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ABSTRACT
Type 2 diabetes (T2D) and T2D-associated comorbidities, such as obesity, are serious universally 
prevalent health issues among post-menopausal women. Menopause is an unavoidable condition 
characterized by the depletion of estrogen, a gonadotropic hormone responsible for secondary 
sexual characteristics in women. in addition to sexual dimorphism, estrogen also participates in 
glucose–lipid homeostasis, and estrogen depletion is associated with insulin resistance in the female 
body. estrogen level in the gut also regulates the microbiota composition, and even conjugated 
estrogen is actively metabolized by the estrobolome to maintain insulin levels. Moreover, 
post-menopausal gut microbiota is different from the pre-menopausal gut microbiota, as it is less 
diverse and lacks the mucolytic Akkermansia and short-chain fatty acid (SCFA) producers such as 
Faecalibacterium and Roseburia. Through various metabolites (SCFAs, secondary bile acid, and 
serotonin), the gut microbiota plays a significant role in regulating glucose homeostasis, oxidative 
stress, and T2D-associated pro-inflammatory cytokines (iL-1, iL-6). while gut dysbiosis is common 
among post-menopausal women, dietary interventions such as probiotics, prebiotics, and synbiotics 
can ease post-menopausal gut dysbiosis. The objective of this review is to understand the relationship 
between post-menopausal gut dysbiosis and T2D-associated factors. Additionally, the study also 
provided dietary recommendations to avoid T2D progression among post-menopausal women.

GRAPHICAL ABTSRACT

Introduction

Almost 38 trillion microbes harbor the human intestinal 
tract and are collectively known as the gut microbiota. The 
gut microbiota functions as a virtual organ and affects host 
health and metabolism by producing several metabolites 
such as short-chain fatty acids (SCFAs; mainly acetate, pro-
pionate, and butyrate) and secondary bile acids (Valdes et  al. 
2018). Gut microbiota is a dynamic community that is easily 
affected by several factors such as diet, disease, metabolic 
variation, and age.

Natural menopause is a serious metabolic variation in 
mid-age women, elevating dyslipidemia, obesity, and irreg-
ular carbohydrate metabolism, which affect the gut micro-
bial community (Santos-Marcos et  al. 2018). Usually, 
menopause occurs in mid-aged women (47–52 years) when 
their ovaries stop maturing ovum and simultaneously ceases 
estrogen and progesterone secretion. According to the 

National Institute for Health and Care Excellence (NICE, 
UK) guidelines, the time after 12 successive months of the 
last period or menstrual cycle is regarded as post-menopause 
(Hope 2016). This permanent shift from the reproductive 
to post-reproductive phase causes multiple metabolic and 
psychotic changes in a female body, mainly due to the 
depleted female steroid hormones. Hormonal depletion 
among post-menopausal women potentially enhances their 
vulnerability to disorders in the hormone-responsive tissues 
such as brain, kidney, bones, and cardiovascular system 
(Lobo et  al. 2014). Additionally, metabolic disorders includ-
ing abdominal obesity, dyslipidemia, insulin resistance, 
impaired glucose tolerance, and type 2 diabetes (T2D),  
may also occur because of menopause, affecting the quality 
of life during the post-menopausal phase (Joon Cho  
et  al. 2008; Stachowiak, Pertyński, and Pertyńska- 
Marczewska 2015).
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In general, women are less susceptible to metabolic dis-
eases than men. However, this situation reverses after meno-
pause, particularly in cases of diabetes and cardiovascular 
disease (CVD) (Heianza et  al. 2013; Joon Cho et  al. 2008; 
Lisabeth and Bushnell 2012). The depleted levels of the 
gonadotropic hormone estrogen causes this susceptibility in 
women, leading to detrimental effects (Rosano et  al. 2007). 
This is further fueled by dyslipidemia, characterized by 
higher low-density lipoprotein (LDL) and lower high-density 
lipoprotein (HDL) levels, leading to CVD (Stachowiak, 
Pertyński, and Pertyńska-Marczewska 2015). Previous studies 
have also addressed several associated metabolic risk factors 
termed as metabolic syndrome (MS), characterized by obe-
sity, T2D, insulin resistance, lower HDL level, high blood 
pressure, and elevated triglyceride level, negatively affecting 
the quality of life and life expectancy among post-menopausal 
women (Liang et  al. 2013; Pu et  al. 2017).

Post-menopausal period is a very sensitive phase for dia-
betes and can even be regarded as a period of active diabetic 
vigilance. The association between menopausal status and 
T2D is also supported by multiple longitudinal cohort stud-
ies conducted in South Africa, China, and other countries 
(Mauvais-Jarvis et  al. 2017; Mtintsilana et  al. 2019). Estrogen 
depletion after menopause is a major cause of obesity and 
T2D among elderly women (Marchand et  al. 2018; Ren et  al. 
2019). Estrogen is actively metabolized by the gut microbi-
ota, and its depletion shifts gut microbiota, enhances intes-
tinal permeability, and induces obesity (Vieira et  al. 2017). 
This review systematically examines the discrete information 
regarding the roles of gut microbiota associated with 
post-menopausal T2D, thereby providing a detailed account 
of the relevance of dietary interventions in its regulation.

T2D and its relation to post-menopausal 
repercussions

T2D is a complex metabolic disorder where the body cannot 
utilize glucose in the blood. This condition arises due to a 
lack of insulin or imperfect response to insulin. According 
to the World Health Organization (WHO), the mortality of 
diabetes was 1.5 million in 2019 (https://www.who.int/
news-room/fact-sheets/detail/diabetes), with T2D being more 
common (90%) than type 1 diabetes (Franzosa et  al. 2019). 
T2D etiology is a complex process characterized by per-
sistent hyperglycemia and depends on multiple factors, rang-
ing from genetic to lifestyle choices (Carlsson 2019; 
Kommoju and Reddy 2011).

