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Abstract
The bidirectional communication between the brain and peripheral organs have been widely documented, but the impact 
of visceral adipose tissue (VAT) dysfunction and its relation to structural and functional brain changes have yet to be fully 
elucidated. This review initially examines the clinical evidence supporting associations between the brain and VAT before 
visiting the roles of the autonomic nervous system, fat and glucose metabolism, neuroinflammation, and metabolites. Finally, 
the possible effects and potential mechanisms of the brain-VAT axis on the pathogenesis of Alzheimer’s disease are discussed, 
providing new insights regarding future prevention and therapeutic strategies.
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Introduction

Obesity is defined as an increase of fat mass that adversely 
affects health and is an underlying promoter of systemic 
metabolic dysfunction. According to the CDC, obesity is a 

public health issue and a major risk factor for chronic dis-
eases, including type 2 diabetes and heart disease. In addi-
tion, accumulating evidence shows it has deleterious effects 
on the central nervous system (CNS), some of which are not 
limited to the classical metabolic circuits in the brain [1]. 
The impact of obesity on the numerous pathways linking 
the CNS with the abdominal organs remains the most widely 
studied [2]. As a result, many new concepts and underlying 
mechanisms regarding the brain-gut-microbiota axis [3], 
brain-pancreas axis [4], brain-liver axis [5], gut-brain-liver 
axis [6], and brain-spleen axis [7] have emerged, all of which 
have greatly enriched and sublimated people’s understanding 
of neurological diseases.

Excessive fat accumulation contributes to adipose tis-
sue dysfunction resulting in elevated free fatty acids (FFA) 
and systemic dyslipidemia [8]. There are two major types 
of adipose tissues in humans: white adipose tissue (WAT) 
and brown adipose tissue (BAT). BAT is a heat-producing 
tissue typically appearing in supraclavicular and paraverte-
bral regions during puberty [8]. WAT is composed of many 
adipocytes and stromal components, such as undifferentiated 
preadipocytes, fibroblasts, inflammatory cells, blood vessels, 
nerves [9]. Visceral WAT (VAT) and subcutaneous WAT 
(SAT) possess considerable energy storage capacities. SAT 
resides under the skin of the hip, thigh, back and anterior 
abdominal wall accounting for about 80% adipose tissue by 
mass. In obesity, excess VAT is closely linked to metabolic 
complications, such as insulin resistance and type 2 diabetes 
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[10]. VAT concentrates around the abdominal organs in six 
depots, including the perirenal, gonadal, epicardial, retrop-
eritoneal, omental and mesenteric [9, 11].

It’s been proposed that obesity is an independent risk fac-
tor for AD and vascular dementia [12]. Intriguingly, many 
studies indicate that the incidence of AD is higher in obese 
individuals with insulin resistance [13]. Insulin influences 
the clearance of amyloid β peptide and phosphorylation 
of tau (the major neuropathological hallmarks of AD) via 
modulation of vascular function through effects on vasore-
activity, lipid metabolism, and inflammation [14]. Moreover, 
structural evaluation of brain networks involving analyses of 
gray matter volume, cortical thickness, and surface area by 
Zsido et al. revealed that increased visceral fat was poten-
tially associated with accelerated brain aging in adults and 
the elderly [15]. Furthermore, Holland et al. showed that 
reduced brain melanocortin signaling promotes white adi-
pose tissue expansion via signals conveyed by efferent inner-
vation of the vagus nerve [16] (Fig. 1).

