
Vol.:(0123456789)1 3

Cancer and Metastasis Reviews 
https://doi.org/10.1007/s10555-022-10061-3

Obesity, cancer risk, and time‑restricted eating

Manasi Das1,2 · Nicholas J. G. Webster1,2,3

Received: 12 April 2022 / Accepted: 9 August 2022 
© The Author(s) 2022

Abstract
Obesity and the associated metabolic syndrome is considered a pandemic whose prevalence is steadily increasing in many 
countries worldwide. It is a complex, dynamic, and multifactorial disorder that presages the development of several meta-
bolic, cardiovascular, and neurodegenerative diseases, and increases the risk of cancer. In patients with newly diagnosed 
cancer, obesity worsens prognosis, increasing the risk of recurrence and decreasing survival. The multiple negative effects 
of obesity on cancer outcomes are substantial, and of great clinical importance. Strategies for weight control have poten-
tial utility for both prevention efforts and enhancing cancer outcomes. Presently, time-restricted eating (TRE) is a popular 
dietary intervention that involves limiting the consumption of calories to a specific window of time without any proscribed 
caloric restriction or alteration in dietary composition. As such, TRE is a sustainable long-term behavioral modification, 
when compared to other dietary interventions, and has shown many health benefits in animals and humans. The preliminary 
data regarding the effects of time-restricted feeding on cancer development and growth in animal models are promising 
but studies in humans are lacking. Interestingly, several short-term randomized clinical trials of TRE have shown favorable 
effects to reduce cancer risk factors; however, long-term trials of TRE have yet to investigate reductions in cancer incidence 
or outcomes in the general population. Few studies have been conducted in cancer populations, but a number are underway 
to examine the effect of TRE on cancer biology and recurrence. Given the simplicity, feasibility, and favorable metabolic 
improvements elicited by TRE in obese men and women, TRE may be useful in obese cancer patients and cancer survivors; 
however, the clinical implementation of TRE in the cancer setting will require greater in-depth investigation.
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1 Introduction

Obesity has reached epidemic proportions globally, with nearly 
39% of adults being classified as overweight and, of these, over 
600 million being categorized as clinically obese in 2020 [1]. 
At the current pace, nearly half of the world’s population will 
be overweight or obese by 2030. Currently in the USA, 60% 
of the population is overweight and 30% is obese [2, 3]. The 
implications of this epidemic on the USA and global popula-
tion health are enormous, as obesity has been linked to several 

metabolic, cardiovascular, and neurodegenerative diseases [4]. 
Furthermore, obesity is associated with an increased risk for 
developing cancer and predicts worse outcomes for a variety of 
malignancies [5–7]. Obesity may also worsen several aspects 
of cancer survivorship, including quality of life, cancer pro-
gression and recurrence, and disease-free survival [8]. Glob-
ally, 481,000 new cancer cases are attributed to overweight 
and obesity according to United Nations news report in 2014, 
establishing excessive body adiposity as a strong risk factor 
for cancer development [9]. The American Cancer Society 
reported in 2014 that 7.8% (122,536) of all cancers and 6.5% 
(38,188) of all cancer deaths in the USA were attributed to 
excess body weight [10]. After cigarette smoking, obesity 
represents the second greatest modifiable risk factor in the 
USA. The increased risk of cancer incidence and mortality 
is multi-factorial, but likely related to both the innate pro-
inflammatory environment, dysregulation of growth factor 
and hormone expression, and altered circadian rhythms that 
occur in obesity. For instance, chronic low-level inflammation 
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in viral hepatitis (a disease of the liver causing inflammation), 
obesity, or alcohol abuse is a risk factor for liver cancer [11]; 
increased levels of insulin and insulin-like growth factor-1 
(IGF-1) may promote the development of colon, kidney, pros-
tate, and endometrial cancers [12]; high levels of estrogen have 
been associated with increased risk of endometrial, breast, and 
ovarian cancer [13–15]; and circadian deregulation in night 
shift workers or in obesity has been connected with increased 
risk of breast cancer [10]. Given the common co-occurrence of 
obesity-related risk factors in many cancer patients that affect 
overall survival and increases risk of death, it is logical that 
strategies for weight control would be beneficial for both pre-
vention and to improve cancer outcomes. Therefore, there is 
an urgent need to improve cancer care beyond novel therapeu-
tics by elucidating the effects of different weight management 
strategies in cancer prevention and treatment. In this regard, 
many observational studies have provided consistent evidence 
that individuals with lower weight gain or weight loss have 
lower risk of colon cancer, kidney cancer, and breast, endome-
trial, and ovarian cancer [16–19]. Weight loss through dietary 
interventions such as caloric restriction (CR), intermittent fast-
ing (IF), and fasting-mimicking diets (FMD) have beneficial 
metabolic effects and decrease cancer risk but are difficult to 
maintain. Surgical approaches such as gastric bypass are also 
beneficial in the short-term but long-term improvements are 
rare. Time-restricted eating (TRE) is a popular new interven-
tion for improved metabolic health and weight control that 
does not involve calorie reduction. This method is a poten-
tially easier way to maintain optimal body weight and health 
over a long period as it does not require reducing total food 
intake, calculating daily calorie intake, or changing diet. Small 
clinical studies have confirmed the effectiveness of this strat-
egy to improve overall metabolic heath [20–22]. Preclinical 
studies have also reported the therapeutic benefits of TRE in 
mouse models of cancer [23–25]. Clinical trials are just start-
ing to explore the role of TRE in cancer so it is too early to 
assess whether TRE has encouraging outcomes in cancer pre-
vention and treatment. Although TRE is a promising dietary 
intervention for controlling weight and improving metabolic 
dysfunction in overweight or obese individuals, large-scale 
clinical trials are still needed to confirm the benefit of TRE 
for metabolic health and cancer prevention. In this review, we 
will give an overview of obesity as risk factor for cancer and 
the potentially useful role of time-restricted eating in cancer 
prevention and treatment.