Insulin receptors are present in almost all tissues, when 
insulin binds to these receptors, glucose transport proteins 
are activated, enhancing glycogenesis and lipid biosynthesis, 
and reducing gluconeogenesis (De Paoli, Zakharia, and 
Werstuck 2021). When insulin receptors do not respond, 
insulin resistance absurdly increases hepatic glucose pro-
duction, thus secreting insulin (De Paoli, Zakharia, and 
Werstuck 2021). Insulin resistance in skeletal muscles is the 
earliest detectable sign of T2D (Taylor 2013). T2D is one 
of the most common metabolic ailments among 
post-menopausal women, which further lead to other severe 

metabolic conditions such as CVD and chronic kidney dis-
eases (Ahmed 2017; Koye et  al. 2018). A major reason for 
this susceptibility is the depletion of a primary sex hormone, 
estrogen, after menopause. Table 1 summarizes the ailments 
in several organs caused by estrogen depletion in 
post-menopausal women.

Estrogen actively participates in glucose metabolism; thus, 
a low estrogen level (∼10 pg/mL) escalates T2D etiology by 
increasing inflammation and inducing obesity (De Paoli, 
Zakharia, and Werstuck 2021; Ko and Kim 2020). The effects 
of estrogen on various T2D-related metabolic activities are 
summarized in Figure 1. Estrogen binds to its receptors, 
then undergoes conformational changes, and are translocated 
to the nucleus where they act as mitogenic stimulants and 
regulate immunological cell expression (Moulton 2018; Straub 
2007). Moreover, estrogen receptors are expressed in the 
visceral, hepatic, and subcutaneous adipocytes, so that a 
lower level of estrogens enhances fat accumulation in the 
body (Ko and Kim 2020; Marchand et  al. 2018). This surplus 
fat adversely affects lipid metabolism by producing excessive 
triglycerides and free fatty acids. These triglycerides and free 
fatty acids accumulate in non-fatty tissues and impair insulin 
signaling and β-cell regulation, causing insulin resistance (Ko 
and Kim 2020). Estrogen also acts effectively against T2D 
by promoting degradation of ill-folded pro-insulin, thus 
reviving the endoplasmic reticulum from stress and β-cell 
dysfunction (Xu et  al. 2018).

Association of gut microbiota with post-
menopausal T2D

Post-menopausal gut dysbiosis, metabolic changes, and 
their relation with T2D

Estrogen deprivation causes gut dysbiosis, which induces 
and worsens the symptoms of T2D. The characteristics of 
post-menopausal gut dysbiosis include lower Firmicute/
Bacteroidetes ratio, lower abundance of the family 
Lachnospiraceae, and a higher abundance of the genera 
Prevotella, Parabacteroides, Bacteroides, and Bilophila 
(Mayneris-Perxachs et  al. 2020; Ozaki et  al. 2021; 
Santos-Marcos et  al. 2018). Other studies have reported that 
post-menopausal gut microbiota have few SCFA producers 
such as Faecalibacterium, Bifidobacterium, Alistipes, 
Ruminococcus, and Roseburia (Mayneris-Perxachs et  al. 2020; 
Santos-Marcos et  al. 2018; Schreurs et  al. 2021; Zhao et  al. 
2019). Interestingly, the abundance of Faecalibacterium and 
Roseburia in post-menopausal women with T2D or obesity 
is often more decreased than that in non-T2D 
post-menopausal women (Alemán et  al. 2018). Conversely, 
“metformin,” a commonly used antidiabetic, increases the 
abundance of SCFA-producing bacteria, while improving 
glucose regulation (Wang, Yu et  al. 2021). In addition to 
the low abundance of SCFA producers, post-menopausal 
women also have a low abundance of other beneficial bac-
teria such as A. muciniphila, Eubacterium eligens, E. rectale, 
and L. vaginalis (Brahe et  al. 2015b; Schreurs et  al. 2021; 
Zhu et  al. 2018). Obesity during post-menopause worsens 

https://www.who.int/news-room/fact-sheets/detail/diabetes
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post-menopausal gut dysbiosis due to reduced microbial 
richness and low abundance of A. muciniphila (Brahe et  al. 
2015b; Schreurs et  al. 2021). As A. muciniphila is responsible 
for maintaining the thickness of the gut epithelial mucus 
layer, its reduced abundance can lead to leaky gut, enhancing 
the translocation of inflammatory toxins through the gut 
epithelial layer (Brahe et  al. 2015b).

Estrogen and estrogen-like compounds modulate the gut 
microbial ecosystem and promote the proliferation of certain 
microbial communities over others (Chen and Madak-Erdogan 
2016; Kaliannan et  al. 2018). Gut microbiota with genes 
encoding estrogen-metabolizing enzymes, referred to as the 
“estrobolome,” flourishes in the presence of estrogen (Chen 
and Madak-Erdogan 2016). Studies also reported that low 
microbial diversity during the post-menopausal period 
adversely affects microbial beta-glucuronidase activity (Baker, 
Al-Nakkash, and Herbst-Kralovetz 2017). Beta-glucuronidase 
enzyme influences estrogen metabolism by deconjugating 
estrogen and phytoestrogen, making them available in the 
bloodstream upon absorption in the gut. These freed estro-
gens act on estrogen receptors to regulate blood glucose 
levels (Baker, Al-Nakkash, and Herbst-Kralovetz 2017; Kwa 

et  al. 2016). Studies on ovariectomized murine models have 
also demonstrated that lack of estrogen reduces the abun-
dance of the genera Bacteroidetes and Akkermansia, while 
inducing a significantly high level of serum cholesterol, 
hepatic adipogenesis, and expression of lipogenesis genes, 
suggesting that estrogen plays important roles in obesity, 
glucose, and lipid homeostasis through modulating gut 
microbiota (Acharya et  al. 2021; Lei et  al. 2021). In addition, 
the gut microbiome during the post-menopausal period is 
reported to be filled with higher trimethylamine N-Oxide 
(TMAO) and hydrogen sulfide (H2S), which increase glu-
coneogenesis and so the glucose level (Grassi et  al. 2016; 
Jang and Lee 2021; Liu et  al. 2020). TMAO is synthesized 
from trimethylamine by gut microbiota, and H2S is gener-
ated by colonic sulfur-reducing microbes (Blachier et  al. 
2021; Janeiro et  al. 2018).

