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Abstract
Purpose of Review Diabetes mellitus is a complex, chronic illness characterized by elevated blood glucose levels that occurs 
when there is cellular resistance to insulin action, pancreatic β-cells do not produce sufficient insulin, or both. Diabetes 
prevalence has greatly increased in recent decades; consequently, it is considered one of the fastest-growing public health 
emergencies globally. Poor blood glucose control can result in long-term micro- and macrovascular complications such as 
nephropathy, retinopathy, neuropathy, and cardiovascular disease. Individuals with diabetes require continuous medical care, 
including pharmacological intervention as well as lifestyle and dietary changes.
Recent Findings The most common form of diabetes mellitus, type 2 diabetes (T2DM), represents approximately 90% of 
all cases worldwide. T2DM occurs more often in middle-aged and elderly adults, and its cause is multifactorial. However, 
its incidence has increased in children and young adults due to obesity, sedentary lifestyle, and inadequate nutrition. This 
high incidence is also accompanied by an estimated underdiagnosis prevalence of more than 50% worldwide. Implementing 
successful and cost-effective strategies for systematic screening of diabetes mellitus is imperative to ensure early detection, 
lowering patients' risk of developing life-threatening disease complications. Therefore, identifying new biomarkers and assay 
methods for diabetes mellitus to develop robust, non-invasive, painless, highly-sensitive, and precise screening techniques 
is essential.
Summary This review focuses on the recent development of new clinically validated and novel biomarkers as well as the 
methods for their determination that represent cost-effective alternatives for screening and early diagnosis of T2DM.
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Introduction

Diabetes mellitus is characterized by hyperglycemia result-
ing from defects in insulin production and secretion by 
pancreatic β-cells, development of insulin resistance in tis-
sues, or both. According to its pathophysiology, diabetes 
can be classified as type 1 diabetes (T1DM), type 2 diabetes 
(T2DM), hyperglycemia in pregnancy (including gestational 
diabetes), and diabetes that has a specific etiology (including 
genetic or secondary to drugs, pancreatic factors, or other 
illnesses) [1]. T2DM accounts for 90% of diabetes cases and 
could be prevented to a great extent by adopting a healthy 
lifestyle [2].

T2DM is considered a multifactorial, chronic, and com-
plex metabolic disease in which family medical history, age, 
lifestyle, diet, genetics, and environmental factors play a 
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role. T2DM usually develops gradually—the early stages of 
the disease may be asymptomatic and undetected for several 
years. Initial symptoms commonly include polydipsia, poly-
uria, polyphagia, and eventually, weight loss. This chronic 
disease triggers a series of complications with a high degree 
of morbidity and mortality, resulting in a significant num-
ber of medical consultations, hospitalizations, disabilities, 
and deaths. Examples of these multisystemic complications 
include microvascular events, such as retinopathy, nephropa-
thy, and neuropathy, and macrovascular events, including 
ischemic heart disease, stroke, and peripheral vascular dis-
ease [3]. A significant fraction of T2DM patients often pre-
sent advanced complications that can be difficult to manage 
and costly to treat. In this context, the high incidence of 
T2DM presents a heavy burden on worldwide public health 
systems. Screening strategies have a positive impact on the 
quality of life and reduction of health costs since they allow 
early diagnosis lowering the prevalence of underdiagno-
sis, thus reducing the generation of complications, which 
in the long run decreases the pressure on health systems 
[4, 5]. Therefore, developing strategies focused on preven-
tion, diagnosis, control, and treatment will be a priority in 
the next years. This review focuses on the recent develop-
ment of new biomarkers and methods that represent cost-
effective alternatives for screening and early diagnosis of 
T2DM, which could be widely implemented in apparently 
healthy people.

Standards of Medical Care in Diabetes

According to the “Standards of Medical Care in Diabetes” 
published by the American Diabetes Association (ADA) 
[6] and the World Health Organization (WHO) guidelines 
[5], diabetes may be diagnosed based on the concentration 
of plasma glucose—either fasting plasma glucose (FPG) or 
two-hour plasma glucose during a 75 g oral glucose toler-
ance test (OGTT)—or based on glycated hemoglobin A1c 
(HbA1c) concentration [5–7]. Prediabetes is an intermedi-
ate hyperglycemic state in which glycemic markers such as 
blood glucose and HbA1c are above the threshold consid-
ered healthy but below the diagnostic criteria for diabetes. 
This state constitutes a high risk for the development of dia-
betes and complications associated with the loss of glycemic 
control [8]. The diagnostic reference values for prediabetes 
and diabetes have not been universally standardized. How-
ever, the vast majority of clinical guidelines are based on the 
WHO [5] and ADA [6] criteria (Table 1).

Each of the currently used diagnostic T2DM diagnos-
tics possess advantages and disadvantages. Fasting plasma 
glucose has been the gold standard diagnostic criterion for 
T2DM and is still the most widely accepted due to its avail-
ability, low cost, and compatibility with automated clinical 

chemistry analyzers [9, 10]. Among the disadvantages of 
FPG are that it requires at least 8-h fasting, shows substantial 
biological and diurnal variability, reflects only a single point 
in time, and the samples involved present stability issues 
[10]. Despite this, FPG is still widely used individually and 
as part of blood chemistry panels [11].

The classification and diagnosis of diabetes historically 
relied solely on plasma glucose concentration and patient 
symptomatology until HbA1c emerged as a useful glycemic 
biomarker [9]. Because it is directly related to long-term 
average blood glucose levels, HbA1c level is strongly cor-
related with the development of complications due to hyper-
glycemia [9]. In 2009, an international expert committee 
recommended HbA1c as a precise measure of chronic gly-
cemic levels [9] which the WHO subsequently implemented 
[9, 12, 13]. Currently, HbA1c measurement is a crucial part 
of the international guidelines for the diagnosis of T2DM [9, 
12, 13]. HbA1c testing is more clinical-workflow convenient 
than FPG and OGTT, as it does not require fasting, sam-
ples may be obtained at any time, and is a better predictor 
of long-term complications. Another significant advantage 
is that blood samples used for HbA1c testing present high 
stability and low short-term variability—one sample reflects 
average blood glucose concentrations over three months [9, 
12, 14]. HbA1c may also be used as a monitoring test and 
guide for T2DM treatment. It is essential that the test is 
performed by a National Glycohemoglobin Standardization 
Program (NGSP) certified method and standardized to the 
Diabetes Control and Complications Trial (DCCT) assay to 
avoid misdiagnosis or missed diagnosis [14].

Despite its advantages over FPG and OGTT, HbA1c 
presents some inconveniences, such as lower clinical sen-
sitivity at the designated diagnostic threshold (Table 1). 
Moreover, age, race, ethnicity, and any clinical condition 
that alters the lifetime of erythrocytes or hemoglobin lev-
els can alter HbA1c independent of glucose concentra-
tion. Additionally, the limited availability and expense 
of HbA1c testing make it infeasible for routine use in 

Table 1  Prediabetes and T2DM diagnostic reference values

References: Global Report on Diabetes[5] and Classification and 
Diagnosis of Diabetes: Standards of Medical Care in Diabetes[6]
Abbreviations: FPG, fasting plasma glucose; HbA1c, glycated hemo-
globin A1c; OGTT, oral glucose tolerance test; ADA, American Dia-
betes Association; WHO, World Health Organization.