Second, only to adipose tissue, the brain is the most 
lipid-rich organ in the body. Cerebral lipids constitute a 
major part of neuronal cell membranes. Situated within the 
membranes are multifunctional lipid rafts that can foster the 
formation of Aβ aggregates and hyperphosphorylated tau 
protein [17]. Exposure of membrane lipids to said aggre-
gates can lead to peroxidation and altered fatty acid (FA) 
composition via reactive oxygen species (ROS) [18]. The 
FAs most vulnerable to ROS attack are polyunsaturated fatty 
acids which accumulate in the CNS, as do the resultant per-
oxidation by-products. Some of these products have been 
investigated as potential biomarkers for AD and other neu-
rodegenerative diseases. For example, increased F2-dihomo-
isoprostanes (F2-dihomo-IsoP) levels in the brain and CSF 
of AD patients [19] were found to correlate with disease 
progression, and the increase could be differentiated from 
normal controls with 100% accuracy [20]. In addition, low-
ering brain F2-IsoPs levels caused a significant decrease in 

Aβ deposition and plaque formation in the βAPP/PS1 mice 
[21], suggesting elevated F2-IsoPs may serve as an early bio-
marker of lipid peroxidation in AD patients prior Aβ deposi-
tions [22]. Another by-product found in the CSF and brains 
of AD patients is F4-NeuroPs [23]. Studies involving sub-
jects with mild cognitive impairment (MCI) and AD showed 
elevations for F4-NeuroP, as wells IsoP 8,12-iso-iPF2α-VI, 
HNE, MDA and acrolein [24, 25], suggesting oxidative dam-
age and lipid peroxidation are early events in AD [26].

To date, most VAT clinical studies have focused on 
its associations with metabolic syndrome, inflammation, 
peripheral insulin resistance, and obesity [27–29]. However, 
interactions and the underlying mechanisms regarding AD 
and VAT have yet to be elucidated. This review examines 
the clinical evidence supporting VAT and brain associations 
before addressing the potential effects on the brain and vice 
versa. Finally, the possible impact and mechanism of VAT 
on the pathogenesis of neurodegenerative disorders are 
discussed.

Neuroimaging Studies Supporting Brain‑VAT 
Associations

An emerging body of evidence suggests that physical activ-
ity (PA) could benefit cognitive and brain health during pre-
adolescence [30]. For example, in a recent study by Logan 
et al., PA interventions in obese children prevented further 
deterioration of P3 event-related brain potential (ERP) 
amplitude compared with the control group. In normal-
weight children, PA interventions resulted in VAT reduction 
accompanied by faster task performance and elevated ampli-
tude P3 event-related brain potential (ERP) [31]. Elevated 
VAT volumes can also influence adolescent structural brain 
integrity and potential development. Research by Schwartz 
et al. demonstrated that in a community-based sample of 970 
adolescents, increased VAT volume was independently asso-
ciated with the high signal intensity of white matter, white/
gray matter signal ratio, and standardized magnetization 
transfer ratio (MTR) of white and gray matter. In addition 
to VAT, other fat depots were also independently associated 
with adolescent brain structure, suggesting adiposity-related 
variations in phospholipid in cerebral lipids and potential for 
long term effects on neurotransmission and plasticity [32].

Over the last decade, numerous neuroimaging studies 
have highlighted the direct and indirect roles of VAT in the 
association between obesity and adolescent brain structures 
[33]. For example, among 15–18 years olds, the total cer-
ebral cortical thickness was significantly correlated with 
the ratio of VAT to total body fat (via MRI measurements) 
independently of BMI [34]. In addition, a recent study also 
found that a mutation close to the DHCR24 gene was asso-
ciated with the changes in white matter microstructure and 

Fig. 1   Brain-melanocortin signaling controls fat mass indirectly by 
regulating energy balance and by direct control of lipid mobilization 
from adipose tissue via sympathetic nervous system activity
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peripheral lipid metabolism, providing supporting evidence 
for a potential link between VAT and brain microstructure 
[35]. Another factor that may influence adolescent brain 
structure is low-grade peripheral inflammation. A recent 
study revealed that VAT related peripheral inflammation in 
adolescents was associated with the changes in white matter 
microstructure and decreased cognitive function [36], with 4 
of the 64 tested glycerophosphocholines (GPCs) associated 
with both VF and serum C-reactive protein (CRP).