2  Obesity and cancer: overview 
of a complex relationship

Obesity is defined by a body-mass index (BMI) of > 30 and 
over-weight as a BMI of 25–29.9. These cutoffs have been 
developed based on Caucasian data and it is important to 

recognize that they may not hold for other groups. For exam-
ple, the Asia–Pacific classification uses a BMI 23–24.9 for 
over-weight and > 25 as obese. Obesity has been associated 
with an increased incidence of a variety of cancers such as 
colorectal, kidney, esophagus, endometrium, breast, pan-
creas, thyroid, liver, ovary, gallbladder, and prostate can-
cer, as well as non-Hodgkins lymphoma [26, 27]. In addi-
tion, obesity is increasingly recognized as an indicator of 
poor prognosis as data show that obesity is associated with 
higher rates of cancer progression and recurrence, reduced 
progression-free survival, and increased mortality, espe-
cially for breast, prostate, and colon cancer [28–33]. Cancer 
metastasis accounts for over 90% of cancer mortality and 
obesity increases distal metastasis, thereby increasing the 
severity of the disease and mortality [34, 35]. Unfortunately, 
weight gain after diagnosis is common in cancer patients, 
especially among breast cancer patients receiving systemic 
adjuvant therapy [36, 37]. In a study of 535 women with 
newly diagnosed breast cancer, 84.1% of the patients gained 
weight during the first year after diagnosis and the weight 
gain was significantly greater in patients on chemotherapy 
[37]. Obesity also increases the risk of complications from 
cancer treatment and the risk of several comorbidities. For 
example, obesity is associated with an increased risk of both 
treatment-related lymphedema in breast cancer survivors 
[38] and incontinence in prostate cancer survivors who have 
undergone radical prostatectomy [39]. Thus, obesity repre-
sents a significant modifiable risk factor affecting cancer 
health worldwide.

The mechanisms underlying the cancer-promoting effect 
of obesity are complex and likely multifactorial. There are 
several potential explanations for the link between increased 
adiposity and worse cancer prognosis, including hormonal, 
inflammatory, and immune system effects. Studies have 
documented links between obesity and elevated levels of 
free circulating hormones (e.g., insulin and estradiol) and 
their impact on hormone-dependent cancers [15, 40–42] 
such as breast and prostate cancer. These differences likely 
underlie the reported differential effects of obesity on can-
cer subtypes. A large meta-analysis of breast cancer studies 
reported that obesity in premenopausal women is a positive 
risk factor for triple-negative breast cancers (TNBC, odds 
ratio (OR) 1.4–3.7) but a negative risk factor in estrogen 
receptor (ER) positive breast cancers (OR 0.35–0.81) [43]. 
In contrast, obesity in postmenopausal women is a positive 
risk factor for ER-positive breast cancer (OR 1.2–2.7) when 
endogenous estrogen levels are low. The detrimental effect 
of obesity is not limited to cancer risk however the Ameri-
can Cancer Society Prevention Study II of 495,977 women 
reported an association of BMI and BrCa mortality. Women 
with BMI > 30 kg/m2 had > 65% increase in mortality [5]. 
In the UK Prospective Study of Outcomes in Sporadic and 
Hereditary Breast Cancer (POSH) study of 2,956 young 
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(aged < 41 yrs) breast cancer survivors, obesity was asso-
ciated with larger tumors, positive lymph node status, and 
higher percentage of TNBC. Overall (8-year) survival and 
disease-free interval were significantly shorter [44]. Lastly, 
a meta-analysis of 82 studies including 213,075 breast can-
cer survivors found a 40% increased risk of mortality due 
to obesity in both pre- and post-menopausal women [45]. 
These observations might indicate that dietary interventions 
to reduce obesity may only be beneficial in selected cancer 
subtypes, but obesity has a detrimental effect on mortality 
in all subtypes of breast cancer, so one cannot be guided by 
cancer risk analyses alone.

Obesity has been linked to increases in estradiol due to 
aromatase expression in adipose tissue [46]. In the HEAL 
study of 505 postmenopausal women with stage 0-IIIA 
breast cancer, adiposity was positively associated with cir-
culating levels of estrone and estradiol [47]. A combined 
meta-analysis of nine cohort studies, which included data 
from 663 breast cancer cases and 1,765 women without 
breast cancer, found that postmenopausal women with serum 
hormone concentrations in the top quintile for androsten-
edione, testosterone, dehydroepiandrosterone (DHEA), and 
DHEA-sulfate were nearly twice as likely to develop breast 
cancer in comparison to women with serum hormones in 
the bottom quintile [48]. In the same analysis, a doubling of 
androgen concentration resulted in a 20% to 40% increase 
in risk for breast cancer. Other hormones have also been 
implicated. One of the best documented effects of obesity 
is to cause hepatic insulin resistance that triggers a com-
pensatory increase in insulin secretion to maintain normo-
glycemia. This results in fasting hyperinsulinemia. Other 
tissues including tumors do not become insulin resistant 
so are exposed to elevated insulin levels. Hence, increased 
signaling via insulin and IGF-1 receptors, and the down-
stream phosphatidylinositol 3-kinase pathway, are observed 
in diverse cancers [49]. For example, in non-diabetic breast 
cancer patients, higher levels of fasting insulin have been 
associated with a 2–threefold increased risk of mortality 
[50–54]. Similarly, the Women’s Health Initiative Observa-
tional Study (WHI-OS) of 93,676 postmenopausal women, 
insulin levels were associated with a > 2.4-fold increase in 
breast cancer risk in women not on hormone-replacement 
therapy [55]. The increased risk may be restricted to post-
menopausal women as the Nurse’s Health Study II of 29,611 
women did not show an association of insulin with breast 
cancer incidence [56]. Elevated insulin levels may also be 
associated with cancer progression. Additionally, fasting 
insulin levels were significantly associated with both dis-
tant recurrence and death. In a study, women in the highest 
quartile of insulin levels had a 2.1 times increased risk of 
distant recurrence compared to those in the lowest quartile 
(95% CI = 1.2–3.6, P = 0.01) and a 3.3 times greater risk of 
death (95% CI = 1.5–7.0, P = 0.002) [52]. Similar findings 

are reported for colorectal cancer [57]. A meta-analysis of 
all cancer deaths in non-diabetics reported that fasting serum 
insulin was associated with increased mortality (HR 1.92) 
in men [58] and the French TELECOM study reported that 
elevated fasting insulin posed increased risk of cancer death 
(HR 2.30) in men over a 28-year follow-up [59].