FPG HbA1c OGTT, 2 h

Prediabetes
ADA 100–125 mg/dL 5.7–6.4% 140–199 mg/dL
WHO 110–125 mg/dL Not recommended
Diabetes
ADA ≥ 126 mg/dL ≥ 6.5% ≥ 200 mg/dL
WHO
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some regions of the world [9, 14, 15, 16]. According to 
the US National Health and Nutrition Examination Sur-
vey (NHANES), HbA1c testing using the ≥ 6.5% diag-
nostic threshold only diagnoses 30% of the total T2DM 
cases identified through HbA1c, FPG, and OGTT [10, 
17]. Also, there is a low correlation between HbA1c and 
FPG, insulin resistance, and insulin secretion [18].

As a marker of early impaired glucose homeostasis, 
OGTT is a more sensitive method of prediabetes and dia-
betes diagnosis than FPG and HbA1c [9, 10, 19]. Abnor-
mally high plasma glucose concentration in OGTT is a 
proven indicator of prediabetes and diabetes [10, 19]. 
However, OGTT is relatively costly, can be complicated, 
and have low reproducibility in some settings. The test 
protocol requires that the patient ingest an oral load of 
75g of glucose and undergo multiple blood draws over 
a two-hour period, which can be inconvenient and inva-
sive for the patient. The need for timed samples creates 
logistical and analytical constraints [10, 16]. Despite its 
indication for T2DM screening by the ADA [6], OGTT is 
not usually performed on non-pregnant adults [11].

FPG, OGTT, and HbA1c are not always perfectly con-
cordant [9, 14]. This discordance can be partly explained 
because different physiological stages of glucose metabo-
lism are measured; the same occurs between HbA1c and 
glucose-based tests [14, 20]. OGTT and HbA1c tests are 
not routinely performed in middle-to-low income coun-
tries due to time and cost constraints. In these countries, 
FPG is still a valuable test for the screening, diagnosis, 
and monitoring of T2DM [16, 21].

In Mexico, clinical practice guidelines recommend 
that diabetes diagnosis is established when patients pre-
sent polyuria, polydipsia, polyphagia, and weight loss 
accompanied by a fasting glucose concentration ≥ 200 
mg/dL independent of time elapsed since the last meal 
[22]. These symptoms represent a typical case of diabe-
tes with evident hyperglycemia. However, some patients 
with T2DM may present with few of these symptoms or 
may be completely asymptomatic. Per ADA recommen-
dations, two abnormal test results from the same sample 
or two different samples must be obtained to confirm a 
diagnosis [23].

On the other hand, HbA1c is a more reliable marker 
for assessing the presence and severity of the disease [9]. 
Therefore, it is recommended by the ADA [6] and WHO 
[9] as an appropriate test for diabetes screening and diag-
nosis [24]. The final objective in the guidelines for the 
screening, diagnosis, and monitoring of T2DM should 
not be to seek a perfect concordance between biomarkers. 
Rather, their determination should identify individuals 
with altered glycemic levels at risk of suffering long-term 
complications.

Developments in Diabetes Screening 
and Diagnosis

More than half of individuals with diabetes, mainly T2DM, 
are undiagnosed; cases are frequently not diagnosed until 
severe complications appear [7]. However, even early diag-
nosis is not enough to slow the rise in the incidence of 
T2DM and its complications. Even in diagnosed patients, 
the disease’s progression may be accelerated by aggravat-
ing factors such as the lack of rigorous glycemic monitor-
ing, under-treatment, inadequate treatment adherence, and 
omission of lifestyle changes. In addition to the inability of 
biomarkers to reflect glycemic status accurately. Because 
early diabetes is largely asymptomatic, many patients are 
at risk of developing life-threatening complications due 
to hyperglycemia. In low- and medium-income countries, 
patients present with an even higher risk of complications 
due to inadequate healthcare.

Currently, there are several challenges in the manage-
ment of T2DM that need to be addressed. On the technical 
side, there is a need for novel, more comprehensive strate-
gies for optimal screening, early diagnosis, and adequate 
management of T2DM. Approaches combining the use of 
resources for risk assessment, such as Finnish Diabetes 
Risk Score (FINDRISC) [25], along with more effective 
biomarkers for screening and progression T2DM, have a 
higher probability of success in managing the global dia-
betes epidemic. It will also positively impact the preven-
tion of complications caused by hyperglycemic episodes 
in individuals diagnosed with diabetes and prediabetes 
by reducing the under-diagnosis and under-treatment of 
diabetes.

Glucose in Unconventional Samples Recently, non-conven-
tional biological fluids such as saliva have been explored 
to develop non-invasive, cost-effective, and sensitive meth-
ods that can be applied to T2DM screening, diagnosis, and 
monitoring [26, 27]. Despite this, a method for glucose 
quantification in saliva has not been clinically validated, nor 
have reference values been established. In a 2012 report, 
Abikshyeet et al. concluded that it was possible to detect 
glucose in saliva by the glucose oxidase-peroxidase method; 
in this report, salivary glucose was significantly higher in 
individuals with diabetes, and a highly significant correla-
tion coefficient was shown between salivary glucose level 
and serum glucose level [28]. However, in a previous study, 
it was reported that it was not possible to detect glucose in 
normoglycemic individuals saliva with the enzymatic col-
orimetric test kit, GOD-PAP, which is one of the primary 
methods for glucose determination in serum at clinical labo-
ratories [29]. Glucose concentrations in the saliva of normo-
glycemic patients may be below the detection limit of the 
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method used, or interfering compounds in the saliva samples 
may hinder assay performance and result in low accuracy. In 
a 2014 meta-analysis [30], it was observed that the reported 
values of salivary glucose and its correlation with the con-
ventional markers FPG and HbA1c show inconsistencies. 
The low correlation in the group of subjects without diabetes 
may be due to the low permeability of the salivary glands 
in healthy individuals and the high detection limit of the 
technique used (GOD-POD/GOD-PAP). If the technique 
is responsible, saliva-based testing with this method would 
be limited to monitoring glycemic control in already diag-
nosed patients. This evidences the need to validate specific 
techniques using more accurate and sensitive techniques for 
determining glucose in unconventional fluids, like saliva 
[31, 32]. In 2015, Liu et al. described a dual-enzyme bio-
sensor composed of glucose oxidase (GOx) and pistol-like 
DNAzyme (PLDz) with the ability to quantify glucose in 
tears and saliva [33]. Lee et al. in 2017 presented a wear-
able monitoring device for glucose in sweat, including a 
transdermal drug delivery module [34]. The study concluded 
that the device would require improvements for long-term 
stability and uniformity of sensors. More in-depth studies 
of the relationship between blood glucose levels and sweat 
in healthy and individuals with diabetes are also needed. 
The same year, Soni et al. reported a portable, non-invasive 
optical glucose biosensor using a smartphone application 
to measure glucose in saliva and its clinical validation [35]. 
The use of a smartphone as the only device necessary for the 
determination makes it an easily adaptable technology; the 
smartphone-based test allows the patient to monitor salivary 
glucose at home inexpensively, making it highly attractive 
for its use in low- and medium-income countries [35]. In 
2019, de Castro et al. gave proof of concept for a wearable 
glucose monitor based on a microfluidic paper platform inte-
grated into a mouth guard for point-of-care testing (POCT) 
[36]. However, this prototype had some technical limita-
tions that must be addressed, such as a long-run time and 
high sample volume required [36]. With the development of 
more sensitive platforms capable of detecting the low con-
centration of glucose present in the saliva of normoglyce-
mic subjects, it would be possible to generate a non-invasive 
method for screening and monitoring glycemia [30, 31, 32]. 
Before a potential biomarker is introduced into the clinic 
successfully, adequate validation must be carried out [37]. 
To achieve this, it is vital to design adequate clinical assays 
to obtain reliable results in significant samples of the popula-
tion. Nevertheless, the need to propose robust, sensible, and 
cost-effective methods to evaluate those markers should not 
be overlooked. The analysis of biomarkers in unconventional 
biological fluids is an area of opportunity that will surely 
attract even more interest from the scientific community in 
the coming years.