Accumulation of visceral adiposity can disrupt the brain’s 
sensitivity to interoceptive feedback, leading to food crav-
ings and impulsive eating. In a study involving 75 adults 
and the utilization of a 60-point scale based on the body 
composition analyzer (a score of 1–12 indicates normalized 
VAT levels, 13–59 signifying visceral obesity), research-
ers showed that the VAT score was associated with con-
nectivity changes among different regions of the brain [37]. 
Negative associations were located in the middle-dorsal 
insula with a cluster involving the bed nucleus of the stri-
aterminalis and the hypothalamus, whilst positive associa-
tions among the rostral insula and the right amygdala, the 
middle-dorsal insula with the middle frontal gyri, and the 
middle-dorsal insula with the right intraparietal cortex) were 
reported. Likewise, a higher VAT mass (assessed by dual-
energy X-ray absorptiometry (DXA) fan-beam technology) 
was associated with reduced white matter connectivity in 
military pilots, even though the correlation between the 
total body fat and white matter connectivity was of positive 
significance [38]. Before lifestyle intervention, increased 
cerebral insulin sensitivity was associated with decreased 
body total fat and VAT volume, respectively [13, 23]. The 
strong responsiveness of the hypothalamus was most closely 
associated with reduced VAT, but not SAT [13]. In middle-
aged adults, SAT and VAT volumes showed no correlation 
with total brain volume via CT measurments [39], whilst a 
negative correlation between VAT and brain volume was 
demonstrated [39], suggesting high VAT levels may have a 
harmful effect on brain gray matter as well.

In the elderly, VAT volumes were associated with sig-
nificant changes in the structural regions of the cerebellum 
(involved in motor processing) and cerebrum (engaged in 
cognitive and emotional processing). Another study also 
showed a bigger VAT area was significantly associated 
(irrespective of sex) with thinner parietal cortexes, temporal, 
cingulate, insular lobes. It should be noted that none of the 
regional cortical thicknesses significantly differed between 
individuals with the highest and middle levels of the sub-
cutaneous fat area [40]. Moreover, VAT area was correlated 
with the peak height of MTR of gray matter and white mat-
ter, even though BMI, hypertension type 2 diabetes mellitus, 
smoking and statin influenced this correlation [41].

Present understanding of cerebellar functions encom-
passes motor and cognitive processes [42]. The cerebellum 

shows significant glucose metabolism and a greater reduc-
tion in cerebral blood flow following satiation in obese sub-
jects, being structurally responsive to leptin levels involved 
in the neurobiology of obesity [43, 44]. Interestingly, the 
cerebellum shows pathological changes in most cases of AD 
[45]. An interesting study revealed a significant VAT–age 
interaction for cerebellar structure and connectivity [46] 
(Fig. 2). The human brain shrinks with age, and this shrink-
age is differential and selective [47], whereas both cerebellar 
grey and white matter show accelerated structural decrease 
[48].

The research presented so far suggests that VAT might 
be a better indicator of obesity-induced cortical thinning 
than BMI in the elderly [49, 50]. Yet a recent study showed 
the volume ratio of thigh muscle/VAT was positively cor-
related with the volume of cognition-related brain regions 
(e.g., left entorhinal cortex, right temporal pole, and inferior 
temporal gyrus) and motor function-related brain regions 
(e.g., cerebellum and right globus pallidus), whilst, the cor-
relation between VAT and temporal lobe volumes was less 
significant [51] implying that cerebellum and pallidum vol-
umes could be influenced by physical activity. In addition, 
another study showed a significant inverse association of the 
cingulate gyrus and hippocampus GM volume and hepatic 
fat fraction, but no significant association with BMI, VAT, or 
pancreatic fat content [52]. Taken to together, these reports 
suggest liver-specific fat depots and muscle/VAT ratios may 
be better risk markers for neurodegenerative processes than 
VAT alone, with potentially important implications for early-
stage lifestyle interventions regarding the older populous.