Studies on intestinal metabolic differences between pre 
and post-menopausal gut microbiota showed that metabolic 
activities involved in the pentose phosphate pathway were 
enriched in pre-menopausal microbiota, while those 
involved in homocysteine synthesis was enriched in 
post-menopausal microbiota (Zhao et  al. 2019). The 

Table 1. a summary of post-menopausal ailments.

illustration organ effect reference

liver Higher risk of nonalcoholic fatty liver disease (Chen and Madak-erdogan 2018; wang, 
Gorelick, and Bhargava 2021)

skeletal muscles reduced insulin sensitivity, and glucose uptake (Hevener et  al. 2020)

adipose tissue reduced insulin sensitivity, and higher 
oxidative stress

(de Paoli, Zakharia, and werstuck 2021)

Cardiac tissue Cardiac stroke, and endothelial dysregulation (lisabeth and Bushnell 2012)

Pancreas Higher risk of pancreatic carcinoma, and 
compromised function of β cells.

(de Paoli, Zakharia, and werstuck 2021; 
wang, Gorelick, and Bhargava 2021)

Kidney Higher chances of chronic kidney diseases (ahmed 2017)

Bones osteoporosis, and higher risk of bone fracture (eastell et  al. 2016)

Breast tissue increased risk of breast cancer (dashti et  al. 2020; Qureshi et  al. 2020)
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pentose phosphate pathway generates acetyl-CoA, which 
forms butyrate-CoA, a substrate that directly participates 
in butyrate production (Ge et  al. 2020; Louis and Flint 
2017), suggesting a low amount of SCFAs in the gut of 
post-menopausal women. Together, menopause induces gut 
dysbiosis, and direct hormonal functions are prone to 
induce obesity and diabetes (Figure 2). Other than that, 
post-menopausal osteoporosis is another common ailment 
induced due to estrogen deficiency resulting in lower bone 
density due to higher bone resorption and lower bone rate 
of bone formation, which leads to the higher occurrence 

of bone fracture (Eastell et al. 2016). Common gut-associated 
adversities among post-menopausal women are summarized 
in Table 2.

Regulatory microbial metabolites in T2D

Decreased SCFAs adversely influences the signal transduc-
tion linked to T2D factors, such as glucose utilization and 
dyslipidemia (Alexander et  al. 2019). SCFAs enhance glu-
cose uptake in skeletal muscles via glucose transporter pro-
tein (GLUT4) (Frampton et  al. 2020). GPCR41- and 

Figure 1. effect of estrogen; estrogen affects various metabolic activities related to t2d, such as glucose metabolism, adiposity, systemic inflammation, etc., 
via its direct action and by involving gut-microbiota (er = estrogen receptor, ere = estrogen responsive element).

Figure 2. impact of Post-menopausal type 2 diabetes; Post-menopausal type 2 diabetes affects the multiple regulators including gut microbiota to metabolism, 
and their impact can be seen on various t2d specific markers i.e., BMi, blood glucose level.
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GPCR43-bound SCFAs increase plasma GLP-1 levels, main-
tain glucose homeostasis, and control appetite (Delzenne 
et  al. 2015). Propionate also controls blood glucose levels 
by suppressing gluconeogenesis in the liver by increasing 
the phosphorylation of AMP-activated protein kinase 
(AMPK) (Jang and Lee 2021). Activated AMPK inhibits 
gluconeogenesis by inhibiting various transcription factors 
that control the expression of gluconeogenesis enzymes, 
such as glucose-6-phosphatase and phosphoenolpyruvate 
carboxykinase (Jeon 2016). Additionally, propionate also 
enhances GLP-1, which reduces hepatic visceral fat by lim-
iting triglyceride synthesis. Propionate regulates cellular 
lipid metabolism by modulating Fiaf, GPCR43, and histone 
deacetylases (HDAC) (Lukovac et  al. 2014). Members of 
the phylum Bacteroidetes are the largest propionate pro-
ducers in the gut (Chambers et  al. 2015; Rios-Covian et  al. 
2017), thus a decreased Bacteroidetes abundance can result 
in increased blood glucose level (Cunningham, Stephens, 
and Harris 2021).

Reduced SCFAs are linked to decreased production of 
mucin 2, a major component of mucin protein present in 
the gut mucus layer, thus compromising the gut epithelial 
barrier (Fang et  al. 2021). The reduction of the mucus 
layer decreases the abundance of the genus Akkermansia, 
which exerts antidiabetic effects through the Amuc_1100 
outer membrane protein. Amuc_1100 plays an immuno-
regulatory role in the gut and promotes the secretion of 
serotonin, a glucose-homeostatic neurotransmitter (Wang, 
Xu et  al. 2021). A. muciniphila also produces propionate 
in the gut that regulates the blood glucose as discussed 
above. Moreover, A. muciniphila and Bacteroides species 
are negatively associated with T2D markers, such as insu-
lin resistance, low-grade inflammation, and lipid dysreg-
ulation (Brahe et  al. 2015b). Hence, A. muciniphila 
regulates T2D and obesity via glucose homeostasis. Even 
oral administration of A. muciniphila is also effective in 
countering insulin resistance (Depommier et  al. 2020; 
Greer et  al. 2016). Interestingly, metformin, the first line 
of defense medicine against T2D, also enhances A. 
muciniphila abundance in T2D patients, which further 
supports the antidiabetic role of Akkermansia (Lee, Ko, 
and Griffiths 2014).