Clinically Validated Biomarkers

Traditional glycemic markers, such as glucose and HbA1c, 
present several limitations that can lead to under-diagno-
sis and poor disease prognosis in people with T2DM. As 
previously stated, HbA1c concentration cannot measure 
transitory hyperglycemic changes and is altered by patient 
characteristics (medical conditions and ethnicity). Further-
more, fasting glucose alone does not give enough informa-
tion to fully understand the glycemic state of the patient 
[38, 39]. Evidence from studies comparing the perfor-
mance of new glycemic markers such as glycated albumin 
(GA), fructosamine (FA), and 1,5-anhydroglucitol (1,5-
AHG) have shown that they provide independent clinical 
information and can improve the prognostic value of con-
ventional markers [40–45]. Previous studies in the Athero-
sclerosis Risk in Communities (ARIC) Study framework 
have confirmed that FA, GA, and 1,5-AHG markers are 
strongly related to the risk of developing diabetes. These 
intermediate markers can be used to determine the risk 
of T2DM and its complications independently of fasting 
blood glucose and HbA1c values [40, 41, 46, 47]. The 
moderate correlation and clinical variations between non-
traditional markers such as GA, FA, and 1,5-AHG and 
conventional markers might be due to the fact that they are 
more strongly influenced by postprandial excursions than 
HbA1c, which is more affected by long-term glycemia as 
well as by the differential effect of oxidative stress [40]. 
The ability to evaluate blood glucose in the short-, inter-
mediate-, and long-term is critical to face the health chal-
lenges posed by T2DM. The selective and combined use of 
these tools will allow access to more timely diabetes pre-
vention, early diagnosis, and timely management of T2DM 
[48]. As presented in the following sections, efforts have 
been made to clinically validate new biomarkers for short 
and intermediate-term glycemic control in different popu-
lations and to further explore more sensitive and less inva-
sive methods than those currently available. The following 
sections present relevant evidence of the clinical applica-
tions, advantages, and disadvantages of the three primary 
clinically validated, less-utilized markers of T2DM: FA, 
GA, and 1,5-AHG. Characteristics of these markers are 
summarized in Table 2. Also, the characteristics of these 
three clinically validated markers are presented in Table 2, 
a comparison of their diagnostic performance in Table 3, 
and a graphical representation of the mechanism by which 
they correlate to hyperglycemia and progression of T2DM 
is shown in Fig. 1.
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Fructosamine

Fructosamine (FA) refers to all stable ketoamines pro-
duced through the non-enzymatic glycation of circulating 
serum proteins (albumins, globulins, and other minority 
proteins) (Fig. 1A) [49, 50]. After a complex cascade of 
reactions, the early glycation products generate irrevers-
ible conjugates, called advanced glycation end products 
(AGEs) [51, 52, 53]. The concentration of FA in serum 
increases in T2DM due to the higher sugar concentration 
in the blood. Therefore, it could be useful as a glycemic 
marker that allows discrimination between normoglycemic 
and individuals with diabetes [54, 55]. Also, its applica-
tion as a biomarker for screening or diagnosis of gesta-
tional diabetes mellitus compared against OGTT has been 
reported [56]. Unlike the determination of HbA1c, which 
measures long-term changes because of the longer circu-
lating lifetime of hemoglobin, FA reflects glucose levels 
over 2 to 3 weeks.

Furthermore, FA assays are more affordable and less 
complicated than HbA1c [54, 55, 57]. The most widely 
employed methods for assessing FA are colorimetric-based, 
which are fast, technically easy, inexpensive, and available 
for automation [49]. Several studies have shown strong cor-
relations between FA and HbA1c in T2DM with high sensi-
tivity and specificity to distinguish between normoglycemic 

and individuals with diabetes [45, 58••]. Also, FA does not 
require fasting [41, 45]. In addition to its clinical application 
as a marker for diagnosing and monitoring hyperglycemia, 
high FA levels are associated with an increased incidence 
of vascular complications associated with T2DM, and per-
sistently high FA levels indicate a more aggressive disease 
progression [38].

The FA assay can be applied to detect and monitor 
T2DM, although it is currently only used in combination 
with the traditional markers [54, 58••]. In a clinical study, 
43 normoglycemic subjects were divided into two groups, 
with and without a family history of diabetes, and compared 
with 23 individuals with diabetes. The use of FA as a risk 
predictor for the development of T2DM was evaluated in 
these three groups [59]. The serum FA values of subjects 
with a family history were significantly higher with fasting 
plasma glucose and HbA1c values near the borderline, sug-
gesting that protein glycation occurs at lower glycemic levels 
in these subjects. On the contrary, the group of subjects with 
diabetes showed near-normal FA values and high FPG and 
HbA1c. As expected, a positive correlation between FPG 
and HbA1c was observed in all groups, while the positive 
correlation between FPG and FA was only observed in sub-
jects with diabetes [59]. Preoperative hyperglycemia can 
be a risk factor for postoperative complications. Despite its 
relevance, there is no consensus on the marker that should 

Table 2  Comparison of the three clinically validated biomarkers

Fructosamine (FA) Glycated albumin (GA) 1,5-Anhydroglucitol (1,5-AHG)

Time required for significant 
change

1–2 weeks 1–2 weeks 24–72 h

Length of glycemic observation 2–3 weeks 2–3 weeks 1–2 weeks
Reflection of fasting glucose 

levels
+ + +

Reflection of postprandial glucose 
and glucose excursions

+ + +

Correlation to diabetes complica-
tions

+ + +

Determination by enzymatic 
methods

Available Available Available

Optimal detection range Medium to high hyperglycemia Medium to high hyperglycemia Modest hyperglycemia to near 
normoglycemia

Point of care testing status Biosensors and paper-based platforms have been evaluated
Paper-based platforms [138] Paper-based platforms [139, 140]

Electrochemical biosensors [141, 
142]