Imaging Studies Supporting White Matter 
and VAT Associations

There are such studies revealed that brain parenchymal 
lesions were able to be associated with VAT. The VAT area 
was significantly higher in the white matter lesions (WMLs)-
positive group than in the WMLs-negative group, and high 
VAT area and insulin resistance were the independent 
predictors of WMLs in patients with type 2 diabetes mel-
litus, respectively [53]. In addition, an area of VAT (≥ 100 
cm2) was associated with WMLs and silent lacunar infarc-
tion (SLI) independent of age, cardiovascular risk factors, 
waist circumference and BMI in subjects without a history 
of symptomatic cerebrovascular disease [54]. Waist-to-hip 
ratio (WHR), a marker of visceral obesity, was predomi-
nantly related to higher deep white matter hyperintensities 
(WMH) and higher deep-to-periventricular WMH ratio [55], 
in which the elevated IL-6 is probably acting as a mediator 
showed by the mediation analyses [55]. In subjects free of 
cerebrovascular disease, WMH had higher VAT area, BMI 
and waist circumference than those without WMH, and the 
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VAT area was an independent risk factor of cerebral WMH 
after adjusting for age, sex, diabetes, hypertension, smoking 
and alcohol [56]. Similar comparison and regression analysis 
results were also observed in VAT and lacunar infarct [49]. It 
was shown that a higher VAT/SAT ratio was an independent 
predictor of cerebral microbleeds (CMBs) in neurologically 
healthy people [57] and this ratio was also independently 
associated with the presence of ischemic changes, cerebral 
artery stenosis or occlusion, and cervical plaque in appar-
ently healthy adults [58].

Interaction and Potential Mechanism 
of Brain and Visceral Adipose Tissue

Effects of the Hypothalamus on Visceral Adipose 
Tissue in Murine Models

Murine model evidence indicates the deleterious effects of 
excess VAT may extend beyond metabolic dysregulation 
and impact cognitive function and brain health, impair-
ing tasks requiring cognitive control. Early experiments 
involving the long-term infusion of brain-derived neuro-
trophic factors(BDNF) in mice showed reductions in food 
intake, body weight, SAT and VAT, and serum triglycer-
ide levels [59]. The authors attributed the partial media-
tion of BDNF and enhanced lipolysis to the activity of the 

corticotrophin releasing hormone-urocortin-corticotropin 
releasing hormone-receptor 2 (CRH-urocortin-CRH-
R2) in the paraventricular nucleus and its connection to 
hypothalamic regions [59]. Interestingly the ablation of 
tanycytes, a kind of radial glial cells located in the arcu-
ate nucleus and median eminence of the hypothalamus, 
induced the marked growths of VAT distribution and insu-
lin insensitivity in male mice, without significant influence 
on either food intake or bodyweight [60]. Furthermore, by 
acting on adjacent adipocyte mesenchymal cells via the 
β2-adrenergic receptor, sympathetic nerve endings could 
modulate glia-derived neurotrophic factor expression and 
the innate lymphoid cell group 2 (ILC2) in gonadal fat, 
further regulating energy metabolism, insulin resistance 
and propensity to obesity [61]. This sympathetic aortico-
renal circuit could also be regulated by the higher-order 
brain regions, including the paraventricular nucleus of the 
hypothalamus [61]. In addition, afferent signaling via the 
hepatic branch of the vagus nerve inhibited lard intake, 
induced VAT deposition, and modified plasma metabolite 
levels in a diabetic rat model [62]. In such a case, restora-
tion of glucose energy homeostasis may be achieved via 
long-term central perfusion of adiponectin, which could 
decrease VAT mass and may increase energy consumption 
by activating hypothalamic leptin and insulin signaling 
pathways [63].