Chronic tissue inflammation is a feature of obesity. 
Inflammation in itself makes individuals susceptible to 
many forms of cancer as it has been linked to different 
steps involved in tumorigenesis, including transformation 
of normal cells to cancerous cells, survival, proliferation, 
promotion, invasion, angiogenesis, and metastasis [60]. 
Immune cells such as tumor-associated macrophages, tumor-
associated dendritic cells, and pro-inflammatory cytokines 
and chemokines are key players in initiating inflammation 
creating a pro-cancer microenvironment [61]. Obesity is 
associated with inflammatory markers including C-reactive 
protein, serum amyloid A, interleukin-6, interleukin-1, and 
tumor necrosis factor alpha, and importantly some of these 
are higher in patients with metastatic cancer compared with 
patients without cancer and with those with early cancer [2].

Circadian disruption in obesity and cancer Circadian 
rhythms in physiology, metabolism, and behavior are vital 
part of homeostasis [62]. These rhythms occur from interac-
tions between circadian clocks within brain and peripheral 
organs with cycles in light and dark, sleep and activity, and 
eating and fasting. Notably, obesity and its associated eat-
ing patterns have been shown to alter the circadian clocks 
in both the brain and peripheral tissues that generate 24 h 
rhythms in gene expression and diurnal behaviors [63–66]. 
Interestingly, daily rhythms in gene expression modulate 
several key aspects of cellular and tissue function with pro-
found implications in disease prevention, and disease man-
agement including genes involved in glycolysis, gluconeo-
genesis, protein synthesis, lipid synthesis and oxidation, and 
mitochondrial function [67]. Acute circadian disruption can 
exacerbate chronic diseases, while chronic circadian disrup-
tion raises the risk for numerous diseases [62]. For example, 
forced circadian misalignment is associated with increased 
risk for obesity, diabetes, and cardiovascular disease. In a 
study involving ten adults (5 female) for 10-days, subjects 
were subjected to an artificial 28-h day, so they ate and slept 
at all phases of the circadian cycle during the 10-day stay. 
Subjects ate 4 isocaloric meals each 28-h day. When subjects 
ate and slept approximately 12 h out of phase from their nor-
mal 24-h circadian rhythms, increased both blood glucose 
and insulin (indicating insulin resistance), increased mean 
arterial pressure, reversed the daily cortisol rhythm, and 
reduced sleep efficiency. Notably, 3 of the 8 subjects devel-
oped a prediabetic state by this circadian misalignment [68].

Circadian clock disruption has been reported in some 
cancers and this is thought to promote tumor growth, owing 
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to the dysregulation of key cell-cycle and tumor suppres-
sor genes that are under clock control [69, 70]. In general, 
arrhythmic mice are susceptible to a variety of cancers [71–
73]. In lung cancer, deletion of clock genes increases mutant 
Kras lung tumorigenesis [74]. Mechanistically, the loss of 
core clock gene components such as Per2 and Bmal1 leads to 
increased c-Myc expression, enhanced proliferation and met-
abolic dysregulation. A number of studies point to the role 
of MYC in both circadian disruption and cancer as it is a key 
player in cancer metabolism [75]. Deregulated expression of 
MYC or N-MYC disrupts the molecular clock by directly 
inducing REV-ERBα to dampen expression and oscillation 
of BMAL1, and both REV-ERBα and BMAL1 have key 
roles in N-MYC-driven human neuroblastomas. Importantly, 
these studies suggest a link between oncogenic transforma-
tion and circadian and metabolic dysrhythmia, which could 
be advantageous for cancer growth. In a similar study, 
overexpression of MYC in U2OS cells, severely attenuates 
circadian oscillations and promotes cell proliferation [76]. 
The authors showed that inhibition of the circadian clock 
was dependent on the formation of repressive complexes 
of MYC with MIZ1 leading to downregulation of the core 
clock genes CLOCK, BMAL1 and NPAS2. Interestingly, can-
cer stem cells display robust circadian rhythm with exquisite 
dependency on core clock transcription factors, BMAL1 and 
CLOCK, for optimal cell growth. It has been demonstrated 
that knockdown of either  BMAL1  or  CLOCK  has been 
observed to induce cell cycle arrest and apoptosis in cancer 
stem cells in a patient-derived glioblastoma cell or murine 
leukemia stem cells in acute myeloid leukemia [77, 78]. Cir-
cadian disruption can also create a pro-tumor environment in 
the host. Chronic jet lag in mice induces persistent deregu-
lation of liver gene expression and metabolism, promoting 
the development of spontaneous hepatocellular carcinoma 
[79]. Tumors may also influence normal circadian rhythms 
as Masri et al. demonstrated that lung cancer reprograms 
hepatic metabolism by rewiring hepatic circadian rhythms 
in gene expression and metabolites [80].

Epidemiological studies have also linked circadian dis-
ruption and clock genes to increased susceptibility to can-
cer development of diverse tissue types [for reviews see 
refs [81–86]. For example, there are several links between 
circadian clocks and breast cancer [71, 73, 87]. Women 
with SNPs in CRY2, NPAS2, and CLOCK are at a higher 
risk of breast cancer [88–90], and PER2 suppresses estro-
gen receptor-dependent transcription [73, 91, 92]. Low-
grade and non-metastatic breast tumors have functional 
clocks, but aggressive carcinomas are arrhythmic [93]. 
Low CRY2 and PER1/2 expression is correlated with ER 
negativity, higher tumor grade and shorter overall survival 
in breast cancer patients [94, 95]. Breast cancer patients 
have higher methylation of the CRY2 promoter consist-
ent with lower CRY2 expression [96] and loss of PER3 

and CRY2 co-expression increases metastasis risk [93]. 
In hematological malignancies, BMAL1 expression levels 
correlate inversely with MYC levels [76], the PER genes 
are downregulated in CLL [97], NPAS2 is up-regulated 
in AML patients [98], and the CRY genes show both up- 
and down-regulation in CLL and AML [99, 100]. Similar 
associations have been reported in other cancers, includ-
ing head and neck [101], colorectal cancer [83, 102], liver 
cancer [103], and lung cancer [104, 105] to name but a few. 
Overall, the accumulated data point to the importance of 
circadian rhythms in normal health and suggest that inter-
ventions to normalize disrupted rhythms in obesity and 
cancer could be beneficial.