Paper-based platforms [143]
Electrochemical biosensors [111, 

144]
Most common sources of error Falsely low levels: hypothyroidism and liver cirrhosis Falsely high levels: chronic kidney 

disease stages 4–5
Falsely high levels: hypoalbuminemia, hyperthyroidism, hyperurice-

mia, hypertriglyceridemia, nonalcoholic fatty liver disease
Falsely low levels: pregnancy, 

chronic liver disease, glucoki-
nase-maturity-onset diabetes of 
the young

References [48, 54, 55, 60, 63, 145, 146, 147] [48, 65, 76, 147, 148, 149, 150] [84, 85, 87, 95, 99, 147, 151, 152, 
153, 154]
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be used to evaluate it. A 2017 study involving 829 patients 
undergoing primary total joint arthroplasty reported that FA 
is a better choice as a preoperative marker and is a better 
predictor of adverse outcomes than HbA1c in patients with 
previously diagnosed diabetes and those newly diagnosed 
T2DM or glycemic dysregulation [60]. FA seems to have 
its application as a risk biomarker rather than a diagnos-
tic or monitoring marker. FA as an intermediate marker is 
particularly beneficial for monitoring the glycemic status in 
patients with poor glycemic control or those starting a new 
therapeutic regimen [55, 61]. The assessment of salivary FA 
levels has been proposed as a possible biomarker that can 
be measured non-invasively, but more evidence is needed 
before its clinical application is established [59, 62, 63]. 
The focus of future studies should observe the relationship 

between FA and the onset of diabetes complications to 
assess the marker’s potential as a risk indicator in already 
diagnosed patients.

Glycated Albumin

Human serum albumin, the major circulating protein in 
blood, can undergo increased glycation due to hypergly-
cemia [64, 65]. Glycation is the non-enzymatic addition 
of reducing sugars, in this case, glucose, to amine groups 
in proteins. This addition creates an intermediate product 
that subsequently undergoes a rearrangement to create 
a more stable derivative, either an Amadori product or a 
ketoamine (Fig. 1A) [66, 67]. There is a direct relationship 
between hyperglycemic states and the generation of glycated 

Table 3  Comparison of diagnostic performance of the three clinically validated biomarkers

Abbreviations: AMORIS, Apolipoprotein-related Mortality RISk; ARIC, Atherosclerosis Risk in Communities; AUC, area under the curve; FA, 
fructosamine; FPG, fasting plasma glucose; GA, glycated albumin; HbA1c, glycated hemoglobin; OGTT, oral glucose tolerance test; VMH, 
Cape Town Vascular and Metabolic Health

Biomarkers Cohort/country Description AUC Cutoff Sensitivity (%) Specificity (%) Reference

1,5-AHG (µg/
mL), FA 
(mmol/L) and 
GA (%)

ARIC/USA
N = 1719

Diabetes defined by 
HbA1c (1,5-AHG)

0.74 - - - [41]

Diabetes defined by 
FPG (1,5-AHG)

0.70

Diabetes defined by 
HbA1c (FA)

0.83

Diabetes defined by 
FPG (FA)

0.83

Diabetes defined by 
HbA1c (GA)

0.87

Diabetes defined by 
FPG (GA)

0.86

1,5-AHG (µg/mL) NA/China
N = 64

Predictor of remission 
after insulin therapy

0.85 8.9 78.6 83.3 [42]

FA (mmol/L) AMORIS/Sweden Fasting n = 5590 0.91 2.5 61 97 [45]
Non-fasting n = 5397 0.95 82 94

GA (%) Taiwan Lifestyle 
Study/Taiwan

n = 1559

Diagnosis of diabetes 
by the OGTT 

0.86 15 74 85 [77]
GA < 14 to exclude 

and ≥ 17 to diag-
nose T2DM

83.3 98.2

1,5-AHG (µg/mL) 
and HbA1c (%)

NA/China
n = 3098

Diabetes (only 1,5-
AHG)

0.781 15.9 69.2 66.8 [44]

Diabetes (1,5-AHG + 
FPG)

0.912 82.5 83.5

Diabetes (HbA1c + 
FPG)

0.911 - - -

GA (%) NA/Brazil
n = 242

Diagnosis of T2DM 
by OGTT 

0.703 14.8 64.9 65.5 [79]

Diagnosis of T2DM 
by OGTT and/or 
HbA1c

0.708 14.7 64.0 64.1

GA (%) VMH/South Africa
n = 1294

Prediabetes 0.873 12.75 64.8 93.5 [43]

Diabetes - 14.90 67.3 51.8
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albumin; this, combined with the half-life of albumin, is the 
reason why the GA ratio can be used as an intermediate-term 
biomarker of glycemic control [38, 65, 68]. The generation 
of AGEs from albumin and other serum proteins is directly 
related to the development and progression of diabetic com-
plications. Thus, measurement of FA and GA can assess not 
only glycemic status for screening and diagnostics of T2DM 
but for its progression [66, 69, 70]. The main methods for 
the isolation and quantification of GA are boronate affinity 
chromatography, ion-exchange chromatography, high-per-
formance liquid chromatography, immunoassays, and more 
recently, a two-steps enzymatic assay; the first step is AGEs 
and peroxide elimination by ketoamine oxidase (KO) then 
hydrolyzation (proteinase) and oxidation by KO to produce 
hydrogen peroxide measured by a colorimetric method, the 
latter being the most reported [49, 68, 71, 72, 73].

Additionally, GA as a biomarker of glycemic control 
has shown higher sensitivity and specificity than the gold 
standard for long-term monitoring, HbA1c [49, 68, 71, 72]. 
Furthermore, GA has been explored as a measure of risk 
for developing nephropathy and cardiovascular diseases 
[72, 74]. The possibility of supplementing self-monitoring 
through capillary glucose measurements with a GA test on 
a POCT platform has been evaluated with great interest 
since it would reduce health expenses and improve patients’ 

quality of life. However, there is still a need to develop and 
validate a robust method adapted for a home test that does 
not require specialized personnel or equipment [49, 68]. In 
2018, Jagadeeshaprasad et al. recommended the combined 
measurement of glycated hemoglobin and GA to manage 
T2DM [13]. This combination has proven especially use-
ful in patients on hemodialysis and chronic kidney disease 
(CKD) [71, 73]. Also, it has been demonstrated that GA is 
stable for up to 23 years when stored at − 80 °C [75]. Meas-
urement of GA is especially relevant for controlling post-
prandial hyperglycemia and glycemic fluctuations. Because 
of its atherogenic potential, GA is a marker of cardiovascular 
risk, as well as a glycemic marker [76].

