrillation and aggravation of
ischemic heart disease, was observed with liraglutide, rais-
ing concerns about the safety of GLP-1Ras in individuals
with HFrEF.

Conversely, preclinical studies examining the impact of
liraglutide and other GLP-1Ras in HFrEF have been
largely positive. Indeed, a 7-day pretreatment with liraglu-
tide prior to MI induction via permanent LAD coronary
artery ligation increased survival and ameliorated adverse
left ventricular (LV) remodeling in both nondiabetic and
diabetic mice (26). Moreover, in obese mice fed a WD for
20 weeks, liraglutide treatment during the final week
improved LV ejection fraction in a 50AMP activated pro-
tein kinase (AMPK)-dependent manner, as improvement
was not observed in mice concurrently treated with the
AMPK inhibitor compound C (30). In Ossabaw swine fed
a WD for 6 months and subjected to MI using an ameroid
constrictor placed around the LAD coronary artery, lira-
glutide treatment for 4 weeks did not reduce infarct size
but did improve cardiac efficiency (31). This effect was
attributed to b1-adrenoceptor downregulation, which
would decrease myocardial O2 demands. In contrast but
drawing similar parallels to observations in the FIGHT
and LIVE trials, liraglutide treatment for 42 days exacer-
bated cardiac hypertrophy and fibrosis in nondiabetic
J2N-k hamsters, which develop a spontaneous dilated car-
diomyopathy (32).

HF with preserved ejection fraction (HFpEF) is more
prevalent in patients with diabetes than the general popu-
lation, and early diastolic dysfunction (a form of diabetic
cardiomyopathy) is often undiagnosed because of a lack
of routine cardiovascular screening in the early stages of
T2DM (3). Currently, no clinical studies have investigated
the impact of GLP-1Ras in subjects with HFpEF. However,
liraglutide treatment for 6 months improved diastolic
function, indicated by an increased peak early diastolic
tissue velocity (e0) and decreased LV end diastolic volume
in the Magnetic Resonance Assessment of Victoza Efficacy
in the Regression of Cardiovascular Dysfunction in Type 2
Diabetes Mellitus (MAGNA VICTORIA) study (29). In
addition, 6 months of liraglutide treatment improved dia-
stolic function in subjects with T2DM, indicated by an
increased e0/peak late diastolic tissue velocity (a0) ratio
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and a decreased peak early diastolic flow velocity (E)/e0

ratio (33). These observations have been recapitulated in
preclinical studies, as liraglutide treatment improved
global longitudinal strain in aged WD-fed, angiotensin II-
induced female mice, indicating reduced diastolic dysfunc-
tion (34). Treatment alleviated fibrosis and proinflamma-
tory gene expression and decreased capillary density, all
of which promote diabetic cardiomyopathy (3). Further-
more, liraglutide-mediated improvements in diastolic
function (increased E/peak atrial flow velocity [A] and
decreased E/e0) in WD-fed mice administered low-dose
STZ to induce T2DM were associated with increased myo-
cardial glucose oxidation rates (35). As direct impairments
in myocardial glucose oxidation precipitate diastolic dys-
function (3), liraglutide’s ability to stimulate glucose oxi-
dation may explain how GLP-1Ras alleviate diabetic
cardiomyopathy. GLP-1Ras may also mitigate diastolic
dysfunction in T2DM by decreasing oxidative stress. Exe-
natide administration for 4 weeks increased the myocar-
dial expression of antioxidant enzymes (manganese-
dependent superoxide dismutase and catalase) in mice fed
a WD for 24 weeks, increasing the E/A ratio (36). Liraglu-
tide therapy for 4 weeks also increased myocardial cata-
lase activity in Sprague-Dawley rats with WD/low-dose
STZ-induced T2DM, although diastolic function was not
assessed (37).