3  Obesity management in cancer

Several methods for weight loss or control have been tested 
in the general population [106], including diets, exercise, 
and bariatric surgery [107–110]. Dietary interventions 
have received a lot of attention in both the scientific and 
lay community as a result of successful results in experi-
mental animal models [111, 112]. The limited human data 
are consistent with the animal data. Sustained weight-loss 
after the age of 50 measured over 10 years reduces the risk 
of breast cancer (HR 0.68–0.82), whereas stable weight or 
short-term weight loss over one 5-year interval does not 
reduce risk [17]. This observation underscores the need for 
an intervention that is sustainable over a long period. Strong 
evidence for a causal link between obesity and cancer comes 
from bariatric surgery studies. Weight loss through bariatric 
surgery reduces the risk of colon, endometrial, pancreas, 
and pre-menopausal ER-negative and post-menopausal ER-
positive breast cancer [113, 114]. Dieting or caloric restric-
tion for weight loss can also prevent cancer. Experimentally, 
CR involves a 30% reduction in the daily caloric intake with 
the usual timing of meals [111] and CR without malnutri-
tion remains the most robust intervention to date for can-
cer prevention in rodents, monkeys, and humans [111]. CR 
promotes anti-carcinogenic adaptations such as decreased 
production of inflammatory cytokines, growth factors, and 
anabolic hormones as well as decreased oxidative stress 
and DNA damage [115]. Despite of an abundance of the 
literature on the mechanisms and impact of CR, its clinical 
applicability remains limited because of challenges in long-
term sustainability as most people regain weight lost during 
CR. Considering difficulties maintaining weight loss with 
CR, adopting a healthy diet to promote weight loss has been 
tested. A healthy diet, either with or without physical activ-
ity, however, does not alter disease-free survival or mortal-
ity in breast cancer [116]. Although physical activity does 
not alter cancer outcomes, there is evidence for a beneficial 
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effect on quality-of-life, depression, anxiety, lymphedema, 
and fatigue [117].

4  Health benefits of time‑restricted eating

There has been growing interest in intermittent fasting as 
an alternative to CR because of promising results in experi-
mental animal models [112]. According to a survey by the 
International Food Information Council Foundation, IF has 
become the most popular dietary intervention and many can-
cer patients are seeking advice from oncologists about its 
beneficial effect for cancer prevention and treatment [118]. 
IF can take various forms, including alternate day fasting 
with 0–25% of normal daily calories on the fasting days, 
the 5:2 method with 2 days of 25% calorie intake every 5 
days of normal eating, periodic fasting (calorie intake is 
restricted for multiple consecutive days, such as 5 days, 
once a month, and unrestricted on all other days), Sunnah 
fasting (fasting every Monday and Thursday), and many 
other variations. Preclinical studies have shown beneficial 
effect of IF on tumor growth. In p53-deficient cancer mouse 
model, a 1 day per week IF regimen delayed tumor onset, 
significantly reduced tumor metastasis, and improved overall 
survival [119]. A study in a human xenograft prostate cancer 
model, an IF regimen comprised of 2 separate 24-h fasting 
periods per week exhibited similar trends toward delayed 
tumor growth and improved survival compared to an iso-
caloric control group [120]. When combined with a fast-
ing-mimicking diet, IF blocks TNBC and cancer stem cell 
escape in mice [121]. Interestingly, several short-term ran-
domized clinical trials have indicated promising effects of 
alternate day fasting or a 5:2 diet in improving some cancer 
risk factors, including decreased fasting glucose, insulin, and 
leptin levels and increased adiponectin [22]. A small non-
randomized study of 23 women at increased risk for breast 
cancer found that IF for 2 days per weeks resulted in 4.8% 
reduction in body weight, an 8.0% reduction in body fat, 
and an improvement in insulin resistance over 4 to 5 weeks 
[122]. Similarly, IF of a ketogenic diet in patients with grade 
2–4 astrocytoma decreased body mass and insulin levels 

[123]. IF for 24 h before and after chemotherapy reduced 
hematologic toxicity and promote recovery of chemother-
apy-induced DNA damage [124]. IF also improved quality of 
life in cancer patients undergoing chemotherapy [125, 126].

While IF emphasizes the ratio of fasting/feeding dura-
tions, time-restricted eating emphasizes the timing of eat-
ing within a limited window without involving CR. TRE 
is a type of intermittent fasting, which involves consum-
ing all calories within a consistent 8–12 h daily window 
based on the normal circadian rhythm of eating (Fig. 1) [62, 
67, 127]. TRE (also called time-restricted feeding or TRF 
in mice) improves metabolic health in animal models and 
potentially in humans and may facilitate adherence and long-
term weight loss maintenance as it doesn’t involve calorie 
counting [22, 23, 128–130].
 
Mouse Studies on Time‑Restricted Eating The metabolic 
benefits of TRE were first demonstrated in mouse model of 
diet-induced obesity [131]. Mice were given 8-h access to a 
high-fat diet (HFD) during the night (TRE), which is when 
mice are active, and compared to mice with 24 h access to 
food. The mice were protected against obesity, fatty liver, 
hyperinsulinemia, and inflammation and had enhanced 
motor coordination. Interestingly the mice on the TRE regi-
men consumed equivalent calories as those with ad libitum 
access. Furthermore, the TRE regimen improved mTOR, 
and AMPK signaling and enhanced circadian oscillations 
of core clock genes. These studies have been expanded to 
a variety of obesogenic diets and TRE at night prevented 
obesity and metabolic diseases without reducing caloric 
intake. The response showed a time-dependence with better 
effects with a 9-h feeding window compared to 12 or 15 h 
of feeding [132]. Interestingly, the protective effects were 
still maintained when TRE was interrupted by ad libitum 
access to food during weekends, a modified 5/2 regimen 
that is especially attractive for human lifestyle. Many stud-
ies, including ours, have demonstrated a similar beneficial 
effect of TRE in various mouse models to improve metabolic 
profiles [23–25, 133]. The metabolic improvement observed 
with TRE without any weight loss has led to the presump-
tion that eliciting a daily fasting response, or at certain times 