GA has demonstrated similar diagnostic performance to 
HbA1c, with areas under the curve (AUC) in the receiver 
operating characteristic curve analysis (ROC) of 0.86 and 
0.90, respectively [77]. Both FA and GA performed simi-
larly to FPG with AUCs of 0.83, 0.87, and 0.83, respec-
tively, for identifying undiagnosed cases of diabetes when 
HbA1c was used to define T2DM. Both markers could be 
used in addition to HbA1c or FPG when HbA1c is not rec-
ommended [41]. The ability of GA to measure postprandial 
glycemia has been evaluated using a steamed bread meal 
test, demonstrating that while 1,5-AHG increased after the 
test, both HbA1c and GA remained stable, making them 

Fig. 1  A Graphical representa-
tion of the mechanism by which 
glycated proteins and fructosa-
mine correlate to hypergly-
cemia. B Kidney reuptake of 
1,5-anhydroglucitol and glucose 
under normoglycemia and 
hyperglycemia. Abbreviations: 
1,5-AHG, 1,5-anhydroglucitol; 
SGLT, sodium-glucose linked 
transporter. (Created with 
BioRender)
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reliable markers even in non-fasting conditions [78]. In con-
trast, they confirmed the potential of 1,5-AHG as a marker 
to measure postprandial variability. In a study with Brazilian 
subjects, it was observed that GA with a cut-off of 16.8% 
showed a similar performance to HbA1c in detecting T2DM 
[79]. In a South African population, the diagnostic perfor-
mance of GA was evaluated for prediabetes and T2DM, 
observing an optimal cut-off of 12.7% for prediabetes and 
14.9% for diabetes. HbA1c performed better than GA in this 
population, with an AUC of 0.899 and 0.873 for diabetes. 
In prediabetes, the behavior was similar, although GA was 
more sensitive but less specific [43]. It is important to men-
tion that despite their promising results, the conventional 
markers HbA1c and OGTT and the new clinically validated 
marker GA do not detect T2DM in the same individuals 
strengthening the hypothesis that the best approach is the 
combined use of the available markers. However, GA has 
an advantage over HbA1c in that GA can be measured in 
both plasma and serum, so unlike HbA1c, it could be meas-
ured with the rest of the biochemical biomarker panel from 
a single blood sample [79]. Despite evidence showing GA's 
clinical utility and superior efficiency over FA and HbA1c in 
a broad range of clinical settings [41, 49], there are no com-
mercial GA assays currently available. However, due to the 
high incidence of T2DM, healthcare professionals recognize 
the need for auxiliary indicators for their screening and early 
diagnosis that can add to traditional tools or, in an ideal case, 
a new biomarker that can improve prevention schemes and 
patient care. This need can be an impetus for a unified GA 
quantification method and comprehensive studies regarding 
its clinical application.

1,5‑Anhydroglucitol

The glycemic biomarker 1,5-anhydroglucitol (1,5-AHG), or 
1-deoxyglucose, is a six-carbon monosaccharide which also 
is known as 1-deoxyglucose. As one of the major polyols in 
the human body, 1,5-AHG was first isolated from the Polyg-
ala amara plant in 1888, and its structure was defined in 
1943 [80]. This biomarker is metabolically stable, originates 
mainly from the diet (where it is found in low concentra-
tions) and is well absorbed intestinally [81, 82, 83, 84]. Also, 
its tissue concentrations reach steady-state levels due to the 
absence of a metabolic pathway for 1,5-AHG degradation 
and its renal reabsorption. Therefore, its levels in different 
biological fluids are stable and correlated with blood glucose 
[85, 86]. The relationship between 1,5-AHG and glucose 
levels was reported in 1973 by Pitkänen [81]. In 1988, the 
mechanism of 1,5-AHG as a marker of glycemic control 
was elucidated [41, 85, 87, 88, 89, 90]. Soon after, 1,5-AHG 
was proposed as a novel biomarker for diabetes [85]. The 
enzymatic kit GlycoMark® is the most popular assay for 
blood 1,5-AHG determination; this kit was developed and 

widely used in Japan. In 2003, the US FDA approved this 
serum-based assay for evaluating short-term glycemic con-
trol [61, 91, 92].

The concentration of systemic 1,5-AHG is kept in balance 
by urine excretion. In normoglycemic individuals, about 
99.9% of 1,5-AHG is renally absorbed, competing with glu-
cose at the sodium-glucose linked transporters (SGLT) for 
kidney reuptake; thus, it is retained in detectable concentra-
tions in blood and saliva [41, 61, 93]. Under hyperglycemia, 
the glucose transporters are monopolized by the excess glu-
cose (Fig. 1B). The 1,5-AHG is not reabsorbed at the tubular 
level, reducing its concentration in serum and saliva [41, 61, 
93]. 1,5-AHG in serum decreases while glucose levels rise 
above the renal glucose threshold; thus, it has been reported 
that 1,5-AHG represents postprandial hyperglycemia in 
individuals with diabetes more robustly than HbA1c or FA 
[61, 94, 95]. Low concentrations of 1,5-AHG reflect poor 
glycemic control in the preceding 1–2 weeks [95, 96, 97].

Most studies report 1,5-AHG levels measured by GC-MS, 
HPLC-MS, or the commercially available enzymatic kit, 
GlycoMark® [95, 98]. GlycoMark® is the most popular 
assay and is FDA approved [92]. Widespread implementa-
tion of 1,5-AHG as a glycemic control marker presents sev-
eral advantages over traditional tests [85, 94]. For instance, 
low 1,5-AHG has been reported to have a stronger correla-
tion with high HbA1c than FPG [41, 95]. The serum level 
of 1,5-AHG reflects postprandial glucose variations and, 
in combination with FPG, improves its potential for early 
detection of T2DM with a cutoff of 15.9 µg/mL in a Chinese 
population. The combination of FPG with 1,5-AHG had an 
AUC of 0.912 with a sensitivity of 82.5% and a specificity of 
83.5%, while the combined use of HbA1c with FPG gener-
ated an AUC of 0.911. In addition, it reduced the need for an 
OGTT by 75.8% [44], decreasing costs since OGTT would 
be reserved for those patients who need it. 1,5-AHG can 
differentiate between patients with similar HbA1c levels but 
differing degrees of glycemic control [61]. Also, its tissue 
levels reach steady-state levels due to the absence of a meta-
bolic pathway for its degradation and the low amount taken 
from the diet compared with the total body pool. Therefore, 
its levels in different fluids are stable and correlated with 
blood glucose [85, 86]. As mentioned above, 1,5-AHG is a 
better marker to measure postprandial variability than GA. 
However, a 2017 study reported that serum 1,5-AHG levels 
increase slightly after consuming a 75 g dose of sugar as 
glucose increases regardless of metabolism status, gender, 
or body mass index (BMI). This may be due to the transport 
of 1,5-AHG from the compartments where it is stored. The 
maximum sampling time was 180 min [99]; observations 
over a more extended period could provide more informa-
tion on the mechanism involved. 1,5-AHG is affected by 
a family history of diabetes, with significantly lower lev-
els reported in individuals with normal glucose tolerance 
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who have first-degree relatives with T2DM. Furthermore, 
1,5-AHG showed greater sensitivity than HbA1c or GA 
as a marker for early detection of abnormalities in glucose 
metabolism [100].

1,5-AHG acts not only as a glycemic marker but can also 
be integrated into a model that considers other risk factors or 
combined with conventional markers to improve its T2DM 
diagnostic potential [97]. It has been proven that 1,5-AHG 
levels increase as glycemic control is achieved independent 
of body weight, sex, age, treatment, and diabetes evolution 
among non-insulin-dependent diabetes patients [85]. Con-
trolled glycemia in individuals with diabetes due to com-
bined treatment schemes (pharmacological and non-pharma-
cological) generates a sustained increase in 1,5-AHG values 
up to the expected range for normoglycemic individuals. 
This ability allows 1,5-AHG to exert a differential function 
in the different stages of T2DM management, screening, 
diagnosis, and monitoring [84]. Notably, a study published 
in 2012 reports that 1,5-AHG is more useful for monitoring 
hyperglycemic states in individuals with diabetes than FA, 
GA, and HbA1c [41]. It has been reported that 1,5-AHG 
is a useful and accurate index for monitoring subjects with 
prediabetes and well-controlled children with diabetes and 
obesity in the HbA1c range of 5.5 to 8% [101]. This makes 
it of particular interest considering the increasing incidence 
of obesity and early onset of diabetes.