Gut microbiota also participates in glucose homeosta-
sis regulation by controlling serotonin secretion from 

enterochromaffin cells (EC cells) in the gut lining (Martin 
et  al. 2019). Serotonin is a neurotransmitter associated 
with glucose homeostasis as it regulates insulin secretion 
from pancreatic β-cells, while improving insulin sensi-
tivity and hyperglycemia (Al-Zoairy et  al. 2017; Watanabe, 
Rose, and Aso 2011). Approximately 90% serotonin is 
secreted into the body from EC cells, and the gut micro-
biota controls its secretion by signaling EC cells through 
metabolites, such as SCFAs and secondary bile acids 
(Martin et  al. 2019). In addition, Amuc_1100, an outer 
surface protein of the mucolytic A. muciniphila, also 
participates in serotonin biosynthesis (Wang, Xu 
et  al. 2021).

Secondary bile acids are also a major type of metabolites 
that play an important role in T2D development. Bile acids 
are synthesized in the liver, help in lipid digestion, and also 
function as endocrine molecules that enhance glucagon-like 
peptide-1 (GLP-1) secretion in the gut (Taylor et  al. 2014; 
Zaborska and Cummings 2018). Most of the bile acids are 
actively absorbed back into the ileum through bile acid 
transporters, and only a small fraction of them reaches the 
colon (Legry et  al. 2017). Gut microbiota metabolizes bile 
acids into secondary bile acids, such as deoxycholic acid 
(DCA) and lithocholic acid (LCA). Secondary bile acids are 
bactericidal and play a critical role in balancing the micro-
bial community by suppressing pathobionts. However, exces-
sive amounts of secondary bile acids may inhibit the growth 
of Bacteroidetes and Actinobacteria phyla, increasing the 
overall abundance of phylum Firmicutes (Ridlon et  al. 2014). 
Secondary bile acids also interrupt glucose homeostasis by 
inhibiting TGR5, which participates in glucose homeostasis 
at high energy expenditure in muscles and brown adipose 
tissues while releasing GLP-1 (Molinaro, Wahlström, and 
Marschall 2018). Although some gut microbes are also 
known to reduce the secondary bile acid toxicity by trans-
forming DCA and LCA into iso-DCA and iso-LCA, respec-
tively (Legry et  al. 2017).

Gut microbiota in regulation of oxidative stress and 
systemic inflammation

Oxidative stress indicates inner mitochondrial and cellular 
damage caused by reactive oxygen species (ROS) and reac-
tive nitrogen species (RNS). ROS and RNS are extremely 

Table 2. Common gut associated adversities in post-menopausal women.

Post-menopausal adversities Model study reference

lower sCFa level Mice sCFa regulate systemic bone mass (lucas et  al. 2018)
Human depletion of butyrate producers in postmenopausal gut microbiota (Zhao et  al. 2019)

Gut dysbiosis Human Gut microbiota features and metabolic markers in postmenopausal women (Brahe et  al. 2015b)
Human Gut dysbiosis in post-menopausal women (ozaki et  al. 2021)

osteoporosis Human intestinal microbiota as a target for the treatment of post-menopausal 
osteoporosis

(Xu et  al. 2017)

Human Gut microbiota alteration in post-menopausal women and its association 
with osteoporosis

(rettedal et  al. 2021)

inflammation Human intervention induced variation in inflammatory markers in post-menopausal 
women

(Masala et  al. 2020)

Mice estrogen-mediated gut microbiome alterations influence sexual dimorphism 
in metabolic syndrome in mice

(Kaliannan et  al. 2018)

Human Gut microbiota features and metabolic markers in postmenopausal women (Brahe et  al. 2015b)
Human Gut permeability, and inflammation across menopause transition (shieh et  al. 2020)
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reactive and unstable free radicals that can activate various 
pathways with an adverse impact on the body (Ceriello, 
Testa, and Genovese 2016). Oxidative stress overloads glu-
cose, and increased oxidative stress can lead to insulin resis-
tance (Molehin, Adefegha, and Adeyanju 2020; Wright, 
Scism‐Bacon, and Glass 2006). Several studies have also 
reported associations between increased oxidative stress and 
T2D among post-menopausal women due to low free thiol 
(R–SH) level, a key extracellular antioxidant (Bourgonje 
et  al. 2021; Song et  al. 2009).

Imbalanced gut microbial communities allow the propa-
gation of opportunistic pathogens in the gut. Invasion by 
these bacteria secreting toxic metabolites (such as lipopoly-
saccharides (LPS) and enterotoxins) causes leaky gut syn-
drome and systemic inflammation. Systemic inflammation 
is associated with insulin resistance and T2D in 
post-menopausal women. Pro-inflammatory cytokine levels, 
such as IL-1, IL-6, and TNF-α, are high among T2D patients 
(Spranger et  al. 2003). These pro-inflammatory cytokines 
induce insulin resistance (Kanmani et  al. 2019) and regulate 
C-reactive protein, a major inflammatory marker of T2D. 
Chronic inflammation with elevated C-reactive protein levels 
is associated with T2D (Kanmani et  al. 2019; Masala et  al. 
2020). On the other hand, IL-1 hinders insulin secretion 
and induces apoptosis in pancreatic β-cells, thus contributing 
to T2D occurrence (Banerjee and Saxena 2012). Moreover, 
an inflammatory load is negatively associated with circula-
tory estrogen levels and obesity among post-menopausal 
women (Masala et  al. 2020).