Reconciling Preclinical Mechanisms of Action With
Observations From GLP-1Ra CVOTs
It is not surprising that most GLP-1Ra CVOTs have
yielded positive findings based on the available preclinical
data and associated mechanisms (Fig. 2). ELIXA’s neutral
outcomes may have been due to lixisenatide’s shorter
half-life and the higher-risk population studied (subjects
had acute coronary events within 180 days of screening).
Improvements in vascular function and decreases in oxi-
dative stress as well as circulating lipids may contribute
to the antiatherosclerotic properties of GLP-1Ras, possibly
explaining the decreased cardiovascular events, including
MI, in subjects with T2DM. A highly contested aspect of
GLP-1Ra–induced cardioprotection that requires further
interrogation involves GLP-1R expression in the cardio-
vascular system, which is often impacted by the species
and tools (e.g., antibodies) used. In rodents, ventricular
cardiomyocytes do not express the canonical GLP-1R,
while recent studies of human heart extracts demon-
strated GLP-1R expression in all four chambers (16,38).
However, efforts to determine whether the GLP-1R is
meaningfully expressed in vascular smooth muscle cells,
endothelial cells, and immune cells have been plagued by
inconsistencies. GLP-1Ra–induced heart rate elevations
may contribute to the potential worsened outcomes
observed for subjects with HFrEF in the FIGHT and LIVE
trials. It should be noted that the average increase in
heart rate in the LIVE trial (�7 bpm) is greater than
those observed in most GLP-1Ra CVOTs (0.4 to 3.0 bpm).

DPP-4is and Cardiovascular Outcomes
The DPP-4i trials have been extensively reviewed else-
where (22) and are summarized in Fig. 1B. Although their
designs were not entirely consistent, the five CVOTs
yielded similar results: DPP-4is (alogliptin, saxagliptin,
sitagliptin, and linagliptin) were noninferior to placebo,
demonstrating their cardiovascular safety when added to
standard care (39–42). The Cardiovascular and Renal
Microvascular Outcome Study With Linagliptin (CARM-
ELINA) demonstrated both cardiovascular and renal
safety of linagliptin versus placebo (43). In addition to
disappointing results for obvious cardiovascular benefit,
the Saxagliptin Assessment of Vascular Outcomes
Recorded in Patients with Diabetes Mellitus–Thromboly-
sis in Myocardial Infarction 53 (SAVOR-TIMI 53) trial
revealed an increased risk of hospitalization for HF (40),
which was highest among patients with elevated baseline
brain natriuretic peptide levels, prior HF, or impaired
renal function at study entry (44). However, the increased
HF hospitalization risk was not associated with an
increased risk of cardiovascular death (40). Interestingly,
these results were not replicated in the Trial Evaluating
Cardiovascular Outcomes With Sitagliptin (TECOS) and
CARMELINA, as their HF hospitalization rates did not
differ among patients with T2DM, even between those
with a history of HF or chronic kidney disease, and were
independent of LV ejection fraction (41). In a secondary
analysis of TECOS, cardiovascular and all-cause deaths
after HF hospitalization were also similar between the
sitagliptin and control groups (45). Thus, the increase in
HF hospitalization observed in the SAVOR-TIMI 53 trial
may be related to its design or to properties of the saxa-
gliptin molecule itself, which may directly impair cardio-
myocyte function (46).

Reconciling the Preclinical Cardioprotection of
DPP-4is With Observations of Neutrality in CVOTs
Modest improvements in classic cardiovascular risk fac-
tors, including HbA1c, BP, fasting, and postprandial blood
lipids, have been observed with DPP-4is, albeit much
lower in magnitude than those observed with GLP-1Ras
(12), consistent with the sustained elevation in physiolog-
ical GLP-1. Here, we discuss aspects of DPP-4 biology that
may contribute to the MACE differences observed
between DPP-4is and GLP-1Ras.

DPP-4 exists as both a membrane-bound isoform and a
soluble form shed from the membrane to circulate in
most bodily fluids (sDPP-4), which lacks the intracellular
tail and transmembrane domain but maintains enzymatic
activity (47). Plasma sDPP-4 level increases are positively
associated with coronary artery disease (48,49), endothe-
lial dysfunction in patients with T2DM (50), and diabetic
nephropathy (51).

