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Abstract
The current classification of diabetes, based on hyperglycaemia, islet-directed antibodies and some insufficiently defined
clinical features, does not reflect differences in aetiological mechanisms and in the clinical course of people with
diabetes. This review discusses evidence from recent studies addressing the complexity of diabetes by proposing novel
subgroups (subtypes) of diabetes. The most widely replicated and validated approach identified, in addition to severe
autoimmune diabetes, four subgroups designated severe insulin-deficient diabetes, severe insulin-resistant diabetes, mild
obesity-related diabetes and mild age-related diabetes subgroups. These subgroups display distinct patterns of clinical
features, disease progression and onset of comorbidities and complications, with severe insulin-resistant diabetes show-
ing the highest risk for cardiovascular, kidney and fatty liver diseases. While it has been suggested that people in these
subgroups would benefit from stratified treatments, RCTs are required to assess the clinical utility of any reclassification
effort. Several methodological and practical issues also need further study: the statistical approach used to define
subgroups and derive recommendations for diabetes care; the stability of subgroups over time; the optimal dataset
(e.g. phenotypic vs genotypic) for reclassification; the transethnic generalisability of findings; and the applicability in
clinical routine care. Despite these open questions, the concept of a new classification of diabetes has already allowed
researchers to gain more insight into the colourful picture of diabetes and has stimulated progress in this field so that
precision diabetology may become reality in the future.
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Abbreviations
ADOPT A Diabetes Outcome Progressive Trial
AHEAD Action for Health in Diabetes
ANDIS All New Diabetics in Scania
ANGPTL8 Angiopoietin-like protein 8
CAN Cardiovascular autonomic neuropathy
CASP-8 Caspase-8
CKD Chronic kidney disease
DSPN Distal sensorimotor polyneuropathy
EN-RAGE S100 calcium-binding protein A12
GDS German Diabetes Study
GLP-1RA Glucagon-like peptide-1 receptor agonist
hsCRP High-sensitivity C-reactive protein
MARD Mild age-related diabetes
MOD Mild obesity-related diabetes
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NAFLD Non-alcoholic fatty liver disease
PRS Polygenic risk score
SAID Severe autoimmune diabetes
SGLT2i Sodium–glucose cotransporter 2 inhibitor
SIDD Severe insulin-deficient diabetes
SIRD Severe insulin-resistant diabetes
VNDS Verona Newly Diagnosed Type 2 Diabetes

Study

Rationale for diabetes reclassification

The observation that people with diabetes have different
phenotypes has led to repeated attempts to classify the main
diabetes types [1, 2]. Electronic supplementary material
(ESM) Table 1 summarises the key efforts in this evolution.
People with diabetes show a broad variation in the main
features of diabetes (i.e. insulin resistance and beta cell
dysfunction [3–6]) as a result of the combined effects of
(epi)genetic, environmental and lifestyle factors and their
different contributions in different individuals. A recently
proposed ‘palette model’ conceptualises the interaction of
these factors [3]. People at risk of diabetes may have impair-
ments in multiple processes such as islet development, islet
function, autoimmunity, inflammation, insulin sensitivity,
incretin activity and adipose tissue function (considered as
‘base colours’). Every individual is positioned somewhere
within the spectrum of the phenotypic variation of each trait
as determined by their genetic variation and non-genetic expo-
sures modifying these processes, and the sum (or mixture) of
all trait variations represents the overall estimate of metabolic
health and diabetes status [3]. However, this pathophysiologi-
cal heterogeneity is not captured by current position state-
ments and guidelines for diagnosis and treatment of diabetes
[7, 8].

Differences in risk factors and pathophysiological mecha-
nisms are thought to drive the heterogeneity in preclinical
abnormalities, prevalence of comorbidities and clinical
complications already seen at diagnosis of diabetes [5, 9].
People with diabetes further vary in the progression of their
disease and in the incidence of diabetes-related complications
despite comparable glycaemic control.

Any reclassification effort should be seen as an example of
precision medicine or ‘precision diabetology’ aiming to
deconstruct the heterogeneity of diabetes. Advances in the
management of monogenic forms of diabetes (neonatal diabe-
tes, MODY) represent a successful proof-of-concept for a
reclassification of diabetes [10]. Currently, however, relative-
ly few people with diabetes are affected by monogenic diabe-
tes so this may serve as an example for personalised medicine
based on mutations in single genes [11] rather than the

precision medicine approach that is required for type 1 and
type 2 diabetes, which are both polygenic and multifactorial
[12].

In the context of type 1 and type 2 diabetes, the ultimate
purpose of precision diabetology is the development of strat-
ified prevention and treatment for subgroups of people with
different risk profiles. These options range from refined
screening and monitoring intervals, recommendations for
tailored lifestyle interventions, to targeted but not
individualised drug treatment. Clinical benefits envisaged
include fewer adverse effects and ideally a delay of the onset
of diabetes and its complications, lower morbidity and mortal-
ity and an economic use of resources [13].

