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1  | INTRODUC TION

The pervasiveness of obesity in the United States has been dramati-
cally increasing over the last several decades and shows no signs of 
slowing. In 2015-2016, the prevalence of obesity in the US popula-
tion was 39.8%, accounting for about 93.3 million US adults,1 with 
new data predicting that by 2030 nearly 1 in 2 adults will be obese.2 
As our patient interactions become progressively influenced by the 
health effects of obesity, it is becoming increasingly important to un-
derstand the consequences of the hematologic alterations observed 
in these individuals.

Obesity has been associated with a state of low-grade systemic 
inflammation characterized by an adipose tissue driven acute-phase 
response, with interleukin (IL)-6, IL-1, IL-8, and tumor necrosis factor 
(TNF)-α playing the largest role and resulting in subsequent eleva-
tions of acute-phase proteins such as c-reactive protein (CRP). This 
produces an environment defined by inflammation, with theoreti-
cal and established down-stream effects. This review will summa-
rize our current understanding of this pro-inflammatory state and 
its alteration of hematologic parameters, particularly with regard to 
white blood cell, red blood cell, and platelet counts and perturbances 
to thrombosis.
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Abstract
The prevalence of obesity is increasing and progressively influencing physician-pa-
tient interactions. While there is a sizable amount of data demonstrating that obesity 
is a state of low-grade inflammation, to our knowledge, there is no single review sum-
marizing its effects on hematologic parameters and thrombotic risk. We performed a 
literature search which largely surfaced observational studies, with a few systematic 
reviews and meta-analyses of these studies. We took care to review the mechanisms 
driving an inflammatory state and obesity's effect on white blood cells, red blood 
cells, platelets, and thrombotic risk. There is an observed relative, and sometimes 
absolute leukocytosis driven by this inflammatory state. Obesity is also associated 
with increased platelet counts and an increased risk for venous thromboembolism 
(VTE). Lastly, the association between obesity, iron deficiency (ID), and red blood cell 
counts may be present but remains uncertain. Recognizing the above associations 
may provide clinicians with reassurance regarding otherwise unexplained hemato-
logic abnormalities in obese individuals. We hope this review will prompt future stud-
ies to further understand the underlying mechanisms driving these abnormalities and 
identify modifiable risk factors and potential therapeutic targets to prevent the de-
velopment of probable obesity-associated conditions with significant morbidity and 
mortality, such as ID and VTE.
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2  | THE PRO -INFL AMMATORY STATE OF 
OBESIT Y

2.1 | Macrophages and adipose tissue

There is ample evidence that adipose tissue is a primary source 
of inflammatory mediators.3,4 White adipose tissue is the most 
abundant type of adipose tissue and is composed of many cell 
types. Adipocytes are the most plentiful, but adipose tissue mac-
rophages are also present, with a relative population size that cor-
relates with the level of adiposity.5 Adipose tissue macrophages 
are estimated to comprise up to 40% of the cells in obese adi-
pose tissue, compared with under 10% in lean individuals,6 and 
elevated macrophage infiltration is noted in visceral compared 
with subcutaneous fat.7 Although it has been reported that pread-
ipocytes can function as macrophage-like cells,8 adipose tissue 
macrophages are most likely bone marrow-derived circulating 
monocytes that subsequently infiltrated adipose tissue.6 Leptin 
and other chemokines such as monocyte chemotactic protein-1 
and leukotriene B49 contribute to this, and increasing concentra-
tions of recombinant human leptin have been shown to result in 
an increased adhesion and transmigration of blood monocytes in 
a concentration-dependent manner,5 though all factors attract-
ing immune cells into obese tissues are not yet fully understood. 
See Boutens et al (2016)10 for a full review of adipose tissue mac-
rophages in obesity.