Adding to the complexity of its association with disease
progression, sDPP-4 originates from various sources depend-
ing on the metabolic state. For example, major sDPP-4
sources in healthy rodents are endothelial cells and
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hematopoietic cells, including bone marrow cells, lympho-
cytes, and macrophages (52). DPP-4 is stored in secretory
granules by cytotoxic lymphocyte populations, and, upon
stimulation, these vesicles rapidly translocate to the cell
surface in a Ca21-dependent manner to release proteolyti-
cally active sDPP-4 (53). Conversely, the increased sDPP-4
in obesity appears to originate from hepatocytes (54,55),
as soluble factors released from dysfunctional adipocytes
promote hepatic hypoxia-inducible factor 1a expression,
increasing hepatic DPP-4 shedding (56). Furthermore, in
obese mice, hepatocyte-derived sDPP-4 induces inflamma-
tion in macrophages by directly interacting with surface
caveolin 1, increasing its phosphorylation and dissociation
from complexes with Toll-interacting protein and interleu-
kin-1 receptor-associated kinase 1, which activates NF-kB
(54,57). Collectively, these data suggest that obesity-medi-
ated increases in hepatic sDPP-4 activate inflammatory
programs in several cell types; however, whether targeting
hepatocyte DPP-4 has merit in preventing metabolic dis-
ease has not yet been explored clinically.

Surprisingly, sustained DPP-4 inhibition is associated
with elevated circulating sDPP-4 levels in mice (55,58).
This increase originates predominantly from bone marrow-
derived tunica intima endothelial kinase receptor tyrosine
kinase-positive hematopoietic cells (58). The upregulation

of hematopoiesis-derived DPP-4 did not affect tissue or
systemic inflammation, dissociating changes in DPP-4
activity from plasma sDPP-4 and inflammatory marker lev-
els (55,58). These data parallel other studies in which DPP-
4i treatment abrogates the inflammatory effects of sDPP-4
(59,60). Contrary to findings in mice, continuous DPP-4i
treatment did not increase circulating sDPP-4 levels in
humans with established cardiovascular disease (CVD) and
T2DM (58). Therefore, although some pools of sDPP-4
may contribute to the subclinical inflammation observed in
metabolic disease, evidence suggests that, in human sub-
jects with diabetes, DPP-4is have an overall neutral effect
on pathways regulating inflammation (Fig. 3).

Progenitor Cell Homing
Another example where mechanisms for improved cardio-
vascular function with DPP-4is identified in young mouse
models failed to translate was potentiation of C-X-C motif
chemokine ligand 12 (CXCL12) signaling to facilitate the
homing of C-X-C motif chemokine receptor 41 progeni-
tor stem cells to sites of myocardial damage, preventing
cardiomyocyte apoptosis (61). Genetic elimination and
pharmacological inhibition of DPP-4 (62) or potentiation
of CXCL12 improves postischemic recovery of cardiac con-
tractility in the hearts of healthy young adult mice (63).

Figure 2—Potential mechanisms that may contribute to the cardiovascular benefit afforded by GLP-1Ra. GLP-1Ra-mediated cardiopro-
tection likely results from multiple contributing factors, including a reduction in inflammatory processes and body weight, improvements
in vascular function that decrease BP, attenuation of atherosclerosis, and cardiomyocyte-independent actions that improve myocardial
function (see the text for references). VSMC, vascular smooth muscle cells.
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However, cardioprotection with DPP-4is was not repro-
duced in aged, obese, diabetic mice (63,64). Aspects of this
model have been tested clinically in the Sitagliptin Plus
Granulocyte Colony-Stimulating Factor in Patients Suffer-
ing From Acute Myocardial Infarction (SITAGRAMI) trial,
which combined sitagliptin with colony-stimulating factor
3–mediated stem cell mobilization. Long-term follow-up
data showed no improvement in cardiac function or the
clinical outcomes of patients with acute MI receiving the
combined therapy (65). It is unclear if this mechanism is
disrupted due to characterized progenitor cell dysfunction

induced by diabetes or whether it can be influenced by the
increase in sDPP-4 observed with DPP-4i.