The aim of this review is to provide an up-to-date, concise
overview of studies on diabetes reclassification, their implica-
tions, and also inherent practical and methodological chal-
lenges, with a specific focus on recent definitions of
subgroups of type 2 diabetes and the risk of complications in
these subgroups. With respect to subgroups and endotypes of
type 1 diabetes, we would like to refer the reader to recent
excellent reviews covering aspects of precision diabetology
for this diabetes type [8, 14].

Variability of disease presentation
and progression

One approach to study the heterogeneity of diabetes relies on
cohorts of people included at or shortly after the diagnosis of
diabetes [5]. Even though the duration of hyperglycaemia
before diabetes diagnosis is unknown, these cohorts allow
the investigation of clinical characteristics that are not yet
confounded by long-term excessive hyperglycaemia and phar-
macological treatment. Examples are the German Diabetes
Study (GDS [5]), the Verona Newly Diagnosed Type 2
Diabetes Study (VNDS [15]) and the All New Diabetics in
Scania (ANDIS [6]) cohorts.

The comprehensive phenotyping in the GDS, using gold-
standard methodology, demonstrated large interindividual
differences in people within 12 months of their diagnosis of
diabetes regarding insulin sensitivity, beta cell function, islet-
directed autoantibodies, blood lipids and BP [5, 16]. The vari-
ability in disease severity or progression is reflected by differ-
ences between subgroups of type 2 diabetes regarding
diabetes-related complications such as chronic kidney disease
(CKD), distal sensorimotor polyneuropathy (DSPN), cardio-
vascular autonomic neuropathy (CAN), retinopathy and non-
alcoholic fatty liver disease (NAFLD) [5, 16, 17].

The VNDS enrols people with type 2 diabetes within
6 months of their diagnosis. Assessment of diabetes-related
complications indicated a high variability in their presentation
and progression [15, 18]; the prevalence of one or more
diabetes-related complications (CVD, nephropathy, DSPN,
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CAN, retinopathy) already present at study enrolment was
found to be 49.2% [9].

The ANDIS cohort includes incident cases of diabetes and
reported a marked prevalence of NAFLD at baseline
(although only based on surrogate measurement by alanine
aminotransferase) and the development of CKD, retinopathy
and CVD in the first years after the diagnosis of diabetes [6].

In addition, people with diabetes differ with respect to
inherited factors. The application of a polygenic risk score
(PRS) based on >136,000 variants in the UKBiobank demon-
strated a prevalence of type 2 diabetes of 1.2% and 11.2% in
the lowest and highest 2.5% of the PRS distribution, respec-
tively, revealing an almost tenfold difference [19].

Taken together, these studies highlight the substantial vari-
ability in the pathogenic and clinical characteristics of the
large population of people commonly designated as having
type 2 diabetes.

Novel subtypes of diabetes reflecting
differences in disease development
and progression

Reclassification methods From a methodological perspective,
different clustering algorithms have been used to reclassify
people with diabetes [20–25]. Topology-based analysis [21]
and Bayesian non-negative matrix factorisation clustering
[22] are widely applied procedures for discovering groups of
related observations (e.g. subgroups of people with diabetes)
using high-dimensional data such as electronic medical
records or omics data. Cluster analysis based on the k-means
or the partitioning around medoids methods [6, 23] break
large datasets up into subgroups by minimising the distance
between data points labelled to be in a cluster and a point
designated as the centre of that cluster. These methods require
that the optimal number of clusters (k) needs to be known a
priori (i.e. evaluated with other methods). In contrast, latent-
class trajectory analysis is a longitudinal analysis method
using repeated measures of dependent variables as a function
of time to identify subgroups of people who differ in trajecto-
ries (e.g. in glucose response curves) [24, 25].

In addition to these methods, reclassification studies made
use of datasets that differed widely in the type and number of
variables. One clustering approach, using high-dimensional
electronic medical records and extensive genotype data, iden-
tified three subtypes of type 2 diabetes enriched in CVD,
nephropathy, retinopathy, neurological diseases and cancer
[21]. A second approach used data for 94 type 2 diabetes-
associated gene variants and 47 diabetes-related traits to
subgroup genetic loci according to mechanistic pathways
and to relate the clinical characteristics of people with type 2
diabetes to their genetic risk scores [22]. This study found two
clusters of genetic loci related to insulin deficiency and three

related to insulin resistance. Individuals with high genetic risk
scores in the respective clusters also differed in obesity, lipids,
hypertension, kidney function and CVD [22].

From a clinical perspective, clustering algorithms based on
available patient data would be highly attractive. One study
used latent-class trajectory analysis based on mixed-meal
tolerance tests in people with newly diagnosed type 2 diabetes
[25] and identified three subgroups based on their glucose
response patterns. Thus, this method represents another clas-
sification approach closely related to insulin resistance and
insulin secretion as the pathophysiological hallmarks of type
2 diabetes.