2.2 | Adipose tissue and the acute-phase response

The acute-phase response that accompanies inflammatory states 
is characterized by increased production of acute-phase proteins, 
largely released by hepatocytes. The role of these acute-phase 
proteins varies from mediating inflammation, to inhibiting pro-
teases, to scavenging free radicals. IL-6 is a principle regulator for 
most positive acute-phase proteins and stimulates the production 
of serum amyloid A, c-reactive protein, α1-acid glycoprotein, α1-
antichymotrypsin, haptoglobin, α1-antitrypsin, fibrinogen, com-
plement component C3, and ceruloplasmin.11 Human adipose 
tissue can independently produce and release cytokines that are 
known to be major inducers of the acute-phase response, includ-
ing IL-6, IL-1, IL-8, and TNF-α.12 Both adipocytes and macrophages 
contribute to cytokine production, though there is some evidence 
that macrophages are the major source of white adipose tissue-
derived IL-6 and TNF-α.6 Cottam et al (2004)13 comprehensively 
summarized all acute-phase reactants and inflammatory mediators 
observed in obesity.

IL-6 and TNF-α are most evidently increased in the serum and 
white adipose tissue of obese individuals,14-21 and Mohamed-Ali 
et al (1997)22 calculated that the whole body adipose tissue mass 
is responsible for the production of 15%-35% of systemic IL-6. IL-6 
and TNF-α levels are also noted to decrease with weight loss,23-

28 particularly secondary to bariatric surgery.29-31 Local adipose 

tissue IL-6 production is also noted to be greater in subjects with 
a higher waist-to-hip ratio.17,19,22 A higher waist-to-hip ratio often 
indicates increased visceral adipose tissue, which has been shown 
to have elevated inflammatory status, compared with subcutane-
ous adipose tissue.10 This supports the observation that omental 
adipose tissue has been shown to release 2-3 times more IL-6 than 
its subcutaneous counterpart.32,33 As IL-6 regulates CRP produc-
tion, it is not surprising that CRP elevation significantly corre-
sponds to the level of adiposity present in the body17,19,21,23,34-36 
and also decreases with weight loss24-26,37,38; this association has 
been shown to be stronger in women compared with men.35 There 
is even some evidence that CRP is produced by the adipose tissue 
itself.39

2.3 | Conclusion

In summary, in obesity, leptin and other chemokines contribute to 
the transmigration of bone marrow-derived monocytes into adipose 
tissue, with a resultant elevation of IL-6, TNF-α, and other cytokines. 
This subsequently results in the rise in acute-phase proteins, such as 
CRP, and all of this in combination accounts for the resultant chronic 
low-grade inflammation which actively contributes to alterations in 
hematologic parameters and alters the risk of thrombosis, as dis-
cussed below. While there may be a cycle at play in which bone mar-
row-derived monocytes are likely not only the source but also the 
target of pro-inflammatory signals, this is not clear from the current 
literature. This is something that should be further researched as it 
could identify additional potential therapeutic targets upstream of 
the acute-phase response.

Summary Statements

1. To our knowledge, there is no single review summarizing 
the effects of obesity on commonly measured hema-
tologic parameters and thrombotic risk, this addresses 
that.

2. Obesity is associated with a state of chronic low-grade 
inflammation and subsequently with an observed rela-
tive and sometimes absolute leukocytosis, as well as an 
increased risk for venous thromboembolism (VTE); its 
effects on iron deficiency (ID) and red blood cell counts 
remain unclear.

3. Recognizing the above associations may provide reas-
surance regarding otherwise unexplained hematologic 
abnormalities in obese individuals as well as prompt fu-
ture studies to identify modifiable risk factors and po-
tential therapeutic targets to prevent the development 
of probable obesity-associated conditions with signifi-
cant morbidity and mortality, such as ID and VTE.
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3  | OBESIT Y AND WHITE BLOOD CELL 
COUNT

3.1 | Obesity and leukocytosis

A significant number of patients referred for investigation of unex-
plained leukocytosis have no identifiable cause of a persistent and 
stable leukocytosis, other than their being obese. Multiple studies 
have worked to elucidate the connection between leukocytosis and 
body mass index (BMI). We discuss these studies below, as well as 
the hypothesized mechanisms driving this observation.

