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Abstract
Aims/hypothesis Plant-based diets, especially when rich in healthy plant foods, have been associated with a lower risk of type 2
diabetes. However, whether plasmametabolite profiles related to plant-based diets reflect this association was unknown. The aim
of this study was to identify the plasma metabolite profiles related to plant-based diets, and to evaluate the associations between
the identified metabolite profiles and the risk of type 2 diabetes.
Methods Within three prospective cohorts (Nurses’ Health Study, Nurses’ Health Study II and Health Professionals Follow-up
Study), wemeasured plasmametabolites from 10,684 participants using high-throughput LCMS. Adherence to plant-based diets
was assessed by three indices derived from the food frequency questionnaire: an overall Plant-based Diet Index (PDI), a Healthy
Plant-based Diet Index (hPDI), and an Unhealthy Plant-based Diet Index (uPDI). Multi-metabolite profiles related to plant-based
diet were identified using elastic net regression with a training/testing approach. The prospective associations between metabolite
profiles and incident type 2 diabetes were evaluated using multivariable Cox proportional hazards regression. Metabolites
potentially mediating the association between plant-based diets and type 2 diabetes risk were further identified.
Results We identified multi-metabolite profiles comprising 55 metabolites for PDI, 93 metabolites for hPDI and 75 metabolites
for uPDI. Metabolite profile scores based on the identified metabolite profiles were correlated with the corresponding diet index
(Pearson r = 0.33–0.35 for PDI, 0.41–0.45 for hPDI, and 0.37–0.38 for uPDI, all p<0.001).Metabolite profile scores of PDI (HR
per 1 SD higher = 0.81 [95% CI 0.75, 0.88]) and hPDI (HR per 1 SD higher = 0.77 [95% CI 0.71, 0.84]) showed an inverse
association with incident type 2 diabetes, whereas the metabolite profile score for uPDI was not associated with the risk. Mutual
adjustment for metabolites selected in the metabolite profiles, including trigonelline, hippurate, isoleucine and a subset of
triacylglycerols, attenuated the associations of diet indices PDI and hPDI with lower type 2 diabetes risk. The explainable
proportion of PDI/hPDI-related diabetes risk by these metabolites ranged between 8.5% and 37.2% (all p<0.05).
Conclusions/interpretation Plasma metabolite profiles related to plant-based diets, especially a healthy plant-based diet, were
associated with a lower risk of type 2 diabetes among a generally healthy population. Our findings support the beneficial role of
healthy plant-based diets in diabetes prevention and provide new insights for future investigation.
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TAG Triacylglycerol
uPDI Unhealthy Plant-based Diet Index

Introduction

Type 2 diabetes, constituting over 90% of diabetes cases,
poses a major threat to global health. The worldwide
prevalence of type 2 diabetes in adults has increased from
~150 million in 2000 to >450 million in 2019 and is projected
to rise to ~700 million by 2045 [1]. The complications of type
2 diabetes, both macrovascular (for example, CVD) and
microvascular (for example, complications affecting the
kidney, the retina and the peripheral nervous system), further
increase the global burden of type 2 diabetes [2]. The major
drivers of the global diabetes epidemic are unhealthy diet,
overweight/obesity, genetic predisposition and other lifestyle
factors [3]. Plant-based diets, especially healthy plant-based
diets rich in high-quality plant foods, such as whole grains,
fruits and vegetables, have been associated with a lower risk
of type 2 diabetes [4, 5]. However, the underlying mecha-
nisms are not fully understood.

Recent advances in high-throughput metabolomics profil-
ing have brought about a new era for nutritional research.
Metabolomics measures downstream components or metabol-
ic products of foods. Identifying metabolites associated with
plant-based diets may provide new insights into the biological
processes behind the association between plant-based diets

and reduction in type 2 diabetes risk. Many previous studies
have identified the metabolites that were correlated with
several other dietary patterns, such as the Alternate
Mediterranean Diet [6], the Dietary Approaches to Stop
Hypertension diet [7], and western and prudent diets [8].
However, most studies analysed metabolites individually.
Only a few studies accounted for the high correlations among
the metabolites [9, 10] and obtained multi-metabolite profiles
of dietary patterns [11].

We therefore analysed the plasma metabolites among
10,684 participants from the Nurses’ Health Study (NHS),
NHSII, and Health Professionals Follow-up Study (HPFS)
and identified multi-metabolite profiles associated with
plant-based diets by applying a training and testing approach.
The identified metabolite profiles may serve as potential
biomarkers of plant-based diets, but also markers of complex
metabolic responses to the dietary exposures [12, 13].We then
prospectively examined the association of obtained multi-
metabolite profiles with incident type 2 diabetes risk and
explored the potential mediating metabolites.