Fig. 2   Interaction between the factors visceral adipose tissue (VAT) 
and age in the left cerebellum with changes of grey matter density 
(GMD, left plot) and eigenvector centrality (EC, right plot). The 
young-to-mid-age participants are shown with violet dots; older par-
ticipants are shown in green colour. Circles with black edge show 

the fitted GMD/EC values with computing the interaction between 
VAT and age; the smaller dots show the normalized GMD/EC values 
including the error term of the general linear model. Thus, the dots 
show original GMD/EC values adjusted for confounds that were used 
in the model [46]
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Effects of Visceral Adipose Tissue on the Brain

Visceral obesity may result from a neuroendocrine dis-
order associated with hypothalamic-pituitary axis(HPA) 
dysregulation and sympathetic nervous system activation. 
Initial experiments with the rats fed a high-fat diet showed 
brain mitochondrial dysfunction, increased brain apoptosis, 
impaired hippocampal plasticity, and decreased learning and 
memory ability, all of which were reversible via intraperito-
neal fibroblast growth factor injection [64]. As a result, there 
has been a growing interest in analyzing the relationships 
among body composition, physical fitness, and brain func-
tion. Several brain imaging studies have shown an associa-
tion between adiposity and decreased global brain volume 
[65], as well as a reduced volume of grey matter [66] (GM) 
and white matter [67] (WM). The accumulated evidence has 
demonstrated that obesity raises the risk of cognitive decline 
and dementia related to this topic, and the accumulation of 
VAT may hamper brain connectivity (Fig. 3). However, 
according to Cárdenas et al., VAT may enhance brain con-
nectivity and probably affect overall brain health [38].

Recent research by Kang et al. highlighted the neuro-
protective benefits of endurance exercise against high-fat 
diet-induced hippocampal neuroinflammation in rats. Com-
pared with the sedentary controls, rats fed with a high-fat 
diet and subject to long-term treadmill exercise (TE) periods 
exhibited up-regulated expression of anti-apoptotic protein 
B-cell lymphoma-2 (bcl-2) in the hippocampus, decreased 
glial fibrillary acidic protein in the cerebral cortex and the 
hippocampal dentate gyrus. Resulting in the alleviation of 
proinflammatory cytokine production via inhibition of toll-
like receptor 4 (TLR-4) signaling pathway [68]. Another 
murine model study involved supplementing a high-fat 
diet with unsaturated fatty acid Omega-3. Compared to 
the high-fat control group, rats fed the supplemented diet 
presented reduced VAT mass, attenuation of mitochondrial 
respiratory chain complex inhibition, partial neuroinflam-
matory and oxidative damage reversal in the brain [69]. 
In addition, VAT was shown to promote the migration of 
peripheral macrophages into the hypothalamus [70]. Whilst 
the permeability of the blood–brain barrier (BBB) was 
increased, tight junction protein expression was decreased 

in VAT-removed mice [71]. In rats undergoing transient mid-
dle cerebral artery occlusion (MCAO), those whose VAT 
was removed before surgery showed reductions in ischemic 
cerebral infarction volumes, BBB permeability and brain 
proinflammatory cytokine levels compared with those with-
out VAT-removal, although the behavioral results were not 
significantly different [71].

Brain‑VAT Axis and Alzheimer’s Disease

Current studies regarding the correlation between VAT and 
AD are small in quantity and low in evidential strength, 
and prospective cohort studies with large sample sizes are 
insufficient. However, genetic analysis has shown that sev-
eral potential pathogenic genetic risks in AD patients are 
closely related to lipid metabolism [72, 73]. Clinical studies 
also revealed that estradiol and VAT were associated with 
adults’ brain networks and memory ability [15]. The accu-
mulation of VAT was associated with mild cognitive impair-
ment, especially non-amnestic mild cognitive impairment, 
among elderly Japanese women from a single community 
[74]. Among healthy elderly adults, VAT was negatively 
correlated with nonverbal memory and attention, while 
the increase of VAT was related to reduced hippocampal 
volume and an increase in ventricular volume. Participants 
with 25% more VAT also had the smallest hippocampal vol-
ume, even after adjusting for age, gender, hypertension and 
BMI [75]. In cognitively normal adults, a higher VAT level 
corresponded to memory decline and volume reductions 
in subcortical gray matter and hippocampal; moreover, the 
correlation gradually increased with age [76]. All the find-
ings suggest a clear relationship between BVA and cognitive 
impairment.