Fig. 1  Health benefits of time-
restricted eating
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of the day, is in itself beneficial. This would explain why 
dietary dilution, a form of CR in which mice eat all day to 
compensate for the low density of energy in their diet, does 
not result in lifespan extension. By the same argument, CR 
may improve health, at least in part, through an extended 
period of fasting. When considering TRE, it is important 
to recognize that meal-timing and circadian synchroni-
zation influences the metabolic effects. In a recent study, 
TRE extended the lifespan of Drosophila and was able to 
delay the onset of aging when flies were fasted during the 
night rather than during the day [134]. In mice, providing 
food during the first half of the active phase (earlyTRE) 
was more beneficial than providing during the second half 
(lateTRE) [135], and providing food during the day, rather 
than at night, disrupts liver circadian rhythms [136]. Tim-
ing of feeding may also extend the lifespan of mice on CR 
as Acosta-Rodriguez et al. demonstrated that CR with food 
provided for 12 h during the dark phase extended life span 
by 35% in C57BL/6 J mice whereas CR alone only extended 
the life span by 10% [137] and furthermore ameliorated the 
aging-associated changes in gene expression. In mice, TRE 
can impart benefits irrespective of nutrition quantity and 
quality and seems to be both preventive and therapeutic for 
aging and metabolic diseases [138].

Human Studies on Time‑Restricted Eating Human data show 
a similar improvement in whole body metabolism (Table 1). 
For example, an isocaloric trial of TRE in pre-diabetic men 
for 5 weeks showed an improvement in glucose tolerance 
and a major decrease in systolic and diastolic blood pressure 
[20]. Another isocaloric study evaluating acute TRE for only 
4 days showed a decrease in the average blood sugar level 
and reduced insulin resistance [139]. Likewise, a crossover-
randomized trial [140] demonstrated that short-term TRE 
improved nocturnal glycemic control. Studies also support 
the impact of meal timing on metabolic health and indicate 
that eating at night is detrimental as it predisposes to obe-
sity and metabolic dysregulation [141, 142]. For instance, 
women with metabolic syndrome on a daily three-meal 
schedule showed greater weight loss and metabolic improve-
ment when the primary meal was at breakfast compared to 
women whose primary meal was at dinner [142]. In a small 
study with 19 men and women with metabolic syndrome, 
10-h TRE reduced weight, blood pressure, and atherogenic 
lipids [130]. So, beneficial metabolic effects are seen in 
both sexes, which is consistent with studies in obese mice. 
Although, many metabolic studies support the beneficial 
effect of eating earlier in the day, not all studies support 
this idea. Evening protein ingestion leads to increased whole 
body and muscle protein synthesis [143], so TRE might not 
be advisable for sarcopenic patients. The effect of meal tim-
ing may even augment the impact of CR, as subjects in a 
weight-loss program who ate their main meal earlier in the 

day achieved greater weight loss than those subjects who ate 
later in the day [144], and in a separate study combined TRE 
and CR gave greater weight loss than CR alone although 
did not quite reach significance with the number of sub-
jects studied [145]. Most human studies have focused on 
synchronizing the peripheral metabolic clocks to the cen-
tral light-driven clock. It would be important to try TRE in 
individuals on night-shift workers with forced out-of-phase 
central and peripheral clocks or individuals with circadian 
rhythm sleep disorders [146] as mouse studies have shown 
desynchronization between central and peripheral clocks if 
food is provided during the daytime [147].

5  Time‑restricted eating and cancer

Given that TRE improves metabolic health in obese animals 
and humans, it might be expected to have anti-cancer effects 
in obesity-driven cancers. This has been borne out in a few 
rodent studies that evaluated the effect of TRE in modulating 
cancer risk or progression. In a recent study using mouse 
postmenopausal breast cancer models, our group reported 
that TRE, in the absence of caloric restriction or weight loss, 
could effectively inhibit the accelerated tumor initiation, 
progression, and metastasis due to obesity in comparison 
with mice with 24-h access to food. This beneficial effect 
of TRE was mediated, in part, by reduced insulin signal-
ing as systemic insulin infusion through implanted pumps 
reversed the TRE-mediated protection and reducing insulin 
secretion mimicked the protection [23]. Sundaram and Yan 
have also shown that TRE of high-fat diet prevented cancer 
in the same transgenic MMTV-PyMT model of spontaneous 
breast cancer [24]. This group also demonstrated that TRE 
prevented high-fat diet enhanced metastasis in a subcutane-
ously injected Lewis lung cancer mouse model [25]. Aging 
increases the risk of cancer, and it has been proposed that 
the aged tissue microenvironment provides a pro-neoplastic 
niche. A recent study demonstrated that TRE could prevent 
the aging-associated changes in microenvironment and con-
sequently decreases the growth of transplanted pre-neoplas-
tic hepatocytes [176]. Colorectal cancer is also sensitive to 
the intestinal microenvironment and dysregulation of the gut 
microbiome has been connected to the pathogenesis of colo-
rectal cancer. TRE was recently shown to improve the gut 
microbiota and prevent colon cancer [177]. Not all cancers 
respond to TRE however. Turbitt et. al. tested whether TRF 
alone or combined with anti-CTLA-4 immunotherapy would 
reduce tumor growth a murine model of kidney cancer. They 
found that TRF alone did not reduce tumor growth or metas-
tasis in lean chow-fed or obese HFD-fed mice. Immune-
checkpoint therapy had no effect in chow-fed mice but did 
reduce tumor growth in normal weight and obese mice on 
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Table 1  A list of recent Time-Restricted Eating trials in humans and their key outcomes

Study Design Duration TRE Intervention Participants Age Outcome Study

Randomized control 12 weeks TRE: 10 h, 8 am-6 pm n = 60,
diabetic

18–70 yr ↓ Body weight, HbA1c
↑ Insulin sensitivity

[148]

Randomized control 8 weeks TRE: 10 h, n = 60,
obese

18–65 yr ↓ Body weight, Fasting 
glucose,

[149]

Randomized control 12 weeks TRE: 8 h n = 20 (17 females, 3 males), 
overweight

33–58 yr ↓ Body weight, lean mass, 
and visceral fat mass

[22]

Longitudinal 12 weeks TRE: 8 h (10 am–6 pm) n = 14, overweight 25–65 yr ↓ Body weight, fat mass, 
systolic blood pressure

 ↔ Gut microbiome

[150]

Cross-over 5 days TRE: 8 h (10 am–6 pm)
Extended eating: 15 h (7 

am–10 pm)

n = 11 males, overweight 32–43 yr ↓ Night-time glucose, 
glucose and insulin iAUC 
after lunch