Methods

Study population Our analyses were performed within three
prospective cohort studies: NHS, NHSII and HPFS. The NHS
was initiated in 1976, enrolling 121,700 female nurses aged 30–
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55 years [14]. The NHSII was established in 1989 and recruited
116,429 female nurses aged 25–42 years [14]. The HPFS began
in 1986 and enrolled 51,529 male health professionals aged 40–
75 years [15]. Using a similar protocol, we collected blood
samples from 32,826 participants in the NHS between 1989
and 1990, from 29,611 participants in the NHSII between 1996
and 1999, and from 18,225 participants in the HPFS between
1993 and 1995. Participants were mailed blood collection kits,
and after collection samples were shipped via overnight courier
with an icepack to our laboratory. Whole blood samples were
then processed and separated into plasma, buffy coat and red
blood cells and stored in liquid nitrogen freezers [16, 17].

In the present study, we included participants who were
selected for 14 prior nested case–control sub-studies on

metabolomics (electronic supplementary material [ESM]
Table 1). A total of 10,684 participants with available dietary
intake data were included in the metabolomics analysis to
identify the multi-metabolite profiles that were correlated to
plant-based diets. For the analysis of metabolite profiles with
incident type 2 diabetes, we excluded participants lost to
follow-up after blood collection or participants reporting a
history of cancer, CVD, or type 2 diabetes at blood draw.
We also excluded participants from the gestational diabetes
sub-study, which oversampled type 2 diabetes cases. In all,
8827 participants were included in the prospective analy-
sis (Fig. 1). The study protocols were approved by the
institutional review boards of Brigham and Women’s
Hospital and Harvard T.H. Chan School of Public

NHS NHSII HPFS

Participants with available 

metabolomics data and dietary information

(n=10,684)

Training set

(70%, n=7478)

Testing set

(30%, n=3206)

Dataset with metabolite profile scores

(n=10,684)

Included in the analysis for the association with type 2 diabetes risk

(n=8827, including 760 incident type 2 diabetes cases identified during follow-up)

Excluded (n=1857):

Lost to follow-up after blood collection (n=283)

Cancer at blood draw (n=582)

Cardiovascular diseases at blood draw (n=261)

Diabetes at blood draw (n=411)

Enrolled in the gestational diabetes sub-study (n=320)

Elastic net regression within a tenfold 

cross-validation framework

Apply to testing set to calculate metabolite 

profile scores in the testing set

Elastic net regression using 

leave-one-out approach to 

calculate scores in the 

training set

Fig. 1 Schematic of the study design. To make full use of the data, we
calculated metabolite profile scores in the training set using a leave-one-
out approach. We left one participant out each time and used the remain-
ing participants to train an elastic net model (using tenfold cross

validation). Then we applied this trained model to the participant left
out and calculated the metabolite profile score. We repeated this step
for every participant in the training set and calculated their metabolite
profile scores
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Health. Participants’ completion of questionnaires was
considered as implied consent.

Dietary assessment and plant-based diet indices Self-reported
dietary data were ascertained using semiquantitative food
frequency questionnaires (FFQs). The validity and reproduc-
ibility of the questionnaires have been well documented [18,
19]. To better reflect habitual diets, we calculated the mean of
the dietary intakes from the two FFQs closest to the time of
blood draw. Three indices were calculated to estimate the
adherence to three plant-based diets: an overall Plant-based
Diet Index (PDI), a Healthy Plant-based Diet Index (hPDI),
and an Unhealthy Plant-based Diet Index (uPDI). The devel-
opment of these three indices has been described previously
[5, 20]. In brief, based on nutrient and culinary similarities, 18
food groups were created within three large categories:
healthy plant foods (n = 7; whole grains, fruits, vegetables,
nuts, legumes, vegetable oils and tea/coffee); unhealthy plant
foods (n = 5; refined grains, fruit juices, potatoes, sugar-
sweetened beverages and sweets/desserts); and animal foods
(n = 6; animal fats, dairy, eggs, fish/seafood, meat and
miscellaneous animal-based foods). We distinguished
between healthy and unhealthy plant foods using existing
knowledge of associations of the foods with type 2 diabe-
tes, CVD, certain cancers, and intermediate conditions,
including obesity, hypertension, hyperlipidaemia and
inflammation [5]. Alcoholic beverages were not included
in the indices but were adjusted for in the multivariable
analyses.