Studies in mice have shown that changes in 1,5-AHG 
levels are responsive to the development of diabetes due to 
the loss of function of pancreatic beta cells [102]. Blood 
1,5-AHG quantification of at-risk individuals could pro-
vide a targeted screening strategy to prevent the develop-
ment of T2DM or identify those with asymptomatic dia-
betes [102]. The glycemic biomarker 1,5-AHG not only 
has a diagnostic application for diabetes, but it has the 
potential to evaluate the risk of long-term complications, 
including the most documented association with cardio-
vascular diseases and mortality in people with T2DM [96, 
102, 103]. There is also evidence of its prognostic value 
for microvascular complications such as retinopathy and 
CKD [97]. Furthermore, there is evidence that 1,5-AHG 
is a valuable marker of diabetes progression for individu-
als affected by diabetic nephropathy in which the deter-
mination of HbA1c is not recommended [72, 97, 104]. 
Sodium-glucose cotransporter-2 inhibitors (SGLT-2i) 
are a class of drugs that lower glucose concentrations by 
an insulin-independent mechanism, reducing renal reab-
sorption of glucose and increasing its urinary elimination. 
They have shown to be effective for treating T2DM, and 
there is also evidence of their potential to decrease the 
risk of cardiovascular events [105, 106]. Different mecha-
nisms have been proposed for their cardioprotective effect, 
and evidence has shown that this effect goes beyond their 
hypoglycemic activity [105, 107]. It has been reported that 

SGLT-2i treatment can interfere with the measurement of 
1,5-AHG, resulting in a falsely low value in patients with 
controlled blood glucose levels [108]. The interaction 
between SGs and 1,5-AHG has also been confirmed in 
a metabolomic study by Kappel et al., where they report 
that the observed decrease in 1,5-AHG may be due to a 
decrease in its renal reabsorption [109]. Because of this 
phenomenon, its use as a glycemic marker in individuals 
treated with SGLT-2i is not recommended [108, 109]. Fur-
thermore, 1,5-AHG can be used as a marker of remission 
in patients with T2DM treated with insulin. Although it 
failed to predict remission immediately after insulin treat-
ment after a 1-month follow-up, 1,5-AHG was an inde-
pendent predictor for remission (odds ratio 1.56, 95% 
confidence interval [CI] 1.15–2.12, P = 0.004). The AUC 
of 1,5-AHG in the ROC was 0.85 (95% CI 0.75–0.96, P < 
0.001), this can be explained due to the nature of 1,5-AHG 
as a glycemic marker since its main source is the diet, it 
takes time with controlled glycemic values to manifest an 
increase in this marker [42].

Salivary 1,5-AHG has been previously shown to be 
strongly correlated with serum 1,5-AHG and inversely corre-
lated with fasting glucose, OGTT, and HbA1c [95]. A clear 
advantage of using saliva as a sample is that its collection is 
non-invasive compared to traditional blood collection [28, 
32, 110]. 1,5-AHG concentrations are significantly lower in 
unconventional biological fluids, such as saliva, tears, and 
sweat, than in plasma. Therefore, highly sensitive testing 
methods are required for accurate measure 1,5-AHG in these 
fluids. The most promising candidates are enzymatic-based 
assays, as they are less expensive and easier to adapt to the 
clinical field [98]. Also, given that sample-drawing can be 
done outside of a clinical laboratory, methods may even 
be adapted to portable devices that the patient can use at 
home [88]. In their 2020 study, Jian et al. reported a posi-
tive correlation between salivary and serum 1,5-AHG and 
a negative correlation with FPG and HbA1c. Furthermore, 
this study showed that salivary 1,5-AHG, combined with 
fasting glucose or HbA1c, has been shown to enhance the 
efficiency of diabetes screening and reduce the necessity of 
OGTT [95]. In 2018, Furusawa et al. reported the detection 
of glucose and 1,5-AHG, two diabetes biomarkers, using an 
electrochemical sensor with a Prussian blue (PB) electrode, 
modified with glucose oxidase (GOx) and pyranose oxi-
dase (POx) in a device fabricated on a flexible plastic film; 
however, this was not tested with actual biological samples 
[111]. However, although methods based on POx for quan-
tifying 1,5-AHG have been reported, it must be considered 
that pyranoses are not selective so that the presence of galac-
tose and glucose in saliva can interfere with the measure-
ment of 1,5-AHG. Hence, it is crucial to consider a clearance 
step that reduces or eliminates the interferences [72]. More 
studies are required on 1,5-AHG in saliva in patients with 
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T2DM. But, with further validation, salivary 1,5-AHG may 
become a promising, non-invasive, and convenient tool for 
T2DM screening in the future [95].

Novel Biomarkers Metabolomics is especially useful in 
identifying biomarkers of T2DM because of the metabolic 
basis of its etiology and the fact that its development is 
strongly related to lifestyle and environmental factors [112, 
113, 114]. Several studies have been carried out to evaluate 
novel biomarkers in conventional fluids such as blood and 
urine. Some examples of these studies are presented in the 
sections “Clinically Validated Biomarkers” and “Novel Bio-
markers.” Few novel biomarkers have shown significant 
advantages over those already established and validated, 
such as FPG, OGTT, and HbA1c. However, it is expected 
that more extensive studies will lead to new resources in the 
management of the T2DM epidemic [115]. No biomarker 
studied so far is the perfect marker for all T2DM patients in 
all conditions. The most effective approach to search for new 
biomarkers and exploit their differences with conventional 
ones is to stop looking for a perfect marker that achieves the 
status of a universal gold standard for glycemic control and 
work on multivariable panels that consider the combination 
of biomarkers, anthropometric characteristics, and lifestyle 
habits that allow from risk assessment to continuous moni-
toring of individuals with diabetes [116, 117]. More in-depth 
studies involving subpopulations of interest are also 
required, considering pathological conditions and underly-
ing diseases of high incidence to define which biomarkers 
are the best option for each case. A pivotal approach in the 
search for new markers of T2DM is the use of metabolomics 
to generate profiles by monitoring the various metabolic 

pathways for evidence of deregulated metabolites whose 
study may lead to potential biomarkers for screening, diag-
nosis, and monitoring [117, 118]. These metabolomic pro-
files may also provide insight into potential therapeutic tar-
gets and contribute to generating risk profiles for 
complications [114, 119, 120]. Currently, the search for 
novel biomarkers for T2DM is primarily based on metabo-
lomic studies. Identifying novel biomarkers that predict the 
risk, incidence, or complications associated with T2DM usu-
ally starts with non-targeted metabolomic analyses [121]. 
Metabolites that show strong correlations with the diagnosis 
of diabetes, its validated risk factors [122], or its complica-
tions [123] are later analyzed by targeted metabolomic anal-
yses [124]. Usually, these metabolomic strategies must be 
carried out in large populations to increase the results’ sig-
nificance and validity—sometimes over long periods 
[125••]. Several metabolomic studies have found character-
istic patterns and specific biomarkers associated with the 
deregulation of energy metabolism in T2DM (Fig. 2) [39, 
118]. The most reported metabolic alterations in the profil-
ing of patients with metabolic disorders and specifically 
individuals with diabetes are high levels of branched-chain 
amino acids (BCAAs) and aromatic amino acids (AAAs), as 
well as the ketosis marker β-hydroxybutyrate (β-HB) [112, 
125••, 126, 127, 128, 129, 130, 131]. Altered amino acid 
metabolism appears to be a link between T2DM and the 
development of cardiovascular disease. It is known that the 
physiological mechanism of this alteration is the relationship 
of amino acid metabolism with insulin secretion and toler-
ance, so monitoring the amino acid profile can provide infor-
mation about cardiometabolic health [125••, 129, 130]. In 
contrast, the metabolites 1,5-AHG, lysophosphatidylcholine 