Diabetes subgroups The most frequently replicated study in
this field used both hierarchical and k-means clustering in
Swedish people with newly diagnosed diabetes, with the
following six variables as input: GAD antibodies; age at diag-
nosis; BMI at diagnosis; HbA1c; and HOMA-2 estimates of
insulin resistance and beta cell function calculated from
fasting glucose and C-peptide [6]. The resulting subgroups
(subtypes) were designated as severe autoimmune diabetes
(SAID), severe insulin-deficient diabetes (SIDD), severe
insulin-resistant diabetes (SIRD), mild obesity-related diabe-
tes (MOD) and mild age-related diabetes (MARD) [6]
(Table 1). This concept has been replicated in cohorts from
Europe, NorthAmerica and Asia despite varying disease dura-
tion since diabetes diagnosis [26–32]. The SAID subgroup
comprises people who are otherwise classified as having type
1 diabetes (including those previously termed latent autoim-
mune diabetes of adults), whereas SIDD, SIRD, MOD and
MARD represent novel entities of type 2 diabetes. The
subgroups also differ with respect to prevalence and/or risk
of complications (Table 1). In line with the predominant insu-
lin deficiency, ketoacidosis at diagnosis is most frequent in
SAID and SIDD [6]. Retinopathy, DSPN and CAN are
observed most often in SIDD [6, 26], while CKD and
NAFLD are most prevalent in SIRD [6, 26, 29]. Adjusted risk
ratios for prevalent erectile dysfunction are highest for SIDD
and SIRD [33]. Although the subgroups differ in their cardio-
vascular risk, these differences did not remain statistically
significant after adjustment for age and sex in the ANDIS
cohort [6] or after more comprehensive adjustment for multi-
ple covariables in a Japanese cohort [29].

Subgroup variables The clinical relevance of the novel
subgroups has been assessed in multiple cohorts including
ethnically diverse populations that lack some of the aforemen-
tioned clustering variables (most often C-peptide measure-
ments). Partial replication of the subgroup classification and
differential risk of complications was reported in cohorts from
Europe [34, 35], the USA [36, 37], Mexico [38], Latin
America and the Caribbean [39], India [40] and China [41]
and in large international trial populations (DEVOTE/
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LEADER/SUSTAIN-6 [42]) (Table 2). At present it is not
known whether C-peptide or insulin are required to identify
SIRD, so it would be informative to compare different combi-
nations of clustering variables (e.g. with and without C-
peptide or insulin) in the same cohorts, to better understand
their relevance for reclassification.

Only a few studies have explored biomarkers and pathways
underlying differences between subgroups that could deter-
mine susceptibility to diabetes-related complications. Given
the role of lipid metabolism in diabetes, it is noteworthy that
serum triacylglycerol levels were found to be highest and
HDL-cholesterol levels lowest in SIRD, while there were no
differences in total or LDL-cholesterol [26, 29, 43].
Circulat ing levels of angiopoiet in-l ike protein 8
(ANGPTL8), a regulator of lipid metabolism, were higher in
SIDD, SIRD and MARD than in MOD [44]. However, these
differences were not adjusted for the clustering variables.

Subgroup differences in inflammation Circulating levels of
high-sensitivity C-reactive protein (hsCRP) were highest in

SIRD and MOD [29]. The association of circulating triacyl-
glycerols and inflammatory processes with insulin resistance
is in line with the uniform mechanism underlying common
insulin resistance in humans [45]. A multimarker approach
in the GDS found that 23 biomarkers of inflammation differed
between the subgroups, with biomarker levels in general being
highest in SIRD and lowest in SIDD [46]. After adjustment
for the clustering variables, serum caspase-8 (CASP-8), S100
calcium-binding protein A12 (EN-RAGE) and IL-6 showed at
least one pairwise difference between the subgroups. The
association between inflammation and insulin resistance
reflects the contribution of inflammation-related processes to
SIRD, whereas inflammatory processes appear less relevant in
SIDD [46]. A second study in this cohort showed that the
SIRD subgroup also had high leucocyte numbers and the
highest CD4+ T cell percentages, thereby demonstrating
different immune cell frequencies between subgroups and
highlighting the proinflammatory characteristics of SIRD
[47]. Of note, studies on autoimmune diabetes identified both
genetic and epigenetic determinants of T cell function, with

Table 1 Metabolic characteristics
and diabetes-related complica-
tions of individuals in the novel
diabetes subgroups

Diabetes
subgroup

Metabolic
characteristics

Diabetes-related complications

SAID Early-onset diabetes

Low BMI

High HbA1c

Insulin deficiency

Presence of GADA

Ketoacidosis at diagnosis [6]

High risk of retinopathy [29]

High incidence of CKD but dependent on baseline eGFR [28]

SIDD Early-onset diabetes

Low BMI

High HbA1c

Insulin deficiency

GADA negative

Ketoacidosis at diagnosis [6]

High risk of retinopathy [6]