Each of the 18 food groups was divided into quintiles of
consumption and given positive or reverse scores. For positive
scores, a score of 5 was assigned to the highest quintile and a
score of 1 to the lowest; for reverse scores, the scoring pattern
was inversed, with 5 being assigned to the lowest quintile and
1 to the highest. All plant foods were given positive scores,
and animal food groups were given reverse scores to calculate
PDI. When calculating hPDI, only healthy plant foods
were given positive scores, whereas only unhealthy plant
foods were given positive scores for uPDI calculation.
Finally, the 18 food group scores for each participant
were summed to obtain the indices, with a possible range
of 18 to 90.

Metabolomics measurement The plasma metabolomics
profiling data were obtained using high-throughput LC MS
techniques at the Broad Institute of MIT and Harvard
(Cambridge, MA, USA) [21]. Details of the metabolomics
measurement can be found in the ESMMethods. Polar metab-
olites were separated using hydrophilic interaction LC with
positive ionisation mode MS detection (HILIC-pos), whereas
C8 chromatography with positive ionisation mode detection
(C8-pos) was used to profile lipids. Targeted raw data were
processed using TraceFinder software (Thermo Fisher

Scientific, Waltham, MA, USA), and non-targeted data were
processed using Progenesis QI (Nonlinear Dynamics,
Newcastle upon Tyne, UK). Metabolite identification was
reported based on the standards proposed by the
Metabolomics Standards Initiative [22]. Requirements for
‘level 1’ and ‘level 2’ identification were described in the
ESM Methods.

We excluded metabolites whose intraclass r across blinded
quality control replicates (10% of study samples) were <0.3 (n
= 7) and metabolites with an overall detection rate <75% (n =
139). Missing data for eachmetabolite were imputed using the
random forest imputation approach as it has been previously
recommended for metabolomics analysis [23]. We also
excluded metabolites with poor stability (Spearman correla-
tion or intraclass r, 0.75) due to delayed processing that was
observed in our pilot study (n = 61) [24]. Finally, we included
a total of 264 known metabolites in the current analysis (ESM
Table 2). They were primarily lipids (n = 178, including 75
glycerolipids, 28 glycerophospholipids, 23 plasmalogens, 21
carnitines, 19 lysophospholipids, and 12 cholesteryl esters),
but also included amino acids related metabolites (n = 37)
and other metabolites (n = 49) (Fig. 2a). Metabolites were
highly correlated within each category (ESM Fig. 1).

Ascertainment of type 2 diabetes Participants who reported
physician-diagnosed diabetes on the biennial questionnaire
were sent a validated supplementary questionnaire to enquire
about symptoms, diagnostic tests and medication use and
confirm the diagnosis [25, 26]. We only included confirmed
type 2 diabetes cases that met at least one of the following
National Diabetes Data Group criteria: (1) one or more classic
symptoms (excessive thirst, polyuria, weight loss and hunger)
plus fasting blood glucose ≥7.8 mmol/l (≥140 mg/dl) or
random blood glucose ≥11.1 mmol/l (≥200 mg/dl); (2) no
symptoms but elevated blood glucose on two separate occa-
sions (fasting blood glucose ≥7.8 mmol/l [≥140 mg/dl] or
random blood glucose ≥11.1 mmol/l [≥200 mg/dl] or 2 h
blood glucose ≥11.1 mmol/l [≥200 mg/dl] after OGTT); (3)
any treatment with insulin or other glucose-lowering medica-
tions for diabetes [27]. The threshold for fasting blood glucose
was changed to ≥7.0 mmol/l (≥126 mg/dl) as per the ADA
diagnostic criteria after 1998 [28].

Non-dietary covariates Information on body weight, physical
activity, smoking status, multivitamin use, ethnicity, family
history of type 2 diabetes, hypertension, antihypertensive
medication use, hypercholesterolaemia and lipid-lowering
medication use was collected from self-reported biennial
questionnaires preceding blood collection. BMI was derived
using height reported at cohort baseline and body weight
reported closest to the blood draw. We collected age and
fasting status through questionnaires completed at blood
collection.
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Statistical analyses We log-transformed metabolites that
were highly skewed (absolute skewness ≥2) [29]. All
metabolites were then converted to z scores with a mean
of 0 and SD of 1 within each sub-study. To identify metab-
olite profiles correlated to plant-based diets, all the partic-
ipants were randomised to either the training set or the
testing set in a 7 to 3 fashion (Fig. 1). We used an elastic
net model within a tenfold cross-validation framework to
regress PDI, hPDI or uPDI on the 264 known metabolites
in the training set [30]. We then applied the trained model
to the testing set to calculate a metabolite profile score. The
metabolite profile score was calculated as the weighted
sum of the selected metabolites with weights equal to the

elastic net regression coefficients. The score in the training
set was obtained using a leave-one-out approach to avoid
overfitting. We then calculated r between diet indices and
the corresponding metabolite profile score. To evaluate the
robustness of the metabolites selected in the metabolite
profile score, we examined the associations between these
metabolites and the corresponding diet index stratified by
training/testing set, cohort, fasting status, and original
case–control status. Associations of selected metabolites
with diet indices and the dietary components were exam-
ined using multivariable linear regression. Plant-based diet
indices and intake of each component were standardised
before regression analyses.