Dietary interventions and their efficacy in 
controlling T2D severity

Diet directly affects most T2D components, such as glucose 
metabolism, caloric intake, lipid metabolism, and gut micro-
biota. Since gut microbiota largely impacts the metabolic reg-
ulation among T2D patients, various dietary interventions have 
been studied to understand their possible beneficial roles in 
post-menopausal T2D. The effect of these dietary interventions 
are mostly mediated by gut microbiota, and they benefit the 
host in multiple ways by simultaneously affecting the inflam-
matory markers and glucose-regulatory metabolism (Figure 3).

Biologically active compounds in diet

Isoflavones are polyphenolic compounds classified as phy-
toestrogens, as their functions are similar to those of human 
estrogen. Isoflavone-rich dietary sources such as soybean, 
fermented soy products, and chickpea sprouts are advised 
for post-menopausal T2D women to maintain a healthy gut 
microbiome (Fukuda, Kobayashi, and Honda 2017; Ma et  al. 
2013). Studies also reported that isoflavone administration 
effectively enhances the abundance of butyrogenic E. rectale 
(Zhao et  al. 2019). Daidzin, an isoflavonoid abundant in a 
soy-based diet, can be metabolized by gut microbes into 
compounds similar to estrogen (Chen and Madak-Erdogan 
2016). Another isoflavone, Genistein is metabolized by the 
gut microbiota into 4-ethylphenyl sulfate, 3-phenylpropionate, 
and methyl-4-hydroxybenzoate, which improves the oxidative 

Figure 3. role of gut microbiota in the progression of type 2 diabetes among post-menopausal women.
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capacity of muscles and ameliorates T2D symptoms in 
post-menopausal women (Braxas et  al. 2019; Guevara-Cruz 
et  al. 2020). Genistein also decreases endotoxemia and con-
trols body glucose levels by supporting Akkermansia growth 
(Braxas et  al. 2019). Soy isoflavone administration in 
post-menopausal women has increased the count of 
Bifidobacterium, while decreasing the abundance of family 
Clostridiaceae, which participates in systemic inflammation 
among post-menopausal obese women (Vieira et  al. 2017).

Dietary polyphenols also enrich A. muciniphila and 
reduce glucose-6-phosphate mRNA expression in a T2D 
mouse model, which eventually reduces gluconeogenesis and 
improves fasting hyperglycemia (Everard et  al. 2013). Most 
polyphenols are indigestible, thus reaching the large intestine 
where more than 90% polyphenols are metabolized by gut 
microbiota to low molecular weight active polyphenolic 
compounds, such as phenolic acids and hydroxyphenyl moi-
eties (Cardona et  al. 2013; Wan, Co, and El-Nezami 2021). 
Green tea is a rich source of polyphenol “catechins,” which 
account for 30–40% brewed tea solids, and is metabolized 
by Eubacterium, Enterobacter, B. longum, L. plantarum, and 
Bacillus subtilis (Chen and Sang 2014; Guo et  al. 2019). 
Catechins also limit the abundance of possible harmful intes-
tinal microbes such as Helicobacter pylori, Escherichia coli, 
and Staphylococcus aureus, while maintaining a high abun-
dance of beneficial bacteria such as Bifidobacterium and 
Lactobacillus (Guo et  al. 2019). Tea catechin also decreases 
Firmicutes/Bacteroidetes ratio, generally referred to as an 
obesity indicator, while effectively controlling the postpran-
dial glucose level and oxidative stress among post-menopausal 
T2D patients (Guo et  al. 2019; Takahashi et  al. 2014).

Bioactive compounds obtained from turmeric herb also 
have proven effective in T2D treatment. Turmerin is a sec-
ondary metabolite of turmeric with an antidiabetic property 
(Kalaycıoğlu, Gazioğlu, and Erim 2017; Lekshmi et  al. 2012). 
Turmeric oil inhibits the activity of glucosidase, which is 
commonly used to control postprandial hyperglycemic con-
ditions (Lekshmi et  al. 2012). On the other hand, curcumin, 
a polyphenolic compound present in turmeric, boosts the 
abundance of probiotics (Bifidobacterium and Lactobacillus) 
while reducing pathogenic strains such as Enterobacteria 
and Enterococci (Di Meo et  al. 2019). Curcumin also man-
ages oxidative stress and inhibits several pro-inflammatory 
cytokines in adipose tissue to control systemic inflammation 
in T2D patients (Pivari et  al. 2019). A murine study also 
reported that curcumin shifts the gut microbiota and reduces 
weight gain in estrogen-deficient ovariectomized rats (Zhang 
et  al. 2017). Spent turmeric has significant antioxidant activ-
ity and contains almost 45% fiber that can be metabolized 
by the gut microbiota to produce SCFAs (Sowbhagya 2019).

Dietary glucosinolates are abundant in broccoli and 
metabolized by gut microbiota to isothiocyanate sulfora-
phane, which reduces blood glucose levels in T2D patients 
(Angelino et al. 2015; Liou et al. 2020). Additionally, broccoli 
is rich in phytoestrogens and helps to curb post-menopausal 
hormone-dependent dysregulations, including obesity and 
T2D (Petrine and Bianco-Borges 2021; Shoff et  al. 1998). 
Gut microbiota metabolizes phytoestrogens to produce 

bioactive substances that interact with estrogen receptors 
and induce estrogenic effects (Stojanov and Kreft 2020).