It was found that VAT of APP/PS1 transgenic mice had 
a deposition of brain-derived Aβ by ELISA [77]. Besides, 
the peritoneal dialysis reduced the levels of Aβ in the brain 
and blood of APP/PS1 mice significantly and increased the 
level of Aβ in VAT markedly (about 3.2 times higher than 
the control group) [77]. These results suggest that VAT (e.g., 
the greater and lesser omentum) may reduce cerebral Aβ 
burden via the direct uptake of Aβ in the blood.

Fig. 3   White matter cluster showing both negative and positive cor-
relation between visceral adipose tissue/total fat mass-respectively 
and fractional anisotropy. Significant areas are represented in blue 

for visceral adipose tissue (VAT) and red for total fat mass, indicating 
higher VAT was associated with lower fractional anisotropy [38]
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VAT contains a variety of immune cells. For example, 
milky spots (MSs) are unique structures found in the greater 
omentum, consisting of leukocyte aggregations embedded 
among the adipocytes composed of VAT-related CD4+ regu-
latory T cells (Tregs), which can express chemokine recep-
tors (CCR)-1 and CCR-2 [78, 79], both of which belong to 
a family of G-protein-coupled receptors with seven trans-
membrane domains. Notably, post mortem examination 
confirmed that the levels of CCR-1 in the hippocampus and 
cerebral cortex of AD patients were highly correlated with 
the degree of cognitive impairment, and CCR-1 was mainly 
distributed in the neurite where the senile plaques with 
higher Aβ42 levels were located [80]. These findings suggest 
that VAT may affect Aβ metabolism via Tregs-derived CCR. 
In addition, the changes in obese and aging VAT are partly 
driven by a chronic local inflammatory state, characterized 
by immune cells that typically adopt an inflammatory pheno-
type during metabolic disease, which may be age-associated 
VAT dysfunction in AD development (Table 1).

It has been reported that peripheral adipose tissue insulin 
resistance could change hippocampal synapses’ lipid com-
position and function [89]. There are more natural killer T 
(NKT) cells in VAT (greater omentum) than other lymphoid 
tissues [90]. Mice lacking NKT cells gained body weight 

significantly after a high-fat diet, with significant increases 
of inflammatory macrophages in adipose tissue and induced 
insulin resistance [91, 92]. However, some animal experi-
ments have shown that the insulin sensitivity of VAT can be 
increased by blocking IL-33 receptors that consume VAT-
related Tregs [83]. As previously inferred, insulin influ-
ences Aβ clearance and tau phosphorylation affecting AD’s 
pathogenesis through various ways (e.g., enhancing synaptic 
transmission and dendritic spine formation, promoting neu-
rotransmitter metabolism, regulating lipid metabolism and 
neuroinflammation) [93]. All the above findings suggest that 
VAT has the potential of affecting Aβ metabolism and AD 
pathogenesis by regulating insulin resistance.

The resident macrophages (GATA6+) specific to VAT 
MSs can express retinal dehydrogenase (RD)-2 [94] at a high 
level, which is the critical enzyme for retinoic acid (RA) 
synthesis in vivo. Interestingly, animal experiments have 
found that RA could regulate the nuclear transcription fac-
tor (NF)-κB signaling pathway to reduce the expression of β 
amyloid cleaving enzyme-1 (BACE-1) [6]. Therefore, exoge-
nous supplementation of RA receptors could improve learn-
ing and memory abilities, increase insulin-degrading enzyme 
(IDE) expression, reduce brain Aβ burden, and reduce the 
level of inflammatory factors in the hippocampus of AD 

Table 1   Alterations in the 
visceral adipose tissue (VAT) 
immune cells during aging and 
AD development