Herishanu et al (2006)12 analyzed patients (n = 327) referred to 
their outpatient hematology clinic for persistent leukocytosis and 
found that 15% were asymptomatic, obese, mostly middle-aged 
females with a mild leukocytosis (mean white blood cell count 
13.05 ± 1.44109/L) characterized mostly by neutrophilia without 
bandemia and accompanied by elevated acute-phase reactants (CRP 
and erythrocyte sedimentation rate). No other recognized cause for 
the leukocytosis (eg, infection, inflammation, smoking, malignancy, 
etc) was identified, and the elevated count persisted through a mean 
follow-up of 45 months. In three individuals, reduction in weight was 
accompanied by a gradual reduction and normalization of the white 
blood cell count and accompanying CRP levels. To further validate this 
association, they performed a cross-sectional analysis of non-smok-
ing individuals without underlying inflammatory or infectious condi-
tions and showed that subjects found to have a leukocytosis (n = 62) 
had a higher BMI when compared with the population with normal 
white blood count ranges. Raghavan et al (2016)40 similarly noted 
that white blood counts are relatively high in obese women, mean-
ing that while mean values for total leukocyte count did not exceed 
accepted physiological range, there was a relative leukocytosis be-
tween categories, with a progressive numerical increase in the val-
ues of the total leukocyte count as the BMI increased. Additionally, 
absolute neutrophil count and differential neutrophil count showed 
a progressive increase with increase in BMI. The absolute lympho-
cyte counts likewise showed statistically significant differences be-
tween the control group and obese group, but the strength of the 
association appeared to be less than that observed with absolute 
neutrophil count. Of note, the differential lymphocyte count dis-
played a progressive decrease with increase in BMI, suggesting that 

the increase in absolute lymphocyte counts was counterbalanced by 
a respectively greater increase in neutrophils. Although traditionally 
neutrophils have been acknowledged as key players in acute inflam-
mation, their contribution to chronic inflammation is recently being 
appreciated, particularly in conditions such as chronic obstructive 
pulmonary disease, arthritis, neurodegenerative disease, and cardio-
vascular inflammation.41 Given this, the myeloid skewing observed 
in obesity is unsurprising. Additionally, evidence from animal models 
shows that high fat diets lead to myeloid hyperplasia, especially of 
the granulocytic compartment.42 Their findings are summarized in 
Table 1, adapted from their paper. Several other studies support the 
positive correlation between leukocyte count and BMI.21,36,43-45

3.2 | The role of cytokines and adipokines

Peripheral blood leukocytosis is a hallmark of inflammation and in 
obesity is likely driven by the chronic low-grade inflammatory state 
discussed in detail above. Pro-inflammatory cytokines such as IL-6 
and IL-8 are important inducers of leukocytosis, particularly neu-
trophilia, through multiple mechanisms including demargination of 
intravascular neutrophils, acceleration of bone marrow neutrophil 
release, and enhancement of bone marrow granulopoiesis.46-50

Adipokines such as leptin may also be playing a role. Wilson 
et al (1997)51 showed a positive, though indirect, correlation be-
tween white blood cell count and fasting plasma leptin concentra-
tions in obese Pima Indians. Laharrague et al (2000)52 developed 
a homologous system where purified CD34+ progenitors from 
adult human bone marrow were treated with recombinant human 
leptin. They found that leptin (at high levels, but levels which are 
observed in obesity) significantly stimulated the appearance of 
granulocyte-macrophage colonies, the precursor for monocytes, 
and granulocytes (Figure 1) and that plasma leptin concentration 
was significantly correlated with leukocyte count in overweight and 
obese subjects. They also found that leptin concentrations were sig-
nificantly higher in women than men, a difference which persisted 
even after controlling for BMI. Furthermore, human and mouse he-
matopoietic stem cells have been shown to express the leptin recep-
tor53 and a murine model has shown that treatment with a synthetic 
fragment of leptin resulted in a twofold increase in the number of 