Plant seed mucilage shifts gut microbiota, improves 
serum lipid profiles, and increases insulin sensitivity among 
post-menopausal women (Soukoulis, Gaiani, and Hoffmann 
2018). Flaxseed mucilage, for example, improves postpran-
dial glucose, insulin sensitivity, and lipid profile (Kay et  al. 
2017; Soltanian and Janghorbani 2018), while modulating 
gut microbiota in post-menopausal obese women (Brahe 
et  al. 2015a). Flaxseed mucilage treatment in mice also 
enhances the abundance of genera Lactobacillus and 
Clostridium, which are often depleted in post-menopausal 
women. Some Clostridium species chiefly metabolize flax-
seed mucilage to produce acetate and propionate (Luo 
et  al. 2018). Another study has showed the anti-obesity 
effects of flaxseed by significantly increasing the abundance 
of genera Akkermansia and Bifidobacterium and decreasing 
that of obesity-associated bacteria (i.e., Oscillospiraceae) in 
mice gut microbiota (Xu, Chen et  al. 2020). Flaxseed poly-
saccharides also limit oxidative stress and reduce 
pro-inflammatory markers, such as IL-6 and IL-1, while 
enhancing the anti-inflammatory cytokine IL-10 (Xu, Chen 
et  al. 2020). Yellow mustard mucilage also has antioxidant 
properties and improves postprandial glycemic conditions 
(Lett, Thondre, and Rosenthal 2013; Wu et  al. 2016). 
Fenugreeks have antidiabetic effects because they improve 
postprandial glycemic conditions and glucose homeostasis 
in T2D patients (Hannan et  al. 2007; Kay et  al. 2017). 
Moreover, fenugreek seed mucilage and spent turmeric are 
rich dietary fiber sources that effectively limit the higher 
disaccharidase (maltase, sucrase, and lactase) activity in 
diabetics (Kumar, Shetty, and Salimath 2005). Additionally, 
in vitro colonic fermentation of fenugreek enhances the 
abundance of Bifidobacterium and Lactobacillus, which are 
depleted in post-menopausal T2D patients (Kumar, Shetty, 
and Salimath 2005; Navarro del Hierro et  al. 2020). Murine 
studies have also reported the therapeutic relevance of 
fenugreek fiber in T2D by improving glucose tolerance, 
dyslipidemia, and weight gain. In addition, fenugreek fiber 
also enhances the abundance of phylum Bacteroidetes and 
family Lachnospiraceae, members of which are often 
depleted among obese people and post-menopausal T2D 
patients (Bruce-Keller et  al. 2020; Ozaki et  al. 2021; 
Shtriker et  al. 2018). Lastly, clinical studies have proven 
that fenugreek seed is effective against hyperlipidemia, 
inflammation, and oxidative stress in T2D patients. Thus, 
regular fenugreek seed administration may help T2D con-
trol in post-menopausal women (Chaturvedi et  al. 2013; 
Roberts 2011; Tavakoly et  al. 2018). Besides fenugreek seed, 
chia seed mucilage is also a potential remedy for 
post-menopausal T2D patients because it has antidiabetic 
properties and increases the abundance of Lactobacillus 
and the amount of SCFAs in vitro, although further studies 
are required to investigate how it modulates the gut micro-
biome in T2D patients (Tamargo et  al. 2018).

A healthy diet normally comprises omega 3 fatty acids 
(n-3) and omega 6 fatty acids (n-6), where n-3 is effective 
in significantly controlling insulin resistance, triglycerides, 
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and pro-inflammatory IL-6 among post-menopausal women 
with metabolic syndromes (Tardivo et  al. 2015). Clinical evi-
dences suggest that n-3 reverses dysbiosis by restoring 
Firmicutes/Bacteroidetes proportion and enhancing the 
Lachnospiraceae members producing anti-inflammatory 
metabolites such as butyrate (Costantini et al. 2017). Moreover, 
studies have also shown that n-3 controls endotoxemia by 
increasing the abundance of probiotics (i.e., Bifidobacterium) 
and decreasing that of gram-negative bacteria whose LPS 
causes systemic inflammation (Cani et  al. 2007; Costantini 
et  al. 2017). Interestingly, further studies have suggested that 
a rationalized mixture of n-3 and n-6 is more effective in 
controlling the elevated triglycerides in post-menopausal T2D 
women than individual treatments (Griffin et  al. 2006).

Effect of prebiotics and probiotics against T2D 
progression

Prebiotics are non-digestible polysaccharides and oligosac-
charides that confer beneficial effects to the host by sup-
porting beneficial bacterial growth. Table 3 summarizes 
some prebiotics reported to reduce insulin resistance and 
T2D progression. However, clinical trials have shown that 
the administration of oligosaccharides such as fructooligo-
saccharides (FOS) and galactooligosaccharides (GOS) has a 
limited impact on insulin resistance and glycemic control 
(Luo et  al. 2000; Nie et  al. 2019).