Highest prevalence of DSPN [26]

Highest prevalence of CAN [26]

High prevalence of erectile dysfunction [33]

SIRD Late-onset diabetes

High BMI

Most
insulin-resistant

GADA negative

Highest liver fat content, fatty liver index, NAFLD fibrosis score and
prevalence of NAFLD [6, 26, 29]

Highest risk for macroalbuminuria, CKD and end-stage renal disease
[6, 26, 29]

High risk of coronary event and stroke (dependent on age and sex) [6]

High prevalence of erectile dysfunction [33]

MOD Early-onset diabetes

High BMI

Intermediate insulin
resistance

GADA negative

Intermediate prevalence and risk of diabetes-related complications [6,
26]

MARD Late-onset diabetes

Low BMI

GADA negative

High risk of coronary events and stroke (dependent on age and sex) [6]

Metabolic characteristics are based on European cohorts with newly diagnosed diabetes using GAD antibodies,
age at diagnosis, BMI at diagnosis, HbA1c and HOMA-2 estimates of insulin resistance and beta cell function
calculated from fasting glucose and fasting C-peptide concentrations as clustering variables [6, 26]

GADA, GAD antibodies
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Table 2 Overview of clustering studies using alternative demographic and clinical variables to identify subgroups of diabetes

Cohort characteristic Clustering variables Subgroups Specific findings Ref.

VNDS, Italy
(739 with T2D)

Age, BMI, HOMA-2 estimates of
beta cell function and insulin
resistance

SIDD
MARD
OIRD
EOD

Replication of SIDD and MARD
OIRD comprising MOD and SIRD
MARD associated with CVD
Highest HbA1c after 14-month

follow-up in SIDD

[34]

Three cohort studies from
Europe: Hoorn DCS;
GoDARTS; ANDIS
(15,940 people with T2D,
within 2 years of
diagnosis)

Age, BMI, HbA1c, random or fasting
C-peptide, HDL-cholesterol

Five distinct T2D subgroups Three subgroups could be mapped
back to the original ANDIS
clusters (SIDD, SIRD, MOD)

Two subgroups (MD and MDH
related to MARD)

Progression to insulin fastest for
SIDD and slowest for MDH

[35]

MASALA and MESA
multi-ethnic cohorts
from USA
(1293 people with
diabetes; mean
diabetes duration
5.7 years)

Age at diagnosis, BMI
HbA1c, HOMA estimates of beta cell

function and insulin resistance

Five T2D subgroups: older age,
severe hyperglycaemia, severe
obesity, younger age at onset;
requiring insulin medication use

Older age most common subgroup
for all race/ethnicities apart from
South Asians

Severe hyperglycaemia subgroup
most frequent in South Asians

Risk for renal complications and
subclinical CVD differed by
subgroup and by race/ethnicity

[36]

Look AHEAD
(5145 overweight/obese
people with T2D and
10 years of lifestyle
intervention or control
group)

Age at diagnosis, BMI, WC, HbA1c Four subgroups: by older age at
diabetes onset; poor glucose
control; severe obesity; younger
age at diabetes onset

Interaction between lifestyle
intervention and diabetes
subgroups for three composite
cardiovascular outcomes

Increased cardiovascular risk for
people in subgroup with poor
glucose control randomised to
lifestyle intervention

[37]

NHANES (USA) and
four Mexican cohorts
(1758 people with T2D in
NHANES; 9887
people with T2D in the
open-population
Mexican cohorts)

Models based on different
combinations of years since
diagnosis, BMI, HbA1c,
HOMA-2 estimates of beta cell
function and insulin resistance,
fasting plasma glucose,
METS-IR, METS-VF, age at
diabetes onset

Four subgroups: obesity-related;
insulin-deficient; insulin-resistant;
age-related

Risk of retinopathy highest for
insulin-deficient subgroup and
lowest for obesity-related
subgroup

Subgroup transitions observed after
3 months, 1 year and 2 years

[38]

Thirteen cohort studies
from nine countries in
Latin America and the
Caribbean
(8361 people with T2D)

Age, sex, BMI, WC,
systolic/diastolic BP, T2D family
history

Four clusters: Cluster 0, highest BP;
Cluster 1, highest BMI and WC,
highest proportion of positive
family history of diabetes; Cluster
2, most beneficial risk profile;
Cluster 3, highest age

Heterogeneous distribution of
clusters across countries

[39]

Electronic medical
records of a tertiary
diabetes centre, India
(19,804 people with T2D;
diabetes duration
<5 years)

Age at diagnosis, BMI, WC, HbA1c,
triacylglycerols,
HDL-cholesterol, C-peptide
(fasting and stimulated)

Four clusters: Cluster 1, SIDD;
Cluster 2, IROD; Cluster 3,
CIRDD; Cluster 4, MARD

SIDD and MARD similar to
diabetes subgroups in other
populations

IROD and CIRDD unique to Asian
Indian population

IROD showed highest BMI and
highest C-peptide levels

CIRRD showed lowest age of onset,
highest serum triacylglycerols,
highest risk for kidney disease