Fig. 2 Known metabolites measured and the metabolite profile score for
three plant-based diet indices. (a) The distributions of categories for the
264 assayed known metabolites. (b) Venn diagram of selected

metabolites for the metabolite profile score of PDI, hPDI and uPDI. (c)
Correlation between PDI and the corresponding metabolite profile score
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Associations of plant-based diet indices, metabolite profile
scores and selected metabolites with type 2 diabetes risk were
assessed by Cox regression using combined data from the
training set and testing set (Fig. 1). The Cox regression was
stratified by cohort, original sub-study and case–control status
and adjusted for age in months, BMI, ethnicity, fasting status,
multivitamin use, smoking status, physical activity, hyperten-
sion, antihypertensive medication use, hypercholesterolaemia,
lipid-lowering medication use, family history of diabetes, total
energy intake, alcohol intake and margarine intake. The
person-time for each participant was calculated from the blood
collection date until the diagnosis of type 2 diabetes, death,
loss to follow-up, or end of follow-up (June 2016 in the NHS,
June 2017 in the NHSII, and January 2016 in the HPFS),
whichever came first.

To test whether an association between the metabolite
profile score and risk of type 2 diabetes was due to its correla-
tion with diet index, we further included the diet index and the
corresponding score simultaneously in the multivariable model.
Among metabolites selected in the profile score, we identified

potential mediating metabolites of the association between
plant-based diets and type 2 diabetes risk according to four
predefined mediation criteria [31]: (1) existence of an associa-
tion between PDI/hPDI/uPDI and type 2 diabetes; (2) existence
of an association between PDI/hPDI/uPDI and the potential
mediating metabolite in all participants and each stratum
mentioned above; (3) existence of an association between the
potential mediating metabolite and type 2 diabetes in the oppo-
site direction as with PDI/hPDI or in the same direction as with
uPDI; and (4) attenuation of the diet–type 2 diabetes association
after adjusting for the potential mediating metabolite.
Mediation analyses were further performed to estimate the
proportion of diet-type 2 diabetes association that could be
explained by the intermediate metabolite and the metabolite
profile score [32, 33]. All statistical tests were two-sided
(p<0.05), and multiple testing was corrected using the
Bonferroni method. All analyses were performed in R version
4.0 [34]. The main R packages used were ‘missRanger’ for
random forest imputation, ‘glmnet’ for elastic net regression,
and ‘survival’ for Cox regression.

Table 1 Characteristics of the
study participants included in the
metabolomics analysis

Characteristic NHS

(n=5505)

NHSII

(n=3315)

HPFS

(n=1864)

Overall

(n=10,684)

Age, years 57 (7) 45 (4) 64 (8) 54 (10)

Female (%) 100 100 0 83

White (%) 96 97 95 96

BMI, kg/m2 25.4 (4.6) 25.8 (5.9) 25.6 (3.1) 25.6 (4.8)

Physical activity, MET h/week 15.9 (20.3) 18.1 (22.0) 31.3 (28.3) 19.3 (23.1)

Fasting at blood collection (%) 70 72 59 69

Smoking status (%)

Never 45 67 46 52

Past 41 25 50 37

Current 14 8 4 11

Medical history (%)

Diabetes 4 2 5 3

Hypertension 27 11 30 23

Hypercholesterolaemia 29 25 39 29

Dietary intake

Energy intake, kJ/daya 7418 (1958) 7694 (2088) 8410 (2322) 7678 (2096)

Alcohol intake, g/day 5.8 (9.2) 4.0 (6.7) 11.4 (14.3) 6.2 (10.0)

Healthy plant foods, serving/day 10.4 (3.6) 9.3 (3.8) 10.5 (3.8) 10.0 (3.7)

Unhealthy plant foods, serving/day 4.2 (2.1) 4.7 (2.1) 4.9 (2.4) 4.5 (2.2)

Animal foods, serving/day 5.0 (1.8) 4.7 (1.8) 4.8 (2.0) 4.8 (1.8)