Probiotics are live beneficial microbes and their admin-
istration usually positively modulates the microbial commu-
nity and improves the intestinal barrier function and 
immunity, which supports host health. Evidence from 
numerous studies have reported that Bifidobacterium, 
Lactobacillus, Bacillus, Streptococcus, Akkermansia, and 
Roseburia administration showed beneficial health effects in 
T2D patients (Gurung et  al. 2020). Lactobacillus is a lactic 
acid bacteria (LAB) that commonly alters the microbial flora 

by reducing the gut pH, which inhibits the growth of oppor-
tunistic pathogens. Lactic acid produced by LAB is further 
cross-fed by SCFA-producing bacteria (Li et  al. 2017). 
Bifidobacterium, another LAB, is also a well-known benefi-
cial bacterium that inhibits opportunistic pathogens, pro-
duces antioxidants, reduces inflammation, and cross-feeds 
SCFA producers (Rivière et  al. 2016). Bifidobacterium also 
improves glucose levels, endotoxemia, fat accumulation, and 
insulin resistance (Cani et  al. 2007; Cano et  al. 2013; 
Kikuchi, Ben Othman, and Sakamoto 2018). Clinical studies 
in T2D patients have also found that probiotics are effective 
in improving the glycemic condition and dyslipidemia 
(Kocsis et  al. 2020; Tao et  al. 2020). The murine T2D model 
showed that probiotics increases SCFA production, improves 
gut barrier function, and enhances insulin secretion via 
GLP-1 secretion (Xu, Wang et al. 2020). The co-administration 
of different Bifidobacterium and Lactobacillus strains signifi-
cantly improves obesity, insulin resistance, glycemic condi-
tion, dyslipidemia, hyperuricemia, pro-inflammatory markers, 
and LPS levels in post-menopausal obese women (Skrypnik 
et  al. 2019; Szulińska et  al. 2018). Table 4 summarizes the 
strain-specific antidiabetic effects of these probiotic strains.

Fermented dairy products such as yogurt and kefir also 
proven their roles against obesity and T2D. Milk fermenta-
tion involves various probiotic Lactobacillus and Streptococcus 
strains, whose ingestion contributes to maintaining a healthy 
microbial ecosystem by producing SCFAs, reverting dysbi-
osis, and limiting harmful microbes by decreasing the gut 
pH (Fernandez and Marette 2018; Marco et  al. 2017). 
Moreover, milk fermentation by LAB also increases the con-
jugated linoleic acid content, which significantly decreases 
obesity and adipogenesis among post-menopausal T2D 
patients (Norris et  al. 2009). The antidiabetic role of fer-
mented milk products is also supported by their ability to 
reduce colonic pro-inflammatory cytokines and ROS in 
intestinal enterocytes, and the presence of a high amount 

Table 3. Prebiotics and their role in t2d management in post-menopausal women.

Prebiotic Monosaccharide Microbiota variation antidiabetic role references

resistant dextrin d-Glucopyranose ↑Peptostreptococcus 
↑Fusobacterium 
↑Bifidobacterium

enhances sCFa production; 
specially butyrate 
production, improves 
insulin resistance

(aliasgharzadeh et  al. 2015; wang 
et  al. 2020)

oligofructose Fructose and glucose ↑Bifidobacterium 
↑Lactobacilli 
↓Enterobacteriaceae

improve glycemic condition, 
lipid profile, and 
antioxidant level

(dehghan, Pourghassem Gargari, 
and asghari Jafar-abadi 2014; 
nie et  al. 2019; niness 1999)

inulin Fructose and glucose ↑Cyanobacteria 
↑Bacteroides 
↓Deferribacteres 
↓Tenericutes

improves fasting glucose 
level, body weight and 
blood lipid

(wang et  al. 2020; Yan et  al. 2019)

oligofructose enriched inulin Fructose and glucose ↑Bifidobacterium improves fasting glucose 
level, limits il-6 and 
tnF-α, while increases 
il-10

(dehghan, Pourghassem Gargari, 
and asghari Jafar-abadi 2014)

stachyose 2, α-d-galactose, α-d-
glucose and fructose 
(tetra-saccharide nature)

↑Phascolarctobacteria 
↑Bilophila ↑Oscillospira 
↑Turicibacter

decreases serum lPs and 
expression of 
inflammatory cytokines 
i.e., il-6 and tnF-α

(liu et  al. 2018; Yan et  al. 2016)

Fructooligosaccharide Fructose and glucose ↑Bifidobacterium 
↑Lactobacilli

improves body weight, 
antioxidant capacity and 
reducing hyperglycemia

(Gobinath et  al. 2010; nie et  al. 
2019)

Xylo-oligosaccharides Xylose ↑Bifidobacterium 
↑Lactobacilli

improves body weight, 
antioxidant capacity and 
reducing hyperglycemia

(Gobinath et  al. 2010; wang et  al. 
2020)
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of bioactive peptides (Marco et  al. 2017). Bioactive peptides 
are derived from the enzymatic digestion of milk proteins 
by LAB, which is hypothesized to be antidiabetic through 
regulating the genes participating in glucose uptake, inflam-
matory responses, and insulin production (Fernandez and 
Marette 2018). Studies on ovariectomized mice have shown 
that kefir peptide consumption increased gut microbial rich-
ness and SCFA-producing bacteria such as Anaerostipes, 
Ruminococcus, and Streptococcus (Tu et  al. 2020).

Effects of synbiotic treatment against T2D progression

Synbiotic treatments involve the co-administration of probi-
otics and prebiotics. Synbiotic treatments often have a better 
impact than individual treatments. For example, L. acidophilus 
DSM20079 produced 14.5 times more butyrate in the presence 
of inulin or pectin than that in their absence (Kim, Keogh, 
and Clifton 2018). Several studies have found that synbiotic 
administration effectively reduces insulin resistance and 

plasma lipid profiles in T2D patients (Kim, Keogh, and 
Clifton 2018; Sáez-Lara et  al. 2016). A previous study on an 
estrogen-deficient murine model has reported that synbiotic 
treatments alters the gut microbiota and alleviates dyslipid-
emia and insulin resistance (Jeong et  al. 2017). Synbiotic 
administration also significantly reduced blood glucose levels 
and insulin resistance in post-menopausal T2D patients (Lee 
et  al. 2020; Raji Lahiji et  al. 2021). Synbiotic treatment of 
fermented milk containing L. paracasei and inulin enhances 
the bioavailability of soy-derived isoflavones in post-menopausal 
women, thus enhancing the conversion of isoflavones into 
estrogen-like compounds (Timan et  al. 2014). Table 5 sum-
marizes the antidiabetic effects of synbiotic treatments.