DPP-4is and Metformin
Although large clinical CVOTs failed to demonstrate obvi-
ous cardioprotective benefits for DPP-4is, a recent meta-
analysis of three trials demonstrated that individuals
receiving baseline metformin treatment had improved
cardiovascular outcomes with DPP-4is compared with
metformin nonusers, most notably for MI, stroke, cardio-
vascular mortality, and hospitalization for unstable angina

Figure 3—Potential mechanisms underlying the neutral cardiovascular actions of DPP-4 and DPP-4i. In healthy animals, several pathways
within the cardiovascular system have been identified that mediate the effects of DPP-4is; however, the majority have not translated to
benefits in subjects with T2DM. Inhibition of DPP-4 in preclinical studies facilitates the homing of CXCR41 progenitor stem cells at sites of
myocardial damage, prevents cardiomyocyte apoptosis, and improves postischemic recovery of cardiac contractility through increasing
SDF-1a levels. In addition, DPP-4i can activate Akt/endothelial NO synthase (eNOS) signaling along with NO generation by the endothe-
lium, enhancing FGF-2/EGR-1/VEGF-A signaling, inhibiting HMGB1 inactivation, promoting signaling pathways related to PGC-1a/NRF-
1/TFAM/AMPK, downregulating the JAK/STAT signaling pathway, reducing the expression of NOX-4, and restoring intracellular levels of
antioxidant glutathione as well as ATP. Furthermore, DPP-4i can reduce p38/NF-kB signaling while inducing Nrf2 signaling. Additionally,
DPP-4i can inhibit PAR2/NF-kB signaling cascades, TLR4-mediated extracellular signal–regulated kinase activation, and the expression
levels of advanced glycation end products (AGEs) as well as their receptor, RAGE. DPP-4i can also cause macrophage activation and che-
motaxis. Despite the identification of many signaling pathways in cell and preclinical models, in MACE trials neutral outcomes are
observed. Adding to the complexity of signaling, sDPP-4 may originate from various sources, such as endothelial cells, bone marrow cells,
or hepatocytes, depending on the metabolic states, and activate the complementary pathways. Additionally, sustained treatment of DPP-
4i also increases sDPP-4 shedding from bone marrow-derived Tie21 hematopoietic cells; conversely, metformin decreases sDPP-4 lev-
els. The green arrows represent the effects of DPP-4i, whereas the red arrows represent the effects of sDPP-4 on the cardiovascular sys-
tem. Generated with BioRender (biorender.com; publication license FF233Q5E1I).
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(66). Similarly, another meta-analysis indicated that met-
formin-DPP-4i combination therapy markedly reduced
nonfatal cardiovascular events and CVD mortality com-
pared with metformin plus sulfonylurea (67). The Study
on the Prognosis and Effect of Antidiabetic Drugs on
Type 2 Diabetes Mellitus with Coronary Artery Disease
(SPREAD-DIMCAD) indicated that metformin substan-
tially reduced MACE compared with glipizide, despite sim-
ilar HbA1c levels (68), suggesting that metformin’s effects
are independent of its glucose-lowering activity. Metfor-
min may potentiate DPP-4i cardioprotection by regulating
the incretin pathway. Metformin stimulates intestinal
GLP-1 production and promotes GLP-1R as well as GIP
receptor expression in islet b-cells via peroxisome prolif-
erator-activated receptor-a, which may increase incretin
sensitivity (69). It also lowers circulating sDPP-4 levels
(58). Collectively, these mechanisms may enhance the car-
diovascular benefits when combined with DPP-4is. How-
ever, at this time we cannot discount the contribution of
DPP-4-independent mechanisms.

GLP-1Ras Versus DPP-4is
It remains unclear why DPP-4is, despite stabilizing endog-
enous GLP-1 levels, have not yielded the positive cardio-
vascular outcomes seen with GLP-1Ras. The amplified
cardiovascular risk in metabolic disease involves a com-
plex interplay between inflammatory, lipid-regulatory,
and metabolic factors (70). GLP-1Ras produce clear
improvements in glycemia, lipid levels, and metabolism in
obesity, whereas DPP-4is impart only modest or limited
improvements (12). Moreover, while GLP-1 is the primary
DPP-4–regulated substrate responsible for the glucose-
lowering actions of DPP-4is, DPP-4 substrates influence
multiple facets of the cardiovascular system (47). This
adds a unique layer of complexity in extrapolating how
DPP-4is and GLP-1Ras differentially influence cardiac
function in human studies, especially since both native
and DPP-4–cleaved peptides can affect the cardiovascular
system. For example, the DPP-4–cleaved GLP-1 peptide
GLP-1(9-36), which was originally thought to be inactive,
may have direct vascular effects that improve cardiac
function (22, 71). However, in swine, GLP-1(9-36) had no
impact on cardiac function relative to GLP-1(7-36) (72),
and both the Harmony Outcomes and REWIND trials
were associated with improvements in cardiovascular out-
comes despite albiglutide and dulaglutide being highly
DPP-4 resistant. These points argue against GLP1(9-36)
being critically involved in GLP-1–mediated cardioprotec-
tion. Additionally, reduced sensitivity of endogenous sig-
naling pathways to several DPP-4 substrates, including
GLP-1, has been described (73, 74). While we have pro-
vided the currently known key details from preclinical
studies that indicate potential mechanisms explaining
GLP-1Ra-induced cardioprotection in T2DM and account-
ing for discrepancies between preclinical and clinical stud-
ies involving DPP-4is, the field is ripe for growth. Studies