PDI 55.0 (5.8) 55.1 (5.9) 55.6 (6.2) 55.2 (5.9)

hPDI 55.9 (6.6) 55.3 (6.9) 55.5 (6.9) 55.6 (6.8)

uPDI 54.1 (6.7) 54.8 (7.3) 53.9 (6.4) 54.3 (6.8)

Values are means (SDs) for continuous variables and percentages for categorical variables

For PDI/hPDI/uPDI calculation, 18 food groups were used, and the range was 18–90
a Conversion factor: 1 kcal = 4.184 kJ

MET, metabolic equivalent of task
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Results

Characteristics of the study participants The participants
included in the metabolomics analysis were predominantly
white, middle-aged (mean age 54 ± 10 years), and the mean
BMI was 25.6 ± 4.8 kg/m2 (Table 1). Among them, 8827
participants free of diabetes, CVD and cancer at blood collec-
tion were further included in the association analysis of type 2
diabetes (Fig. 1). Compared with participants who did not
develop type 2 diabetes after the blood draw, participants
who were diagnosed with type 2 diabetes had a higher BMI,
were more likely to have hypertension and hypercholesterol-
aemia, use antihypertensive and lipid-lowering medications,
and report a family history of diabetes, but less likely to be
physically active (Table 2). They also had a lower intake of
healthy plant foods and have lower PDI and hPDI.

Metabolite profiles related to plant-based diet indices A
panel of 55 metabolites for PDI, a panel of 93 metabolites
for hPDI and a panel of 75 metabolites for uPDI were selected
by the elastic net regression (Fig. 2b). The metabolite profile
score based on the selected metabolites was significantly
correlated with each corresponding diet index (Pearson r =
0.33 for PDI, 0.41 for hPDI and 0.37 for uPDI in the training
set; Pearson r = 0.35 for PDI, 0.45 for hPDI and 0.38 for
uPDI in the testing set; all p values <0.001) (Fig. 2c). The
correlations between the diet index and the corresponding
score were consistent across three cohorts (ESM Fig. 2).
Among the selected metabolites, 24 out of 55 were consistent-
ly associated with PDI in all participants and across training/
testing set, three cohorts, fasting/non-fasting, and case/non-
case participants (ESM Fig. 3), 37 out of 93 with hPDI
(ESM Fig. 4), and 26 out of 75 with uPDI (ESM Fig. 5).

Table 2 Characteristics of the study participants included in the association analysis of type 2 diabetes

Characteristic Participants developing
type 2 diabetes (n=760)

Participants not developing
type 2 diabetes (n=8067)

Overall
(n=8827)

Age, year 55 (8) 54 (9) 54 (9)

Female (%) 88 86 87

White (%) 92 96 96

BMI, kg/m2 29.2 (5.8) 24.9 (4.4) 25.3 (4.7)

Physical activity, MET h/week 14.4 (18.1) 19.2 (23.4) 18.8 (23.0)

Fasting at blood collection (%) 69 69 69

Smoking status (%)

Never 52 52 52

Past 35 37 37

Current 13 11 11

Medical history (%)

Hypertension 38 19 20

Hypercholesterolaemia 36 26 27

Medication use (%)

Antihypertensive 30 14 16

Lipid-lowering 5 3 3

Family history of diabetes (%) 46 27 29

Dietary intake

Energy intake, kJ/daya 7607 (2113) 7632 (2071) 7627 (2075)

Alcohol intake, g/day 4.2 (8.1) 6.3 (9.8) 6.2 (9.7)

Healthy plant foods, serving/day 9.6 (3.6) 10.1 (3.7) 10.0 (3.7)

Unhealthy plant foods, serving/day 4.4 (2.2) 4.5 (2.1) 4.5 (2.1)

Animal foods, serving/day 5.0 (1.8) 4.8 (1.8) 4.8 (1.8)

PDI 54.2 (5.7) 55.3 (5.9) 55.2 (5.9)

hPDI 54.4 (6.8) 55.7 (6.8) 55.6 (6.8)

uPDI 54.8 (7.0) 54.4 (6.8) 54.4 (6.8)

Values are means (SDs) for continuous variables and percentages for categorical variables

For PDI/hPDI/uPDI calculation, 18 food groups were used, and the range was 18–90
a Conversion factor: 1 kcal = 4.184 kJ