 ↔ Daytime glucose
↑ TG after lunch

[140]

Longitudinal 12 weeks TRE: 10 h (self-selected, 
dinner before 8 pm):

Baseline: ≥ 14 h

n = 19 (6 females, 13 males), 
overweight

48–70 yr ↓ Body weight, fat mass, 
waist circumference, 
blood pressure, plasma 
cholesterol

 ↔ Fasting glucose, HbA1c, 
HOMA-IR, fasting insulin

[130]

Longitudinal 4 weeks TRE: 8 h n = 10 (6 females, 4 males), 
overweight,

 ≥ 65 yr ↓ Body weight
↑ Quality of life

[151]

Longitudinal 13 weeks TRE: 8–9 h n = 40 (31 females, 9 males), 
with abdominal obesity

36–62 yr ↓ Waist circumference, 
HbA1c

[152]

Randomized control 8 weeks TRE: 8 h (12 pm–8 pm)
TRE plus β-hydroxy 

β-methyl butyrate

n = 40 females, resistance 
trained
normal weight

18–30 yr ↓ Fat mass
↑ Muscle performance

[153]

Cross-over 4 days TRE: 6 h (8 am–2 pm) n = 11 (4 females and 7 males), 
overweight

25–39 yr ↓ Mean 24-h glucose, glyce-
mic excursions, morning 
ghrelin, desire to eat

↑ metabolic flexibility, full-
ness, plasma ketones,

fat oxidation

[139, 154]

Cross-over 1 week Early TRE: 9 h (8 am–5 pm)
delayed TRE: 9 h 

(12 pm–9 pm)

n = 15 males, overweight 52–58 yr ↓ Body weight, fasting TG, 
and hunger

↓ Mean fasting glucose by 
CGM in eTRE

↑ Glucose tolerance

[21]

Cross-over 5 weeks TRE: 6 h (8 am–2 pm, din-
ner before 3 pm)

n = 8 males, overweight 47–65 yr ↓ Fasting TG, desire to eat 
in the evening

↑ Insulin sensitivity, β cell 
responsiveness

 ↔ Body weight

[20]

Historical control 12 weeks TRE: 8 h (10 am–6 pm) n = 23 (20 females, 3 males), 
obese

25–65 yr ↓ Body weight and blood 
pressure

 ↔ Fat mass, fasting glucose, 
LDL cholesterol, TG

[155]

Randomized control 8 weeks TRE: 4 h (anytime 4 pm 
to midnight) for 4 days 
a week

n = 18 resistance trained males 
normal weight

18–27 yr  ↔ Body weight, fat mass [156]

Randomized control 8 weeks TRE: 8 h (1 pm–8 pm) n = 34 males, normal weight 25–33 yr ↓ Fat mass, fasting glucose, 
fasting insulin, total testos-
terone, IGF-1, inflam-
mation

[157, 158]

Longitudinal 16 weeks TRE: 10–11 h (self-selected) n = 8 (3 females, 5 males), 
overweight

 > 18 yr ↓ Body weight
Improved sleeping

[159]

Cross-over 7 days eTRE 70% calories before 
5 pm vs

TRE 8 h window vs
ADF

n = 32 (25 females, 8 males), 
obese

mean age 45.7 yr No difference in weight loss 
between diets. TRE easiest 
to follow

[160]

Longitudinal 12 weeks eTRE + 35%CR 10 h (self-
selected) vs 35% CR alone

n = 81 (69 females, 12 males mean age 38 yr No difference in weight loss [161]
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HFD irrespective of TRF [178]. Similarly, mice harboring 
LAPC-4 prostate cancer tumors did not show decreased 
tumor growth or increased survival [179].

As large prevention studies are lacking, most human stud-
ies to date have been epidemiological studies or small stud-
ies focused on assessing cancer biomarkers. In the Women’s 
Healthy Eating and Living study on a cohort of 2413 women 
with breast cancer, there was a significant increase in the risk 
of breast cancer recurrence with fasting < 13 h per night com-
pared to fasting > 13 h per night (hazard ratio, 1.36; 95% CI, 
1.05–1.76) [180]. An analysis of the NHANES data showed 
that each 3-h increase in night-time fasting was associated with 
improved glucose regulation and a decrease in hemoglobin 
A1c [181]. A case–control study in 922 Chinese women with 
incident BrCa and 913 controls [182] reported that eating 
after 10 pm was significantly associated with increased risk 
of breast cancer (OR 1.50). The association was strongest in 
women who had > 20 year history of eating after 10 pm (OR 

2.28). A population case–control study of 1205 breast can-
cers and 621 prostate cancers in 1321 women and 872 men 
in Spain reported that a longer interval between the last meal 
and sleep was associated with lower cancer risk (prostate OR 
0.74, breast OR 0.64)[183]. Similar protection was reported if 
meal eaten before 9 pm vs after 10 pm (OR 0.75 & 0.85) and in 
morning chronotypes (OR 0.65 & 0.67). As mentioned earlier, 
obesity causes hyperinsulinemia that can drive tumor growth 
and reducing insulin levels in mouse models inhibits tumor 
growth. Indeed, most of the obesity-associated increased risk 
for breast cancer can be accounted for by the increased risk due 
to the hyperinsulinemia [184–186]. Several small TRE studies 
have reported reductions in insulin resistance, and by inference 
insulin levels, that would be expected to reduce cancer risk [20, 
187]. Breast cancer risk is also linked with hypertension, with 
several studies reporting a 7–38% higher risk of breast cancer 
among women with hypertension [188]. A meta-analysis of six 
TRE studies with 97 participants showed clinically significant 

↓ reduced; ↑increased; ↔ no change; iAUC, incremental area under the curve; BP, blood pressure; PCOS, poly-cystic ovary syndrome

Table 1  (continued)

Study Design Duration TRE Intervention Participants Age Outcome Study

Longitudinal 12-weeks TRE 8 h (self-
selected) + CGM vs

Control group 12 h

n = 50 (14 males, 36 females), 
obese

14–18 yr No difference in weight loss [162]

Longitudinal 5-weeks eTRE 8 h (6am-3 pm) vs
mTRE 8 h (11am-8 pm) vs
Control

n = 82 (64 females, 18 males), 
normal weight

mean age 31 Weight loss and improved 
HOMA-IR in eTRE group

[163]