in aged and diseased mice did not demonstrate cardiovas-
cular efficacy for DPP-4is. Therefore, it is imperative to
use preclinical models that reproduce the multifaceted
features of diabetes-related CVD (e.g., structural issues,
fibrosis, inflammation, and dyslipidemia) more accurately.
Metabolic benefit (HbA1c and obesity) with semaglutide
has been determined to closely associate with circulating
concentrations of the drug (75). Therefore, despite com-
plex signaling mechanisms, plasma exposure of GLP-1Ra
may predict efficacy to prevent MACE and explain the dis-
crepancy between DPP-4i and the range of benefits
observed in GLP-1Ra trials.

The Evolving Field of Cardiovascular Endocrinology
The completion of numerous T2DM CVOTs, including
those investigating DPP-4is and GLP-1Ras, has sparked
excitement in the rapidly evolving field of cardiovascular
endocrinology. Nonetheless, many questions remain
unanswered. For instance, the CVOTs completed to date
do not indicate whether one agent is more efficacious
than another regarding cardiovascular outcomes. Recent
guidelines developed by the American Diabetes Associa-
tion, Diabetes Canada, and the European Association for
the Study of Diabetes indicate that individuals with
T2DM at high cardiovascular risk should be preferentially
prescribed liraglutide and other therapies with demon-
strated cardiovascular benefits (2,76). Additionally, age-
ing, quality of life (i.e., prevention of hypoglycemia), and
adherence must be considered.

Current evidence strongly supports that GLP-1R activa-
tion is cardioprotective, whereas DPP-4is are not despite
increasing physiological GLP-1 action; thus, these two
incretin-based therapies cannot be considered equivalent
despite a shared glucose-lowering mechanism of action. It
will be imperative for the field to continue defining the
mechanisms responsible for GLP-1R–induced cardiopro-
tection in people with T2DM and to better understand
the cardiac biology of other DPP-4 substrates. A limita-
tion with many of the mechanisms described here is that
most were identified in small rodents, where it is easy to
genetically manipulate the mechanistic target to confirm
its involvement. However, these cardioprotective effects
are often more robust in small rodents, such as that
observed for GLP-1Ra-mediated BP reductions, which are
often milder in humans and dissociated from the actual
impact on cardiovascular outcomes (e.g., EXSCEL). Hence,
future studies will need to determine whether such mech-
anisms translate to larger animal models, as this may also
pave the way for the development of new therapies that
specifically target T2DM-related CVD.

Another important aspect to consider is that increased
survival of acute cardiac events has led to an increased
prevalence of HF. Cardiac function end points for HF are
not actively included in MACE outcomes in most CVOTs,
and HFpEF and HFrEF subjects are often conglomerated,
given their shared therapeutic regimen. This is highly
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relevant, given that �40% of patients with HF have
HFpEF, and patients with T2DM are overrepresented in
this cohort (3). This may explain some of the inconsisten-
cies in studies investigating the effects of GLP-1Ras in HF.
Therefore, careful studies evaluating glucose-lowering ther-
apies used in early-stage T2DM to determine their impact
on diastolic dysfunction, which goes unrecognized until
more overt cardiac dysfunction develops, are required.
Additionally, as therapies like sodium–glucose cotrans-
porter 2 inhibitors have established merit for treating
HFpEF in the presence or absence of diabetes (76), more
integration and collaboration between endocrinologists
and cardiologists is required to address these questions
and progress toward a more personalized CVD manage-
ment approach for patients with T2DM.
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