Control
BMI ≤ 24.9
Mean ± SD

Overweight
BMI ≥ 25 - ≤ 29.9
Mean ± SD

Obese
BMI ≥ 30
Mean ± SD

Met. Syndrome
BMI ≥ 30
Mean ± SD

Age 42.41 ± 13.22 44.77 ± 10.41 45.95 ± 11.00 52.29 ± 10.30

BMI 22.15 ± 2.76 27.02 ± 1.44 34.29 ± 3.50 34.77 ± 4.44

WC 74.82 ± 6.44 83.92 ± 4.79 98.53 ± 9.53 101.7 ± 10.14

TLC 6590 ± 1608 7405 ± 1711 8759 ± 1882 10 110 ± 1947

ANC 3706 ± 1315 4268 ± 1269 5310 ± 1471 6148 ± 1499

ALC 2203 ± 527 2340 ± 583 2554 ± 613 2916 ± 786

PLT 265.4 ± 50.02 279.7 ± 70.34 307.8 ± 87.01 320.1 ± 66.73

TA B L E  1   A summary of the mean of 
particularly interesting variables, across 
BMI categories; adapted from Raghavan 
et al (2016) Table/Fig-2. Met. Syndrome, 
metabolic syndrome; BMI, body mass 
index (kg/m2); WC, waist circumference 
(cm); TLC, total leukocyte count (/mm3); 
ANC, absolute neutrophil count (/mm3); 
ALC, absolute lymphocyte count (/mm3); 
PLT, platelet count (×109/L)
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hematopoietic stem cells with an associated increase in the number 
of granulocyte/macrophage colony-forming units produced by bone 
marrow cells.54 Leptin clearly has a role in regulation of hematopoi-
esis through a mechanism that is multifactorial and indirect. Zhou 
et al (2014)55 have shown that bone marrow mesenchymal stromal 
cells are leptin receptor positive and although these are defined as 
non-hematopoietic, as they rather differentiate into osteogenic, 
chondrogenic, and adipogenic progeny, they do give rise to bony os-
sicles that become invested with hematopoietic bone marrow as well 
as directly expressing hematopoietic stem cell niche factors such as 
stem cell factor and Cxcl12, suggesting they contribute to the orga-
nization of a hematopoietic microenvironment as important compo-
nents of the hematopoietic stem cells niche. For an excellent review 
on the hematopoietic stem cells niche, see Sugiyama et al (2018).56

3.3 | Sex differences

As there is a clear predominance of obesity-associated leukocyto-
sis in women compared with men, it is important to discuss this ob-
servation. In women, even more than men, the etiology behind this 

leukocytosis is likely multifactorial. Higher levels of inflammatory 
mediators (eg, CRP) and leptin are likely contributing, though the 
underlying mechanisms driving this difference remain unclear. As 
obesity in women is sometimes accompanied by polycystic ovarian 
syndrome (PCOS), this could also be contributing. Some cytokines, 
including IL-6 and TNF-α, are greater in women with PCOS com-
pared with women of similar BMI.57 Furthermore, total white cell 
count, due to a higher mean neutrophil count, has been found to be 
significantly greater in women with PCOS when compared to control 
subjects, despite matching for BMI and insulin resistance.58,59 Also, 
as women with obesity and PCOS are at increased risk of develop-
ing obstructive sleep apnea (OSA),60,61 this could be considered a 
contributing factor. However, while there are multiple studies that 
have shown a positive association between OSA and the neutro-
phil to lymphocyte ratio,62-65 a value sensitive to physiologic stress, 
few studies have independently associated OSA with leukocytosis, 
though it has been noted.66 While we can theorize that the known 
elevated levels of systemic inflammatory markers in OSA (including 
CRP, IL-6, and TNF-α),67 or increased sympathetic activity associ-
ated with OSA68 would result in a leukocytosis, further studies are 
needed to solidify or reject this claim.