[40]

Retrospective
clinic-based study
sample, PR China
(5414 people with T2D;
mean diabetes duration
8.6 years)

Age at diagnosis, BMI, HbA1c,
HOMA-2 estimates of beta cell
function and insulin resistance,
GADA; additional model with
triacylglycerols and uric acid

Replication of SAID, SIRD and
MARD when using the original
six clustering variables

Replication of SAID, SIDD, SIRD,
MOD and MARD and
identification of novel subgroups
(UARD, IRD) when all clustering
variables were used

Higher risk for retinopathy,
peripheral neuropathy,
hypertension and CKD for SIRD
(vs IRD)

Higher risk for retinopathy and
diabetic foot for SIDD (vs IRD)

[41]
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effects on gene expression [48, 49]. (Epi)genetic variation and
its impact on transcriptomes in immune cells will require more
detailed analyses with respect to relevance in disease aetiolo-
gy in the other subgroups.

Genetic predisposition There is evidence that the subgroups
may differ in their associations with gene variants predispos-
ing to diabetes. The HLA SNP rs2854275 showed the same
association with SAID as with type 1 diabetes in previous
studies, but not with SIDD, pointing towards different aetiol-
ogies of insulin deficiency in the subgroups [6]. Both the
TCF7L2 SNP rs7903146, which is known for its association
with type 2 diabetes, and a genetic score for type 2 diabetes
were associated with SIDD, MOD and MARD but not with
SIRD [6]. A genetic risk score for insulin secretion was asso-
ciated with MOD and MARD (and nominally with SIDD) but
again not with SIRD [6]. This suggests a more pronounced
role for genetic predisposition to SIDD, MOD and MARD
and a stronger role for environmental determinants in SIRD.
Of note, individuals with SIRD were more frequently carriers
of the G allele of rs738409 in PNPLA3, the gene encoding
patatin-like phospholipase domain-containing-3, which is
characterised by its positive association with hepatic fat
content [43] and may contribute to the relationship between
SIRD and progression of NAFLD to fibrosis [6, 26, 29]. Thus,
genetic analyses corroborate the difference between SAID and
the other subgroups but suggest unique mechanisms that
might distinguish SIRD from SIDD, MOD and MARD.

At present, the only study integrating genetic,
metabolomic, lipidomic and proteomic data to compare diabe-
tes subtypes was based on different clustering variables (age,
BMI, HbA1c, HDL-cholesterol, and random or fasting C-
peptide). SIRD showed the most distinct molecular signature,
mostly related to insulin resistance, lipids and inflammation
[50].

Subgroups of individuals with different risk
of progression to type 2 diabetes
and complications

Trajectory analyses show that changes in metabolic and
inflammation-related biomarkers start >10 years before the
onset of type 2 diabetes [51–53]. Therefore, it is also of high
clinical relevance to identify subgroups of individuals at
different risk for diabetes and for complications, which may
start even before the manifestation of diabetes. Latent-class
trajectory analysis using OGTTs in people without diabetes
revealed four subgroups that differed in anthropometric, meta-
bolic and inflammation-related variables [24], but this study
did not analyse diabetes-related complications.

A recent study in a cohort of individuals at elevated risk of
type 2 diabetes explored the pathophysiological heterogeneity
before clinical diabetes onset [23]. Participants from the
Tübingen Family Study (TUEF) and Tübingen Lifestyle
Intervention Program (TULIP) underwent clustering based on
OGTT, MRI (body fat distribution, liver fat), serum lipids and
a PRS for type 2 diabetes. This study found six subphenotypes
differing in diabetes-related variables: 1, low risk; 2, very low
risk; 3, beta cell failure; 4, low-risk obese; 5, high-risk insulin-
resistant fatty liver; 6, high-risk visceral fat nephropathy [23].
Results were replicated in theWhitehall II cohort using a reduced
set of clustering variables. Overall, clusters 3, 5 and 6 showed
higher glucose levels at baseline but only clusters 3 and 5 had an
increased incidence of type 2 diabetes. Clusters 3, 5 and 6
featured the highest CKD risk and higher intima–media thick-
ness, and clusters 5 and 6 had the highest all-cause mortality.
Data from Whitehall II indicated that individuals from the low-
risk clusters 1, 2 and 4 transitioned to MOD and MARD with
diabetes onset, whereas individuals from the high-risk cluster 6
transitioned to SIRD [23]. Thus, clustering approaches can also
identify subphenotypes with respect to glycaemic, renal,

Table 2 (continued)

Cohort characteristic Clustering variables Subgroups Specific findings Ref.