Effects of postbiotic treatment against T2D progression

The postbiotic treatment is a comparatively new strategy in 
which non-viable microbial products such as SCFAs, func-
tional proteins, extracellular polysaccharides, and cell lysate 

Table 4. Probiotic strains used in previous studies and their roles against t2d (L. = Lactobacillus, B. =Bifidobacterium).

Probiotic strain Model antidiabetic role reference

L. salivarius aP-32 Mice improves glycemic condition (Hsieh et  al. 2020)
L. gasseri Bnr17, sBt2055 Mice/human improves blood glucose level, glucose 

sensitivity and obesity
(sáez-lara et  al. 2016; Yun, Park, and Kang 2009)

L. plantarum MG4229, MG4296, 
MG5025 and CCFM0236

Human/Mice α-glucosidase and α-amylase inhibitory, 
anti-oxidant activity

(sáez-lara et  al. 2016; won et  al. 2021)

L. acidophilus Klds1.1003, 
Klds1.0901 and nCFM

Mice/Human improves gut-barrier function, glucose-lipid 
metabolism, and inflammation

(andreasen et  al. 2010; Yan et  al. 2019)

L. rhamnosus GG Human improves the glycemic condition (sanborn, azcarate-Peril, and Gunstad 2020)
L. casei CCFM419, CCFM0412 Mice improves glucose level, insulin-resistance 

and inflammatory markers, higher sCFa
(Chen et  al. 2014; wang et  al. 2017)

L. paracasei MG5012, nl41 Human/Mice improves blood glucose regulation and 
insulin resistance

(won et  al. 2021; Zeng et  al. 2019)

L. reuteri adr1, adr3 and Gl-104 Mice reduces insulin sensitivity and improves 
anti-oxidant activity

(Hsieh et  al. 2018; Hsieh et  al. 2020)

B. lactis HY8101 Mice improves insulin sensitivity, glucose and 
lipid metabolism

(Kim et  al. 2014)

B. animalis 01 Mice improves hepatic insulin sensitivity (Zhang et  al. 2020)
B. longum dd98 Mice improves glucose level, regulates insulin 

and lipid metabolism
(Zhao et  al. 2020)

B. pseudocatenulatum CeCt 7765 Mice improves glucose tolerance and insulin 
resistance

(Cano et  al. 2013)

Saccharomyces boulardii Biocodex Mice improves body mass and inflammation (everard et  al. 2014)
Clostridium butyricum 

CGMCC0313.1
Mice improves fasting blood glucose, glucose 

tolerance ad insulin resistance
(Jia et  al. 2017)

Table 5. synbiotic administration used in different t2d studies (L.=Lactobacillus, B.=Bifidobacterium, S. = Streptococcus).

synbiotic Model antidiabetic role references

L. sporogenes and inulin Human decreases triacylglycerol and vldl (shakeri et  al. 2014)
L. acidophilus and powdered Cinnamon Human improves glycemic control and antioxidant status (Mirmiranpour et  al. 2020)
L. acidophilus atCC 4357 with 

fructo-oligosaccharide and iso 
maltooligosaccharide

rabbit reduction in blood glucose, urea and creatinine levels, limits the 
abundance of e. coli

(shafi et  al. 2019)

L. fermentum and β-glucans from cauliflower 
mushroom

Mice improves dysbiosis (Jeong et  al. 2017)

L. acidophilus, B. bifidum, and 
fructooligosaccharide

Human improves glycemic condition (Moroti et  al. 2012)

L. sporogenes, inulin, and beta-carotene Human improves triglyceride, insulin and antioxidant stress level (asemi et  al. 2016)
L. casei, L. acidophilus, L. rhamnosus, L. 

bulgaricus, B. breve, B. longum, S. 
thermophilus, and fructooligosaccharide

Human improves serum insulin, insulin resistance and glycemic profile (raji lahiji et  al. 2021)

L. sporogenes, inulin, isomalt, sorbitol, Human improves serum insulin, and glucose homeostasis (asemi et  al. 2014)
Bacillus coagulans, L. rhamnosus, L. 

acidophilus and fructo-oligosaccharide
Human improves fasting blood glucose level, and insulin resistance (velayati et  al. 2021)
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can be administered without evoking the host-immune 
response (Chaudhari and Dwivedi 2022). Recently, various 
postbiotic approaches have been successfully used to treat 
obesity and diabetes, which includes the anti-obesity impact 
of lipoteichoic acid from Bifidobacterium animalis subsp. lactis 
BPL1 (Balaguer et  al. 2022), and insulin-sensitizing role of 
bacterial cell wall-derived muramyl dipeptide (Cavallari et  al. 
2017). Postbiotic were also found to be effective in controlling 
the post-menopausal osteoporosis in the murine model (Jang 
et  al. 2021; Montazeri-Najafabady et  al. 2021), but their effi-
cacy against post-menopausal T2D has yet to be tested, as 
till date there is no information is available regarding it.

Conclusion

Permanent estrogen depletion poses a significant pressure 
on metabolic regulation and intestinal dysbiosis. As the gut 
microbiota is a pivotal component that regulates the glucose 
homeostasis, oxidative stress, and systemic inflammation, it 
is important to maintain intestinal health and to avoid the 
vicious spread of T2D among post-menopausal women. To 
exploit the possible antidiabetic potential of gut microbiota 
and its regulatory impact on T2D, different dietary inter-
ventions can be administered under close medical guidance 
to ease post-menopausal diabetic conditions.
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