Longitudinal 10-weeks TRE 10 h (8am-6 pm) n = 15 (males), overweight 40–70 yr ↓ Body weight
Improved GTT,
↓ Fasting glucose, HbA1c

[164]

Longitudinal 8-weeks TRE 8 h (10am-6 pm or 
12 pm-8 pm) vs Control

n = 30 (females), normal weight 40–65 yr ↓ Body weight
↓ Diastolic BP

[165]

Cross-over 3-days early dinner (6 pm) vs late 
dinner (9 pm)

n = 12 (2 males, 10 females)  > 20 yr ↓ Mean 24 h glucose
↓ RQ after breakfast

[166]

Cross-over 4-weeks TRE 8 h (1 pm-9 pm) n = 12 (males), healthy mean age 22 yr ↑ Exercise performance
↑ Fat-free mass

[167]

Longitudinal 3-months TRE 10 h (10am-7 pm) n = 50 (41 females, 9 males), 
overweight

30–75 yr ↓ Body weight
↓ Systolic BP

[168]

Longitudinal 8-weeks TRE 8 h 
(12 pm-8 pm) + Exercise 
vs

Exercise alone

n = 21 (18 females, 3 males), 
overweight

35–60 yr ↓ Body weight
↓ Fat mass

[169]

Longitudinal 12-weeks TRE 8 h n = 20 (17 females, 3 males), 
overweight

mean 45 yr ↑ Quality of life [170]

Longitudinal 6-weeks TRE 8 h (8am-4 pm) n = 18 women with PCOS 18–31 yr ↓ Body weight
↓ Fat mass
↓ Fasting insulin
↓ HOMA-IR

[171]

Longitudinal 12-weeks TRE 8 h n = 20 (17 females, 3 males), 
overweight and obese

18–65 yr ↑ Bone mineral content [172]

Longitudinal 6-months TRE 12 h (self-selected) vs 
standard dietary advice

n = 213 (152 females, 61 males), 
normal to overweight

 > 18 yr ↓ Body weight in TRE 
group

[173]

Longitudinal 10-weeks TRE 4 h (3-7 pm) vs
TRE 6 h (1-7 pm) vs Control

n = 58 (53 females, 5 males), 
obese

 > 18 yr ↓ Body weight and insulin 
resistance in TRE groups, 
no diff 4 h vs 6 h

[174]

Longitudinal 12-weeks TRE 8 h (self-selected) n = 51 (37 females, 14 males), 
obese

 > 18 yr ↓ Body weight in TRE 
group

[175]
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decreases in systolic and diastolic blood pressure [128, 189]. 
All these epidemiological and observational studies support 
the potential beneficial role of TRE in cancer. Nonetheless, 
these findings strongly suggest that more TRE studies are 
needed to better understand the underlying mechanisms and 
differences in outcomes before clinicians may start to consider 
safely and confidently prescribing TRE for the treatment of 
cancer in humans.

6  What are the mechanisms underlying 
the beneficial effect of time‑restricted 
eating?

As discussed earlier, obesity is tightly linked to the meta-
bolic syndrome which is a collection of metabolic distur-
bances including hyperglycemia, hyperinsulinemia, dyslipi-
demia, and hypertension, many of which have been linked 
to cancer [190]. In a recent review, Mattson et al. discussed 
the metabolic and physiological responses to CR, IF, and 
TRE, and highlighted the importance of four mechanisms 
including the adaptive stress response to oxidative damage, 
the bioenergetics or normal and cancer cells, suppression 
of inflammation, and induction of autophagy to remove or 
repair damaged organelles [191]. Many of these pathways 
also have relevance to cancer development. Post-prandial 
hyperglycemia may provide excess glucose to cancer cells to 
support their rapid growth since many cancer cells are more 
glycolytic than normal cells [12, 192]. Hyperglycemia can 
cause overproduction of advanced glycation end-products 
and reactive oxygen species, which can cause DNA damage 
and may initiate cancer. Obesity can also cause oxidative 
stress through increased mitochondrial oxidation of lipids 
[193–196] and preliminary evidence suggests that TRE may 
reduce oxidative stress in men [20]. At the metabolic level, 
hyperinsulinemia increases the risk of both cancer incidence 
and death [197, 198]. This increase of cancer mortality is 
also observed in non-obese people with hyperinsulinemia 
[199]. Indeed, we recently demonstrated that TRF acts by 
correcting insulin resistance to prevent and inhibit breast 
tumor growth in mouse models of breast cancer [23]. Fur-
thermore, obesity and diabetes alters the production of endo-
trophin, leptin, adiponectin, angiopoietins, bone morpho-
genic proteins, and other adipokines, which can also affect 
cancer cell growth and survival [200–204]. For example, 
endotrophin, which is a carboxy-terminal proteolytic cleav-
age product of collagen 6α3, is overexpressed in obesity, 
enhances progression of breast and liver cancer, enhances 
epithelial-mesenchymal transition, and causes chemoresist-
ance [205–207]. As discussed earlier, obesity creates a state 
of sub-clinical, chronic tissue inflammation with immune 
cell infiltration due to elevated adipocyte inflammatory 
cytokine production [208, 209]. Such local inflammatory Ta
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changes in the microenvironment have been shown to accel-
erate tumor initiation and growth [60, 61]. TRE reduces 
tissue macrophage infiltration and inflammation in mouse 
models [23, 131, 135, 210, 211]. Some human studies have 
shown that restricting food intake to 8 h, or a longer night-
time fast, significantly decreases proinflammatory markers 
[157] but other studies have not seen any changes in these 
markers [174, 212, 213].

In addition to the above-mentioned metabolic/inflamma-
tory mechanisms, another mechanism to consider is circadian 
realignment. Most time-restricted eating protocols involve 
limiting food intake to a prescribed window, usually 6–10 h, 
but the timing of this window is also important. TRE during 
the normal active phase is more beneficial than TRE dur-
ing the inactive phase in both animal and human studies. In-
phase TRE reinforces the normal circadian rhythms of nutri-
ent dependent clock genes, but out-of-phase TRE causes a 
phase shift in the normal oscillations. The circadian clock is 
essential for normal metabolic regulation and disruption of the 
clock causes obesity and insulin resistance [214–217]. Disrup-
tion of the clock also causes abnormal cellular division and 
promotes tumorigenesis [62, 69]. Indeed, clock genes have 
been implicated in cancer as many tumors are acyclic with 
deficient endogenous clocks [93, 218, 219], circadian gene 
variants are associated with cancer [89, 220], clock genes reg-
ulate oncogene expression and suppresses oncogenic signal-
ing [221–223], and oncogenes regulate clock gene expression 
[224]. Our group has demonstrated that many of the disrupted 
tumor circadian rhythms were restored by TRE to patterns 
found in the normal tissues suggesting that TRE might sup-
press tumorigenesis by regulating tumor clock genes [23]. 
Despite the strong connection between circadian clock genes 
and cancer, no studies have shown a causative link between 
TRE-induced clock gene rhythms and tumor inhibition.