Three global
cardiovascular
outcomes trials:
DEVOTE, LEADER,
SUSTAIN-6
(20,274 people with T2D;
follow-up of
2.0–3.8 years)

Age at diagnosis, BMI, HbA1c Identification of four subgroups:
clusters A–D

Differences between clusters for
major adverse cardiovascular
events, cardiovascular death,
nephropathy and severe
hypoglycaemia when comparing
subgroups in at least one cohort

[42]

CIRDD, combined insulin-resistant and deficient diabetes; DCS, Diabetes Care System; DEVOTE, Trial Comparing Cardiovascular Safety of Insulin
Degludec vs Insulin Glargine in Patients With Type 2 Diabetes at High Risk of Cardiovascular Events; EOD, early-onset diabetes; GADA, GAD
antibodies; GoDARTS, Genetics of Diabetes Audit and Research; IRD, inheritance-related diabetes; IROD, insulin-resistant obese diabetes; LEADER,
Liraglutide Effect and Action in Diabetes: Evaluation of Cardiovascular Outcome Results; MASALA, Mediators of Atherosclerosis in South Asians
Living in America; MD, mild diabetes; MDH, mild diabetes with high cholesterol; MESA,Multi-Ethnic Study of Atherosclerosis; METS-IR,Metabolic
score for insulin resistance; METS-VF, metabolic score for visceral fat; NHANES, National Health and Nutrition Examination Survey; OIRD, obese
insulin-resistant diabetes; SUSTAIN-6, Trial to Evaluate Cardiovascular and Other Long-term Outcomes With Semaglutide in Subjects With Type 2
Diabetes; T2D, type 2 diabetes; UARD, uric acid-related diabetes; WC, waist circumference
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cardiovascular and all-cause mortality risk, corresponding to
previous findings for overt diabetes [6, 26].

Translation into clinical practice: therapeutic
implications

RCTs are required to evaluate the clinical relevance of reclassi-
fication efforts. Until data from subgroup-specific RCTs are
available, it is only possible to investigate in cohort studies [6,
29] or intervention trials, such as A Diabetes Outcome
Progressive Trial (ADOPT) [28], whether individuals allocated
to subgroups differ in their treatment at study baseline or their
treatment responses, respectively (Table 3). Importantly, the high
frequency of individuals without initial glucose-lowering treat-
ment, the low frequency of insulin use and the shortest time to
reach theHbA1c target were similar for SIRD,MODandMARD
and correspond to their less pronounced insulin deficiency
compared with SAID and SIDD (Table 3). Glycaemic deteriora-
tion may thus suggest a milder progression of disease for SIRD,
MOD and MARD. However, the higher risk for several compli-
cations in SIRD clearly indicates the need for treatment intensi-
fication addressing CKD, CVD and NAFLD (e.g. by sodium–
glucose cotransporter 2 inhibitors [SGLT2is] and glucagon-like
peptide-1 receptor agonists [GLP-1RAs]), as well as targeting

insulin resistance (e.g. by future insulin sensitisers) (Fig. 1).
Given the proinflammatory profile and the high risk of compli-
cations in SIRD, novel therapies targeting inflammatory path-
ways, as developed for people at high cardiovascular risk [54,
55], could also be considered in the future. Initially, lifestyle
modification and metformin are sufficient for treating MOD
and MARD. Nevertheless, MOD may specifically benefit from
weight loss intervention by hypo-energetic diets and drugs,
whereas MARD may be better treated by nutrition avoiding
further ageing-related sarcopenia (Fig. 1).

Currently, it is not clear whether our knowledge on mech-
anisms (and adverse effects) of these drugs will translate into
subgroup-specific treatment benefits [56]. However, the large
number of ongoing RCTs using novel therapeutic agents
targeting insulin secretion, insulin resistance, liver metabolism
and other mechanisms that differ between the subgroups holds
promise for precision healthcare [57].

So far, only the LookAHEAD (Action for Health inDiabetes)
study analysed the differential response to lifestyle intervention
[37]. Individuals with type 2 diabetes were allocated to four
subgroups, which are not directly comparablewith the previously
described subgroups [6, 26] due to differences in clustering vari-
ables. Randomisation to intensive lifestyle intervention was asso-
ciated with increased cardiovascular risk in the subgroup
characterised by the poorest glucose control and most frequent

Table 3 Novel diabetes subgroups: glucose-lowering therapy in cohort studies and response to therapy in ADOPT

Diabetes
subgroup

Therapy in cohort studies Response to therapy in ADOPT Comment

SAID Most frequent use of insulin and lowest use of
metformin at baseline [6, 29]

Shortest time to sustained insulin use [6]

Not analysed in the context of novel diabetes
subgroups

Findings are in line with the established
treatment for type 1 diabetes and
LADA

SIDD Most frequent use of metformin at baseline
[8, 29]

Frequent use of insulin at baseline and short time
to sustained insulin use, although less
pronounced than for SAID [6]

Shortest time to treatment with oral medication
other than metformin and longest time to reach
HbA1c treatment goal [6]

Initial treatment response best with
sulfonylureas but highest HbA1c increase
thereafter with sulfonylureas