MET, metabolic equivalent of task
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Seventeen metabolites were only selected in the metabolite
profile for PDI (ESM Fig. 6a). Metabolites inversely correlat-
ed with PDI, such as hydroxyproline, C5 carnitine, C38:5 PE
plasmalogen, C40:7 PE plasmalogen and three triacylglycer-
ols (TAGs), were negatively associated with intake of healthy
plant foods but positively associated with animal foods, espe-
cially animal fats, dairy and total meat (Fig. 3). hPDI and uPDI
exhibited different metabolite profiles (ESM Fig. 6b and 6c).
Several metabolites were selected in the profile for both hPDI
and uPDI but with coefficients in the opposite directions
(ESM Fig. 6c). Metabolites including hippurate, trigonelline,
betaine, pipecolic acid, pantothenic acid, N-acetylornithine,
C22:0 LPE and C58:11 TAG were positively associated with
hPDI but inversely associated with uPDI. On the contrary,
metabolites such as C16:1 LPC, C38:4 PC plasmalogen,
N2,N2-dimethylguanosine, C54:1 TAG and myristoleic acid
were inversely associated with hPDI but positively associated
with uPDI. The positive associations of the above metabolites
with hPDI were also observed for whole grains, fruits, vege-
tables, legumes and tea/coffee; the positive associations of
metabolites associated with uPDI were observed for potatoes,
sugar-sweetened beverages and sweets/desserts (Fig. 3).

Associations of metabolite profile score with the risk of type 2
diabetes In the prospective analyses of the diet indices with
type 2 diabetes risk, inverse associations were observed for
PDI and hPDI after adjusting for BMI and other potential
confounders (HR per 1 SD higher [the same below]: 0.88

[95% CI 0.81, 0.95] for PDI; HR: 0.85 [95% CI 0.79, 0.93]
for hPDI), while no significant association was observed for
uPDI (HR: 1.07 [95% CI 0.99, 1.16]). The metabolite
profile scores for PDI and hPDI were also both inversely
associated with type 2 diabetes incidence after multivariable
adjustment (HR: 0.83 [95% CI 0.76, 0.90] for PDI score;
HR: 0.80 [95% CI 0.73, 0.87] for hPDI score). No associa-
tion was observed for the metabolite profile score of uPDI
(HR: 1.03 [95% CI 0.95, 1.11]) (Table 3). The inverse asso-
ciations of metabolite profile scores for PDI and hPDI with
type 2 diabetes risk were only slightly attenuated and
remained statistically significant after further adjustment for
diet indices PDI and hPDI (Table 3). However, the inverse
associations for diet indices PDI and hPDI were markedly
weakened and became statistically non-significant after
adjusting for the metabolite profile score (Table 3). The
metabolite profile score for PDI explained 47.8% of the
PDI-type 2 diabetes association (Fig. 4a); the proportion of
hPDI-type 2 diabetes association explainable by the metab-
olite profile score for hPDI was 51.0% (Fig. 4b).

Metabolites mediating the associations of plant-based diets
with type 2 diabetes Following four predefined criteria, we
identified eight potential intermediate metabolites of the
PDI-type 2 diabetes association (ESM Fig. 7a). γ-
aminobutyric acid (GABA), C5 carnitine and three
TAGs (C48:0 TAG, C51:0 TAG and C52:0 TAG) were
inversely associated with PDI but positively associated

Table 3 Associations of plant-
based diet indices and metabolite
profile scores with type 2 diabetes
risk