Fig. 2  Model representing the 
relationship between impaired 
energy metabolism and bio-
markers for the screening and 
diagnosis of type 2 diabetes 
mellitus. Abbreviations: 1,5-
AHG, 1,5-anhydroglucitol; 
BCAAs, branched-chain amino 
acid; α-HB, α-hydroxybutyrate; 
L-GPC, linoleoylglycerophos-
phocholine; LysoPC, lysophos-
phatidylcholine; mTOR, 
mammalian target of rapamycin. 
(Created with BioRender)
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(LysoPC), Linoleoylglyglycerophosphocholine (L-GPC), 
glutamine (Gln), and glutamine/glutamate ratio present a 
decrease [112, 125••, 126, 127, 128, 129, 130, 131]. In these 
studies, the roles of clinically validated biomarkers such as 
1,5-AHG have been confirmed, in addition to new markers 
such as fetuin-A [132], BCAAs [133], adipokines [2], 
L-GPC [134], LysoPC [124], among others (Table  4). 
Despite the substantial data generated by metabolomic stud-
ies, before a potential biomarker is successfully introduced 
into the clinic, the marker must undergo rigorous clinical 
validation for its predictive power independently and in con-
junction with traditional risk assessment tools [37, 126]. 
Clinical evaluation of biochemical markers should focus 
primarily on individuals identified as high risk, as this will 
allow greater coverage with less expense, which is crucial in 
resource-limited settings. Identification of these high-risk 
individuals can be made on a mass scale with the help of 
standardized tools such as risk assessment questionnaires 
that usually consider the most recognized risk factors such 
as age, sex, family history, level of physical activity, as well 
as family history of hypertension [135, 136]. In some more 
extensive studies, such as FINDRISC, fruit and vegetable 
consumption and anthropometric measures such as BMI and 
waist circumference are also included [137]. These param-
eters can be used in combination with conventional biomark-
ers such as FPG and HbA1c in predictive models, and car-
diovascular risk markers such as triglycerides and HDL 
cholesterol can be added to improve their performance and 
assess the risk of developing complications [136]. It has 
been shown that using a multi-metabolite score consisting 
of phenylalanine, non-esterified cholesterol in large HDL, 
and the ratio of cholesteryl ester to total lipid in large VLDL 
allows the determination of long-term risk for T2DM in 
young adults with better performance than any individual 
metabolite [125••]. It is important to consider that most risk 
assessment models reported have been developed and vali-
dated in the USA, Europe, and Asia. Before being used in a 
new population, they should be adequately validated in that 
population and must not be simply assumed that their rele-
vance can be extrapolated [48, 136]. The information from 
these risk assessment tools is crucial for making decisions 
based on a cost-benefit analysis and generating screening 
and monitoring programs with greater coverage [39, 118, 
124, 127]. Nevertheless, further studies are needed to evalu-
ate whether the newly reported biomarkers can be included 
in multianalyte panels to improve the sensitivity of current 
models and that more focused approaches can be generated 
to meet the goals of personalized medicine. The field of 
metabolomics is an emerging area and is still at a basic level 
of research. Both measurement protocols and data analysis 
still suffer from a lack of standardization, making it difficult 
to compare information obtained from independent studies 
[118, 128, 129]. This was evidenced in a study focused on a 

sample of adult men over 54 years of age from the KORA 
F3 cohort study [118]. Metabolite detection and quantifica-
tion were conducted by three metabolomics providers, two 
of them using mass spectrometry and one based on nuclear 
magnetic resonance, where a different profile of significantly 
altered metabolites was observed in individuals with diabe-
tes [118]. However, metabolomics studies are equipment- 
and personnel-intensive. One cost-saving alternative is the 
development of immunological or enzyme-based methods 
for clinical validation. Validated assays are imperative in 
obtaining reliable results in diverse populations so that fac-
tors affecting the metabolome, such as age, gender, ethnicity, 
and medical history, can be observed. Nevertheless, the need 
to propose robust, sensitive, and cost-effective methods to 
evaluate those markers should not be overlooked. It will 
mostly be of great interest to evaluate new clinically vali-
dated biomarkers in unconventional fluids like saliva to 
develop non-invasive methods. These new tests and plat-
forms will generate more effective risk assessment schemes 
for earlier and more accurate T2DM diagnosis and preven-
tion in healthy and subjects with prediabetes. It is possible 
that a combination of some of the biomarkers mentioned 
above, rather than a single biomarker, will be utilized to 
assess the risk for T2DM development accurately.

Conclusions

Although significant advances have been made in the search 
for new biomarkers for T2DM, more research is needed for 
further advancement. Developments in this area can reduce 
the incidence of T2DM and improve disease prognosis by 
addressing the current under-diagnosis and under-treatment 
of diabetes. The biomarker candidates described in this 
review require further study to be clinically validated. With 
further validation, these novel biomarkers can be used with 
or even replace conventional markers of diabetes. How-
ever, performing current metabolomic techniques requires 
significant resources and time, hindering novel biomark-
ers’ potential discovery. Enzymatic methods are a viable 
alternative for developing affordable assays, allowing the 
clinical validation and application of these novel biomark-
ers. Furthermore, accessibility to these tests can be improved 
by developing POCT platforms. A POCT could be used in 
communities with limited access to health services or at 
home by the patient, which would allow for prevention, early 
diagnosis, and health maintenance of persons with T2DM. 
Effective approaches for diabetes screening, monitoring, and 
diagnosis are essential to decrease the disease’s prevalence, 
prevent the onset of complications and improve the quality 
of life. It is crucial to decrease the burden on health systems 
caused by T2DM and its complications. Better management 
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Table 4  Main novel biomarkers for type 2 diabetes mellitus (T2DM)

Biomarker Findings Reference

Amino acids A different amino acid profile was found for patients with impaired 
fasting glucose and T2DM compared to a control population. In sub-
jects with impaired FPG and T2DM, the fasting levels of BCAAs, 
glutamic acid, lysine, phenylalanine, arginine, alanine, tyrosine, and 
aspartic acid increased as glycemic control was lost. The concen-
tration of these amino acids correlates significantly with FPG and 
HbA1c classical markers of T2DM and pro-inflammatory cytokines 
TNF-α and IL-6. These amino acids demonstrated the ability to 
discriminate normoglycemic subjects from those with impaired FPG 
or T2DM.