F I G U R E  1   In hematopoiesis, leptin significantly stimulates the appearance of granulocyte-macrophage colonies (CFU-GM), the precursor 
for monocytes, and granulocytes. CFU-EO, colony-forming unit-eosinophils; CFU-GM, colony-forming unit-granulocyte, macrophage; 
CFU-MEG, colony-forming unit-megakaryocyte; BFU-E, burst-forming unit-erythroid; LepR, leptin receptor. All figures were created with 
BioRender.com [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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3.4 | Conclusion

In summary, the low-grade systemic inflammation that accompa-
nies obesity results in elevated levels of cytokines (primarily IL-6 
and IL-8) and adipokines such as leptin, which induce leukocytosis 
through multiple mechanisms, including demargination of intravas-
cular neutrophils, acceleration of bone marrow neutrophil release, 
and enhancement of bone marrow granulopoiesis; leptin in particu-
lar promotes the differentiation of granulocytes from hemopoietic 
progenitor cells. Several studies support the positive correlation be-
tween leukocyte count and BMI, and there is a clear predominance 
of obesity-associated leukocytosis in women compared with men. 
Possible explanations include an amplified inflammatory state and 
associated comorbidities such as PCOS and OSA.

4  | OBESIT Y AND RED BLOOD CELL 
COUNT

4.1 | Obesity and iron deficiency

Wenzel et al (1962)69 were the first to report lower serum iron lev-
els in obese compared with non-obese adolescents. Although it ap-
pears counterintuitive to expect iron deficiency (ID) in the setting 
of calorie and nutrient excess, lower concentrations of serum iron 
have been observed in relation to increasing BMI for many decades. 
Zhao et al (2015)70 conducted a metanalysis of 26 cross-sectional 
and case-control studies, including a total of 13,393 overweight and 
obese individuals and 26,621 non-overweight subjects. They found 
that compared with the non-overweight group, the serum iron and 
transferrin saturation percentage were significantly different in the 
overweight/obese populations, with only a marginally significant dif-
ference in the serum ferritin level between the same groups. The 
pooled odds ratio (OR) of developing ID in the overweight/obese 
subjects was 1.31 (95% CI, 1.01-1.68). Importantly, the method used 
to diagnose ID differed among the 15 studies that were included 
in that analysis, with only 8 studies using ferritin-based ID diagno-
sis. In the studies using a ferritin-based diagnosis, the association 
between ID and overweight/obesity was not significant (OR 1.04, 
95% CI, 0.69-1.56). In contrast, the pooled OR calculated from the 
7 studies that did not use a ferritin-based ID diagnosis was signifi-
cant (OR 1.49, 95% CI, 1.19-1.85); using ferritin as the sole biomarker 
for assessment of ID may underestimate ID, due to the elevation 
of serum ferritin through obesity-related chronic inflammation and 
the possibility that in overweight and obese individuals, ferritin is a 
marker of inflammation rather than iron status.71 A review by Aigner 
et al (2014)72 reported similar findings, as well as reported some im-
provements in iron status in the setting of weight loss.

It is important to acknowledge that many of the investigations 
included in the above metanalysis and review were performed in 
children and adolescents, and that in adults, the results are even 
more complex. In their metanalysis, Zhao et al (2015) performed a 
subgroup analysis which revealed no association between obesity 

and ID in adults. Cheng et al (2012)73 conducted a systematic re-
view of 25 studies, looking at the association in adults only. They 
noted a tendency for higher ferritin and lower transferrin saturations 
in obese individuals, compared with their non-obese counterparts. 
Additional studies in non-pregnant adults (or a mean age ≥18), not 
included in either Zhao et al (2015) or Cheng et al (2012), have con-
flicting results. Some studies suggest an association between obe-
sity and ID,71,74-78 while multiple others note no difference.79-82

Given the literature, a relationship between obesity and ID likely 
exists in children and adolescents but remains unclear in adults. The 
reviews and metanalysis available are limited by the number of avail-
able studies, high heterogeneity in these studies, lack of consistent 
non-obese control groups, frequently uncontrolled confounders (eg, 
acute infection, menopausal status, oral contraceptive use, iron sup-
plementation, obesity-related comorbidities), and lack of standard-
ization in diagnosing ID (eg, some studies used ferritin alone, others 
used serum iron and transferrin saturation, very few used soluble 
transferrin receptor). This is particularly important given that obe-
sity is associated with chronic low-grade inflammation which will 
potentially elevate ferritin and may alter the sensitivity of ferritin as 
an indicator of iron status; the use of additional biomarkers is some-
thing to be considered in future studies. While an association may 
be present between obesity and ID, future higher quality studies are 
needed to solidify this claim, as well as establish if a causal relation-
ship exists.