Variable Diet indices Metabolite profile scores

HR (95% CI)a p HR (95% CI)a p

PDI

Age-adjustedb 0.83 (0.77, 0.89) <0.001 0.69 (0.64, 0.75) <0.001

MVc 0.88 (0.81, 0.95) 0.002 0.81 (0.75, 0.88) <0.001

MV+mutual adjustmentd 0.93 (0.85, 1.02) 0.13 0.83 (0.76, 0.90) 0.001

hPDI

Age-adjustedb 0.79 (0.73, 0.85) <0.001 0.65 (0.60, 0.70) <0.001

MVc 0.85 (0.79, 0.93) <0.001 0.77 (0.71, 0.84) <0.001

MV+mutual adjustmentd 0.93 (0.85, 1.01) 0.09 0.80 (0.73, 0.87) <0.001

uPDI

Age-adjustedb 1.08 (1.01, 1.16) 0.03 1.11 (1.03, 1.20) 0.005

MVc 1.07 (0.99, 1.16) 0.08 1.03 (0.95, 1.11) 0.44

MV+mutual adjustmentd 1.07 (0.98, 1.17) 0.12 1.01 (0.93, 1.09) 0.89

a HR and 95% CI of type 2 diabetes risk per SD increment in diet indices or the metabolite profile score
b The basic age-adjusted model was stratified by study cohorts, original sub-studies, and the case–control status in
the original sub-study, and was adjusted for age in months
cMultivariable (MV) model was further adjusted for fasting status, BMI, race, family history of diabetes, multi-
vitamin use, smoking status, physical activity, hypertension, antihypertensive medication use, hypercholesterol-
aemia, lipid-lowering medication use, total energy intake, alcohol intake and margarine intake
dWe included both plant-based diet indices and metabolite profile scores to examine association independence
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with type 2 diabetes, whereas trigonelline, betaine and
glycine were positively associated with PDI but inversely
associated with type 2 diabetes (ESM Table 3). The
proportion of PDI-type 2 diabetes association explainable
by these single metabolites ranged between 8.5% and
37.2% (Fig. 4a). Similarly, 11 metabolites were identified
as potential intermediates of the hPDI-type 2 diabetes
association (ESM Fig. 7b). Isoleucine, C22:0 Ceramide
(d18:1) and six TAGs (C49:1 TAG, C49:2 TAG, C50:3
TAG, C51:1 TAG, C51:3 TAG and C54:1 TAG) were
inversely associated with hPDI but positively associated
with type 2 diabetes. In contrast, trigonelline, hippurate
and C22:6 CE were positively associated with hPDI but
inversely associated with type 2 diabetes (ESM Table 4).
The explainable proportion of hPDI-type 2 diabetes

association by these metabolites ranged between 10.6%
and 33.9% (Fig. 4b).

Discussion

Leveraging metabolomics data from 10,684 participants, we
identified multi-metabolite profiles associated with plant-
based diets, showing differential profiles for healthy vs
unhealthy plant-based diets. The metabolite profile scores
for both the overall plant-based diet and a healthy plant-
based diet were inversely associated with incident type 2
diabetes, independent of BMI, the corresponding diet index,
and other diabetes risk factors among a generally healthy
population. We further identified several potential

a

b

Fig. 4 Associations of PDI (a) and hPDI (b) with the risk of type 2
diabetes, adjusting for intermediate metabolites. All models were strati-
fied by study cohorts, original sub-studies, and the case–control status in
the original sub-study, and adjusted for age in months (continuous),
fasting status (yes or no), BMI (continuous), race (white or non-white),
family history of diabetes (yes or no), multivitamin use (yes or no),

smoking status (never, past or current), physical activity (continuous),
hypertension (yes or no), antihypertensive medication use (yes or no),
hypercholesterolaemia (yes or no), lipid-lowering medication use (yes
or no), total energy intake (continuous), alcohol intake (continuous) and
margarine intake (continuous). aLevel 2 identification defined by the
Metabolomics Standards Initiative. GABA, γ-aminobutyric acid
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intermediate metabolites (trigonelline, hippurate, isoleucine
and a subset of TAGs) of the association of overall and healthy
plant-based diets with type 2 diabetes risk.

Plant-based diets, by definition, are higher in plant foods
and lower in animal foods, which is reflected in our metabo-
lomics readouts. We observed that hydroxyproline, an amino
acid highly abundant in meat and negligible in many plant
foods [35], was inversely correlated with PDI and positively
associated with total meat intake. A general plant-based diet
could encompass unhealthy foods such as refined grains, pota-
toes and sugar-sweetened beverages, which are associated
with higher cardiometabolic risk [36, 37]. Therefore, an over-
all plant-based dietary pattern does not appear sufficient to
differentiate the quality of the diet. As such, diet indices
hPDI and uPDIwere correlatedwith unique patterns of metab-
olites. Among 93metabolites selected in the metabolite profile
for hPDI, 50 were unique to hPDI; similarly, 32 out of 75were
unique to uPDI. A plant-based diet captured by hPDI is scored
for being higher in whole grains, fruits, vegetables, nuts,
legumes, vegetable oils and tea/coffee, whereas the uPDI is
lower in these foods. Thus, metabolites related to coffee intake
such as trigonelline and hippurate [38], metabolites related to
legume intake such as pipecolic acid [39], and a potential
novel marker of vegetable intake –N-acetylornithine [6], were
positively correlated with hPDI but inversely with uPDI.

Consistent with our previous findings on diet indices PDI
and hPDI, the metabolite profile scores for PDI and hPDIwere
also inversely associated with the risk of type 2 diabetes [5].
Although our previous study observed that participants with
higher uPDI had a higher type 2 diabetes risk than those with a
lower uPDI, we did not observe an association between the
metabolite profile score for uPDI and type 2 diabetes risk. One

explanation could be that the strength of the association
between diet index uPDI and type 2 diabetes risk was weaker
than that for PDI and hPDI [5]. With a smaller sample size
compared with our previous study, which used participants
from the whole cohorts, the association between uPDI and
risk of type 2 diabetes was not significant in the present study.
It could also be that our metabolomics platforms did not
adequately capture the deleterious metabolic effects of
unhealthy plant foods, such as high glycaemic starchy foods
and sugary beverages.