[130]

Amino acids The ability of amino acid levels, including BCAAs (isoleucine, 
leucine, valine) and aromatic amino acids (tyrosine and phenylala-
nine), to predict prediabetes risk was evaluated. Levels of aspartic 
acid, asparagine, and histidine significantly predicted the incidence 
of prediabetes, with the increased risk differing between African 
Americans and European Americans. The evidence observed in 
prediabetes suggests that changes in the amino acid profile occur in 
the transition from normoglycemia to the development of T2DM.

[155]

α-HB In this metabolomic study, the α-HB was the biomarker with the best 
performance to identify individuals with insulin resistance. This 
behavior was consistent in both screening and targeted assays. α-HB 
predictive potential can be explained both by its metabolic relevance 
and that its synthesis is stimulated by the elevation of the NADH/
NAD+ ratio due to increased lipid oxidation.

[156]

L-GPC The potential of L-GPC values as a biomarker of insulin resistance 
during fasting and a five-point OGTT was evaluated. Despite not 
showing a linear correlation with classic risk markers such as BMI, 
fat tissue distribution, lipids, fasting glucose, and HbA1c, subjects 
with high L-GPC showed higher glycemic excursions during a 
five-point OGTT. L-GPC has a strong negative correlation with 
glucose disposal and is negatively associated with insulin sensitivity, 
showing that it may be used as a biomarker for insulin resistance, 
especially in patients who do not present the classic risk factors.

[157]

Leptin The relationship between leptin and microvascular complications 
caused by diabetes progression in a population of T2DM patients 
was explored. Leptin serum values showed a positive correlation 
with duration of diabetes, BMI, waist circumference, blood pressure, 
fasting glucose, HbA1c, serum insulin levels, cholesterol, triglycer-
ides, and LDL cholesterol, consistent with previous reports identify-
ing leptin as a marker of insulin resistance and a possible diagnostic 
marker for T2DM. Regarding its potential as a predictor of micro-
vascular complications, leptin concentration is positively correlated 
with urinary albumin-creatinine ratio, peripheral neuropathy, and 
retinopathy. eGFR showed a negative correlation with serum leptin.

[158]

Adiponectin and fetuin-A A case-control study was conducted to assess the association between 
fetuin-A levels and the risk of T2DM in the Chinese population. 
High values of fetuin-A were associated with an increased risk of 
T2DM; no significant interaction with adiponectin levels on T2DM 
risk was observed. High fetuin-A, regardless of adiponectin levels, 
was associated with an increased risk of diabetes. The mechanism by 
which fetuin-A participates in the development of T2DM may not be 
directly related to adiponectin.

[159]
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Table 4  (continued)

Biomarker Findings Reference

Adiponectin and leptin The relationship between plasma leptin levels and biomarkers associ-
ated with energy and hormone metabolism was explored. The 
untargeted metabolomics analysis showed that 64 metabolite features 
were associated with fasting leptin levels. The profile of metabolites 
associated with leptin levels varied by gender—the leptin level was 
approximately three times higher in women. A positive correlation 
was found between leptin and adiponectin, and a negative correla-
tion with caloric intake, serum triglyceride levels, and VLDL. The 
evidence supports the role of leptin as a mediator of energy and 
hormone metabolism.

[160]

BCAAs and LysoPC The role of BCAAs and LysoPCs in the progression from prediabetes 
to T2DM was evaluated using a targeted metabolomic approach. 
It was demonstrated that BCAAs (isoleucine, leucine, and valine) 
and LysoPCs, especially LysoPCs acyl C28:1, contribute to the 
progression of diabetes. Regression analysis established a significant 
association of HbA1c with LysoPCs acyl 28:1, age, and FPG.

[161]

Fetuin-A and pFet-A The role of phosphorylated fetuin-A (pFet-A) in insulin action in cell 
lines, primary cultures, animal models, and humans was examined. 
In obese individuals, serum levels of fetuin-A and pFet-A were 
significantly higher than in those of normal weight. pFet-A demon-
strated a strong positive association with fasting glucose and fasting 
insulin. This study showed that the role of fetuin-A in inhibiting 
insulin-mediated glucose uptake and glycogen synthesis depends on 
its phosphorylation status.

[162]

α-HB and L-GPC The ability of the metabolites α-HB and L-GPC as markers of insulin 
resistance and glucose intolerance was evaluated. The levels of 
α-HB increase, and L-GPC levels decrease with high insulin resist-
ance. This high α-HB and low L-GPC stage can be interpreted as 
a metabolic imbalance with a high NADH to NAD+ ratio and low 
glucose metabolism.

[134]

Adiponectin, BCAAs and Leptin The relation between altered levels of adipokines, leptin, and adi-
ponectin with BCAAs and insulin resistance in subjects with differ-
ent degrees of glucose tolerance was assessed. A strong relationship 
was observed between insulin resistance and BCAAs. The levels of 
BCAAs show a clear differentiation between groups with different 
insulin resistance. Moreover, this relationship is independent of 
adipokine levels, suggesting that variations in BCAA levels occur by 
a different mechanism than adipose tissue deregulation.

[163]

Adiponectin, CRP and Leptin A direct relationship was observed between high CRP and leptin 
concentrations and increased insulin resistance. Increased adiponec-
tin concentration was associated with decreased insulin resistance. 
These relationships were not affected by gender. The relationship 
between abdominal subcutaneous adipose tissue and insulin resist-
ance is mediated by leptin and not CRP or adiponectin. For the 
visceral adipose tissue, insulin resistance was partially mediated by 
the adipokines, and the inflammation marker CRP does not affect 
this relationship.

[164]

BCAAs, carnitines and LysoPC A non-targeted metabolomics study comparing normoglycemic, 
prediabetic, and diabetic phenotypes was carried out in five tissues 
relevant to T2DM: serum, visceral adipose tissue, liver, skeletal 
muscle, and pancreatic islets. The levels of BCAAs correlated with 
HbA1c in various tissues. Carnitines and LysoPC levels in plasma 
could be used to discriminate patients with T2DM from controls. 
The compounds identified in the differential profile are part of glyc-
erophospholipid metabolism, fatty acid biosynthesis, arachidonic 
acid metabolism, linoleic acid metabolism, sphingolipid metabolism, 
fatty acid elongation in mitochondria, alpha-linolenic acid metabo-
lism, and fatty acid metabolism.

[165]
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of T2DM will also reduce the impact of other public health 
threats such as the SARS-CoV-2 pandemic.

Acknowledgements The authors would like to thank the Bioengineer-
ing and Regenerative Medicine and the Pathophysiology of Metabolic 
and Emerging Diseases Strategic Focus Groups, as well as the Bioen-
gineering and Medical Devices Unit of Tecnologico de Monterrey and 
Fundación FEMSA for their financial support.

Declarations 

Conflict of Interest The authors declare no competing interests.

References

Papers of particular interest, published recently, have 
been highlighted as:  
•• Of major importance

 1. Forouhi NG, Wareham NJ. Epidemiology of diabetes. Medicine 
(Baltimore). 2018;47:22–7. https:// doi. org/ 10. 1016/j. mpmed. 
2018. 10. 004.

 2. DeFronzo RA, Ferrannini E, Groop L, Henry RR, Herman 
WH, Holst JJ, et al. Type 2 diabetes mellitus. Nat Rev Dis Prim 
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Biomarker Findings Reference
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