7  Time‑restricted eating safety

Fasting has been safely practiced by individuals in vari-
ous religious practices. For instance, over the 30 days of 
Ramadan, individuals fast from dawn-to-dusk which varies 
up to 21 h per day depending on latitude, and in Judaism 
individuals routinely undertake 25 h fasts [212, 225–227]. 
TRE is distinct from these religious fasts as the long fast-
ing period is overnight rather than during the day, so is less 
associated with hunger. TRE also does not require total 
withdrawal from food and drink, as water and other zero-
calorie beverages are allowed. Importantly, TRE has been 
reported not to cause major adverse events or negatively 
impact eating disorder symptoms among adults with obesity, 
metabolic syndrome, diabetes [128, 140], or pre-diabetes 
[20, 129], and TRE with a daytime feeding time window of 
8 h does not cause occurrences of hypoglycemia, nor cause 

depression, anxiety or stress [228]. TRE has proven to be a 
more effective, safe, and convenient strategy than CR diet to 
lose weight [229, 230]. In obese individuals, TRE preserves 
healthy muscle in contrast to CR that causes 20–35% muscle 
loss [231–234]. This is an important finding, because weight 
loss interventions typically result in concomitant decreases 
in both fat and lean body mass [156, 157]. However, safety 
studies of longer duration are needed before recommend-
ing TRE as a healthy lifestyle intervention for body weight 
control. Furthermore, TRE may not be suitable for eve-
ryone, especially those with underlying metabolic condi-
tions. Adhering to a TRE diet is likely not wise for type 1 
diabetics, since metabolic switching, which can occur with 
TRE, may lead to diabetic ketoacidosis [235]. Similarly, 
the potential use of TRE in pediatric intensive care units 
may be complicated by the susceptibility of newborns and 
infants to fasting-induced ketogenesis [236]. People with 
impaired liver function may also be particularly sensitive to 
TRE [237, 238].

8  Time‑restricted eating feasibility 
and adherence

TRE is a new treatment strategy for weight control, meta-
bolic improvement, and diverse disease prevention without 
calorie reduction [190]. This method is an easier approach 
to maintain optimal body weight and health for a longer time 
because patients do not need to reduce total food intake, or 
calculate total daily calorie intake, or change the composi-
tion of their diet. Clinical studies have confirmed the effec-
tiveness of this strategy. Dorothea et al. have reported that, 
86% of participants achieved their weight target during the 
3-month study period and TRE was well accepted by par-
ticipants [152]. Studies in humans and animal models have 
reported the beneficial effects of TRE on obesity, diabetes, 
fatty liver, cardiometabolic dysfunctions, and lifespan [155, 
239]. Several key features of TRE promote adherence rela-
tive to CR or other forms of IF. As TRE follows a cycle of 
fasting during the night with an 8–10 h eating window dur-
ing the day with no calorie restriction, it may require less 
cognitive effort and facilitate dietary satisfaction. Addition-
ally, TRE may reduce conflict with the homeostatic drive 
to eat and prevent dietary lapses resulting from prolonged 
negative energy balance [240]. In a large, randomized con-
trolled trial of TRF in 116 overweight and/or obese men and 
women, high adherence to the TRF protocol (8-h feeding 
window) was reported [241]. Follow-up data from two small 
TRE trials reported promising data that subjects continued 
TRE even after the trial period had ended. In one study, 
long-term follow-up ~ 16 months after the end of the study 
reported that > 60% of the participants were still practicing 
some form of TRE [130]. In another study, it was reported 
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that all participants were still doing TRE and maintained 
their weight loss one year after the end of the study [159]. 
While these observations are anecdotal, they do support the 
idea that TRE is easy to adopt and maintain. Long term 
adherence is very important if TRE is to have any preven-
tative value for cancer, as Teras et al. found that sustained 
weight loss over two successive 5-year periods was needed 
to show a decreased risk of breast cancer, weight loss of a 
single 5-year period did not show a protective effect [17]. 
Although TRE may be easy to maintain once adopted, there 
are potential barriers to trying TRE in the general popula-
tion. Work and family schedules may make adherence to a 
strict eating window difficult. Luckily, the animal data has 
shown that the benefits of TRE are maintained even if per-
formed only during the week. Human data are lacking, but 
if this finding holds true, a five day "weekends-off" TRE 
regimen may prove attractive allowing participation in social 
events while maintaining adherence to TRE [242].

9  Conclusion and future directions

In conclusion, TRE is a promising therapeutic strategy for 
controlling weight and improving metabolic dysfunctions 
in those who are overweight or obese. As obesity repre-
sents a potential risk factor in cancer development and 
outcome, strategies that effectively modify obesity could 
potentially be harnessed as a means of cancer control. 
Preclinical studies support the potential beneficial effect 
of TRE in cancer prevention and growth. While defini-
tive clinical trials showing the long-term effect of TRE 
on cancer prevention, treatment, and outcome are under 
investigation (Table 2), short-term TRE strategies for 
weight control may be helpful for some cancer patients 
and survivors. On a note of caution, TRE should still be 
regarded as a new dietary intervention with limited stud-
ies that have given mixed outcomes. For instance, small 
TRE studies have found significant decreases in weight 
and associated metabolic parameters, however, a large, 
randomized controlled trial of TRE in 116 overweight/ 
obese men and women for 12 weeks did not show a signif-
icant change in weight compared with the control group, 
although there were no measurements of energy intake or 
expenditure [241]. Therefore, large randomized clinical 
trials showing efficacy of TRE in obese individuals for 
5-years or longer are needed before the adoption of TRE 
in the cancer clinical setting.
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