Our metabolomics results depict the links between healthy
plant foods, potential intermediate metabolites, and subse-
quent risk of type 2 diabetes (Fig. 5). The attenuation of the
association after adjustment for these metabolites suggests
their potential mediating role in linking plant-based diets to
type 2 diabetes risk. Consumption of healthy plant foods,
especially nuts, was associated with lower levels of TAGs
with ≤56 carbon atoms and ≤3 double bonds. These TAGs
have been associated with an increased risk of type 2 diabetes
[40, 41]. Physiologic and pharmacologic experiments also
showed that levels of these TAGs decreased in response to
insulin action and were elevated in the setting of insulin resis-
tance [41]. Trigonelline and hippurate were two other inter-
mediate metabolites. Trigonelline is a phytochemical found in
coffee [42], and its favourable effects on insulin resistance
have been reported in animal studies [43]. Hippurate is typi-
cally increased after consuming phenolic compounds [44],
and an increased level of hippurate was associated with better
glycaemic control and enhanced insulin secretion [45, 46]. An
association between reduced level of hippurate and higher risk
of type 2 diabetes has been reported as well [47]. Another
notable intermediate metabolite was the branched-chain
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isoleucine glycine hippurate GABA

Fruits

C54:1
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TAGa  
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Fig. 5 Association between healthy plant foods, potential intermediate
metabolites and type 2 diabetes risk. Associations between healthy plant
foods and intermediate metabolites were examined by multivariable line-
ar regression. Associations between the intermediate metabolites and type
2 diabetes risk were examined by Cox regression. Only associations
significant at Bonferroni p<0.05 were shown. The lines between healthy

plant foods, metabolites and type 2 diabetes represent regression coeffi-
cients. The line thickness indicates the strength of the association and
colour indicates the direction (red, positive; blue, negative). aLevel 2
identification defined by the Metabolomics Standards Initiative. GABA,
γ-aminobutyric acid
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amino acid isoleucine, which was inversely correlated with
tea/coffee but positively associated with the risk of type 2
diabetes. Branched-chain amino acids are consistently associ-
ated with increased insulin resistance [48], and multiple mech-
anisms have been proposed to explain how the elevations of
these amino acids promote insulin resistance [49].

The main strengths of our study include the prospective
examination of metabolomics with incident type 2 diabetes,
the large sample size, and the use of means of two validated
FFQs to minimise the within-person variability of diet. In
addition, we used elastic net regression modelling, which
performs well in high-dimensional data, where there are high
correlations among the predictors [50]. Nevertheless, several
limitations should be discussed as well. First, the metabolo-
mics platform used in the present study was not able to
measure all established biomarkers of food intake. More
comprehensive approaches [51] will be helpful in understand-
ing the metabolomic link between diet and health. Second,
within the metabolites selected in the metabolite profiles, it
is difficult to differentiate the metabolites that directly come
from the diet and the metabolites that come from themetabolic
response to the dietary intake or other metabolic influences.
Future studies, especially human feeding trials, can benefit
from measuring both the food metabolome and the human
metabolome [12, 13]. Third, our findings regarding the inter-
mediate metabolites are hypothesis-generating. We are not
able to confirm their causal role in the associations of plant-
based diets and type 2 diabetes risk. In addition, we only
collected blood samples at one time point for metabolomics
measurement. Long-term repeated metabolomics data are
needed to understand how dietary changes relate to changes
in metabolome, thereby influencing type 2 diabetes risk.
Furthermore, we excluded metabolites that were not detected
in at least 75% of all samples for quality control. It is possible
that we might have omitted some metabolites related to the
foods that were not commonly consumed. Finally, further
studies are needed to evaluate external validity and replicate
our findings in other racial and ethnic groups.

In conclusion, we identified multi-metabolite profiles of
plant-based diets. Scores based on identified metabolites for
an overall plant-based diet and a healthy plant-based diet
showed an inverse association with the risk of type 2 diabetes
among a generally healthy population. The large attenuation
of inverse associations between plant-based diets and type 2
diabetes after adjustment for trigonelline, hippurate, isoleu-
cine, a small set of TAGs, and several other intermediate
metabolites suggests that these metabolites could be further
investigated to provide mechanistic explanations for the bene-
fits of plant-based diets on diabetes risk.
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