↑indicates increased, ↓ indicates decreased, and ↔ indicates no change or no consensus

Factor Significant effects Models References

Innate immune cells
Macrophages ↑ pro-inflammatory phenotype Mouse [81]

↓ proportion of M2-like ATMs
 ↔ proportion of M1-like ATMs
↑ proportion of CD11c- CD206- ATMs
↑ expression of CCR2, IL-6, MCP-1, TNFα
↓ expression of PPARγ

ILC-1  ↔ proportion [H] Human [82]
ILC-2
Eosinophils  ↔ ↓ eosinophils in VAT [M] Mouse [83]
Adaptive immune cells
B2 ↑ mature B2 in VAT Mouse [84]

↑ circulating IgG levels
↑ OcaB expression in VAT

B1  ↔ ↑ numbers of B1a and B1b [84]
↑ accumulation of 4-1BBL+ B1a cells] Mouse and human [85]

ABCs ↑ accumulation of aged adipose B cells (AABs) Mouse [86]
↑ in females Mouse [87]

CD4+ ↑ in VAT Mouse [81]
Treg ↑ in VAT Mouse [81]

↑ enrichment in males Mouse [88]
CD8+ ↑ in VAT [M] Mouse [83, 81]

↑ activation and proinflammatory cytokine secre-
tion in females

Mouse [88]
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mice [95]. Thus, these findings suggest that VAT could 
reduce brain Aβ burden via RA synthesis by macrophages.

Recent studies have confirmed that MSs innervated with 
peripheral sympathetic fibers [95] can produce brain-derived 
neurotrophic factors (BDNF) and a variety of neurotrophins 
(NTs) [96], and able to maintain the precursors and promote 
the proliferation of macrophages dependent on gut micro-
biota [90, 97]. Notably, peripheral sympathetic excitability 
[98] and the gut microbiota diversity [99] changed at the 
early stage of AD. Thus, these findings indicate that VAT 
may affect the pathogenesis of AD through gut microbiota 
and vice versa.

The NACHT, LRR, and PYD domains-containing pro-
tein 3 (NLRP3) induced by VAT could impair the learning 
and memory abilities of mice through microglia activation 
mediated by interleukin (IL)-1 [100]. In addition, under 
hypoxia, mesenchymal stem cells in the peripheral adipose 
tissue were thought to enhance neuroinflammation in AD 
rats by altering the expression of Toll-like receptor (TLR)-2 
and TLR-4 [89]. Thus, neuroinflammation may also mediate 
BVA and AD pathogenesis (Fig. 4).

Conclusion and Perspectives

As described earlier, peripheral energy metabolism and par-
ticularly lipid metabolism have been associated with AD 
and Aβ1–42 deposition. In the clinical setting, total and vis-
ceral adiposity has been associated with the risk of dementia 
[101, 102]. VAT seems more prone to insulin resistance and 
low-grade inflammation related to obesity [103]. Notably, 
increased VAT is reported to increase the risk of AD pro-
gression in a seemingly more robust manner than general 
adiposity [104–106]. The overlap between brain signals and 
metabolic signals and VAT indicates crosstalk between brain 
and peripheral adipocytes; thus, the brain may play a cru-
cial role in AD progression. Obesity-mediated signaling may 
evoke AD by secreting various signalling molecules, includ-
ing cytokines, growth factors, immunomodulatory protein, 
complement and complement-related proteins, steroidogenic 

enzymes, leptin and adiponectin metabolic functions con-
cerning energy homeostasis. Although VAT has emerged as 
a hot field of biomedical research, especially in immunity, 
inflammation, neurological disorders. However, the precise 
mechanisms promoting AD through VAT’s secreted factors 
remain elusive. Further investigations in neuroimaging need 
to be conducted regarding interactions between VAT and the 
brain. This current study provides the groundwork for some 
potential mechanism of the axis and its influence on AD, 
providing some novel ideas for the strategies study of the 
pathogenesis, prevention and treatment of AD.
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