Data are in line with the low beta cell
reserves in this subgroup

SIRD Most frequently treated with metformin or
without glucose-lowering therapy [6]

Evidence for higher insulin use later after
diabetes diagnosis [29]

HbA1c benefit with thiazolidinedione therapy Findings are plausible given the
pronounced insulin resistance and high
prevalence of NAFLD in SIRD

MOD Most frequently treated with metformin or
without glucose-lowering therapy [6]

Lowest baseline use of insulin [29]

Initial treatment response best with
sulfonylureas but highest HbA1c increase
thereafter with sulfonylureas

Data indicate a mild form and mild
progression of diabetes

MARD Most frequently treated with metformin or
without glucose-lowering therapy [6]

Low cumulative incidence of treatment with oral
medication other than metformin or of
sustained insulin use [6]

HbA1c benefit with sulfonylurea therapy,
limited to about 2 years, vs metformin and
thiazolidinedione treatment

Data indicate a mild form and mild
progression of diabetes

Data for response to therapy in ADOPT are from a secondary analysis of the trial [28], which randomised newly diagnosed, drug-naive individuals with
type 2 diabetes to metformin, sulfonylurea (glibenclamide) or thiazolidinedione (rosiglitazone) monotherapy

LADA, latent autoimmune diabetes of adults
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use of insulin [37]. Thus, subgroups may differ in their response
to non-pharmacological treatment, emphasising the differential
need for pharmacological treatment intensification to prevent
diabetes-related complications.

Methodological aspects and open questions

The text box above gives an overview of key gaps in our
current knowledge, resulting open questions, and future

• The proposed novel diabetes subgroups [6] are partly based on fasting C-peptide, which is not always 

available, so the selection of clustering variables should be optimised to ensure simple and reproducible 

clinical measures

• The original cluster algorithm assessed autoimmunity only by measuring GADA [6]; adding other islet-

directed antibodies will expand the subgroup with autoimmune diabetes [26] 

• Some people with diabetes migrate between diabetes subgroups over time [26, 38]. More studies in-

vestigating this phenomenon and linking it to disease progression are warranted to assess the stability 

of subgroup allocation and its impact on the utility of this concept 

• Different strategies have been proposed to reclassify diabetes [58, 59]. Future studies should compare 

the clinical utility of distinct diabetes subgroups and probabilistic models using continuous risk factors 

for the prediction of complications and treatment response. Irrespective of the underlying statistical 

method, the practicability in clinical care of different treatment decisions depending on reclassification 

needs to be proven

• Both phenotypic and genotypic data could be used to reclassify diabetes [6, 22]. Given the wide age 

range of diabetes onset across the lifespan both approaches may be complementary but with different 

relative contributions to risk prediction depending on age 

• Biomarker studies (e.g. on biomarkers of inflammation) point towards pathomechanisms that differ be-

tween diabetes subgroups [43, 46, 47]. An extension of phenotyping including not only multiple omics 

data (e.g. genomics, metabolomics, proteomics, transcriptomics) but also deep molecular and physio-

logical phenotyping using wearable devices may help to provide further insight and to refine the subtyp-

ing of diabetes [10, 60-62]

• Individual responses to diet and exercise vary between individuals [63, 64]. It is not known to what 

extent this individuality is also related to different pathomechanisms that characterise the novel diabetes 

subgroups

• The five diabetes subgroups were developed using data from European cohorts [6] but diabetes phe-

notypes and drug responses can differ between ethnic groups [59, 65, 66]. Replication studies in non-

White people with diabetes identified additional subgroups but were often based on different sets of 

clustering variables and/or diabetes durations [27, 29, 30, 36, 38-41]. Overall, the applicability of the 

subgroup concept in the general population and in different ethnic groups requires further study 

• Studies have focused so far on associations between diabetes subgroups and objective clinical 

measures but also need to take into account patient-centred mental health and quality-of-life outcomes 

[13]

• Given the novel findings on subgroups with different risk trajectories among people with and without 

diabetes [6, 23], future investigations should assess whether individuals in these subgroups require not 

only different intensities in drug treatment or lifestyle intervention programmes but also different intervals 

in screening and monitoring for complications

• If it becomes a requirement for the approval of new drugs to demonstrate whether they are equally 

effective in different subgroups or just recommended for specific subgroups, smaller market shares for 

precision medicines may entail challenges for future drug development [67]

Gaps in the current knowledge, open questions and future 

research directions

Diabetologia



directions in this field; some of the methodological aspects
are also briefly discussed here. Any effort made concern-
ing reclassification into subgroups has a strong conceptual
appeal because it is easy to communicate and implement
once RCTs have shown subgroup-specific differences to
non-pharmacological and pharmacological interventions.
However, this approach assumes a certain degree of homo-
geneity within, and clear differences between, subgroups,
whereas in reality the characteristics of individuals from
different clusters partially overlap [3]. The subgroup
approach is also limited by the fact that subgroup assign-
ment requires the availability of all clustering variables.
Finally, the utility of subgroups depends on their stability.
An analysis in the GDS demonstrated that 23% of the study
participants migrated into a different subgroup within the
first 5 years after the diagnosis of diabetes [26].

An alternative strategy in precision diabetology may be
based on statistical models using continuous risk factors [28,
58, 68]. In a secondary analysis of RCTs [28], age at diabetes
diagnosis and renal function at baseline were better predictors
of disease progression than the subgroup assignment according
to Ahlqvist et al [6]. Thus, specific phenotypic measures to
predict glycaemic progression, onset of complications and treat-
ment response could be used to optimise diabetes care in an
individualised approach. The risk assessment could be updated
regularly to take into account disease progression, with corre-
sponding treatment changes. However, these models would
only be useful for optimising one specific outcome such as
glycaemic progression or the development of a predefined
complication unless they were a priori designed to predict a
composite endpoint comprising different outcomes based on
the patients’ preferences. Currently, such an approach remains

Type 2          Type 1

Subclassification Precision prognostics Precision prevention

SAID

SIDD

SIRD

MOD

MARD

Precision treatment

Metformin +

SGLT2i? GLP1-RA?

PPARa?

Dual agonists?

Anti-inflammatory

drugs?

(Early) Insulin

DPP4i?

(Sulfonylureas?)

Endurance 

exercise?

Low energy/

saturated fat diet?

Resistance 

exercise?

High-protein diet?

Fig. 1 Possible future implications of precision diabetology based on the
novel diabetes subgroups. Although the utility of the concept needs to be
evaluated in RCTs, one may speculate on the potential implications of a
new (sub)classification of diabetes for tailored diagnosis, prevention and
treatment. Individuals in the different diabetes subgroups differ in their
susceptibility to developing specific complications. The different (patho-
physiological) phenotypes may also differ in their response to lifestyle-
related and pharmacological strategies. SAID requires early introduction
of insulin supplementation, whereas SIDDmay also benefit from a dipep-
tidyl peptidase 4 inhibitor (DPP4i) or, when cost is a major issue, a

sulfonylurea. SIRD and MOD would benefit from medication that
induces weight loss (SGLT2i, GLP-1RA, dual agonist) or also addresses
risk of CVD or nephropathy (SGLT2i, GLP-1RA). Providing that safety
and efficacy have been established, new insulin sensitisers (e.g. peroxi-
some proliferator activator receptor agonists) or anti-inflammatory drugs
could also improve targeted treatment of SIRD. On the other hand, indi-
viduals with MARD should receive treatments avoiding weight loss and
sarcopenia (e.g. protein-balanced diets and moderate resistance training).
PPARa, peroxisome proliferator activator receptor agonist. This figure is
available as a downloadable slide
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challenging because it requires a huge amount of individual-
participant data to develop the underlying models.

One general criticism of the aforementioned reclassification
strategies refers to their use of phenotypic data that depend on
disease progression, lifestyle and medication and therefore
necessitate regular adaptation. In contrast, genotypic data are
stable over time and are more likely to be related to causal
mechanisms [22]. However, the proportion of diabetes risk that
can be explained by environmental risk factors is still greater
than the proportion that can be attributed to known genetic risk
variants. This means that people with large differences in genet-
ic risk scores show minor phenotypic differences that can be
overcome by modifying exogenous risk factors [69, 70].
Currently, it is unknown which of the two approaches or alter-
natively a combination of both phenotypic and genotypic
reclassification would provide the best benefit.

Irrespective of all methodological and practical issues, it is
important to emphasise the following points: (1) clinical decision
making is always binary at the end (i.e. resulting in the decision
to treat or not to treat and in the selection of certain non-
pharmacological or pharmacological interventions) and (2) any
approach to reclassify diabetes must result in diabetes prevention
and care superior to that received under the established classifi-
cation. The ongoing initiative of the ADA and the EASD on
precision medicine in diabetes will provide a detailed roadmap
for future studies and application of tailored diagnostics, preven-
tion and treatment on the road to precision diabetology [13].

Conclusions

The heterogeneity of diabetes, particularly type 2 diabetes, is
evident from differences in multiple pathophysiological and
clinical features. Recent studies provided novel insights into
interindividual differences by clustering people with diabetes
into five subgroups, which are reproducible and associated
with different trajectories in disease progression and onset of
diabetes-related complications including CKD, retinopathy,
CVD, NAFLD and neuropathies. Based on the current
evidence, it is possible to propose innovative stratified preven-
tion and treatment approaches at least for some of these
subgroups (Fig. 1). However, the ultimate test of the utility
of precision diabetology will require RCTs to demonstrate
whether the probability-based assignment to subgroups and
subsequent subgroup-specific prevention or treatment is
indeed superior to that proposed by the current guidelines.
Furthermore, future studies should address methodological
issues, in particular on the best precision diabetology
approaches, and also uncertainties regarding the transethnic
generalisability of the current findings.
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