4.2 | Obesity and red blood cell count

Given that ID can progress to iron deficiency anemia (IDA), one may 
expect to see an association between obesity and IDA. In the meta-
nalysis by Zhao et al (2015), only 4 studies of the 26 analyzed looked 
at the risks of developing IDA in the obese population and the re-
sults differed, with only one reporting a higher risk of IDA in their 
obese group; the pooled OR of IDA in overweight/obese individuals 
was 1.09 (95% CI, 0.57-2.10). The review by Cheng et al (2012) actu-
ally noted higher hemoglobin concentrations in the obese compared 
with non-obese controls. There have been additional studies not in-
cluded in the above analysis which show lower levels of hemoglobin 
in obese compared with non-obese controls,21,71 while others show 
no correlation80,81 or a protective effect.83,84 Comorbidities associ-
ated with obesity, such as OSA or obesity hypoventilation syndrome, 
may be leading to a secondary polycythemia. Regardless, future 
studies are needed to look into this possible association.

4.3 | Possible mechanisms driving iron deficiency

In children and adolescents, a possible explanation for the ob-
served ID is higher iron demands, in the setting of accelerated body 
growth.85 Poor dietary intake may also be playing a role,86,87 though 
multiple studies have shown that this is unlikely.88-91 Another theory 
is that increased iron requirements are due to a larger blood volume 
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which increases iron requirements and confounds iron biomarkers 
by hemodilution.92,93 The largest body of evidence actually points 
toward the chronic inflammatory state associated with obesity driv-
ing the observation, with hepcidin, and its role in iron homeostasis 
being the main player.

Iron homeostasis is regulated through hepcidin, a small peptide 
hormone largely produced by the liver, which controls the activity of 
ferroportin-1, an iron exporter. Increased serum levels of hepcidin 
result in reduced dietary iron absorption through downregulation of 
the exporter and increased iron sequestration within enterocytes, 
hepatocytes, and iron-storing macrophages, leading to reduced iron 
bioavailability94,95 (Figure 2). It has been shown that obese subjects 
demonstrate impaired ability to absorb iron.76,96-98

Hepcidin expression correlates with inflammation.99 Given that 
obesity is a state of chronic low-grade inflammation, it comes as no 
surprise that hepcidin expression has been shown to be increased in 
obese individuals.89,100 This increase in hepcidin is likely driven by cy-
tokines, with significant data pointing to IL-6 as a main driver.99,101-103 
There is also in vitro evidence that leptin also stimulates hepcidin ex-
pression.104 Additionally, adipose tissue has been shown to express 
hepcidin itself, marking hepcidin as an adipokine,102 though this has 
been questioned.105 It should also be noted that not all studies agree 
that hepcidin plays a role at all.106

4.4 | Conclusion

In summary, a link between ID and obesity likely exists in children 
and adolescents but the association remains unclear in adults; a link 
between obesity and anemia remains even less certain. Given cur-
rent limited studies of high heterogeneity and with conflicting re-
sults, future studies are needed to further assess this. Special care 
should be taken to include a non-obese control group, to include ad-
ditional biomarkers of iron status which may not be as easily altered 

by the chronic inflammatory state accompanying obesity as is fer-
ritin, and to control for confounders of iron status such as acute in-
fection, menopausal status, and iron supplementation. Driving this 
possible association is the chronic inflammatory state associated 
with obesity, which through the secretion of cytokines such as IL-6, 
results in increased hepcidin expression and subsequent impaired 
duodenal absorption of iron. Leptin may also be playing a role in in-
creased hepcidin expression and hepcidin itself may also be secreted 
by adipose tissue.

5  | OBESIT Y,  PL ATELETS COUNT, AND 
THROMBOSIS

5.1 | Obesity and platelet count

Obesity is also associated with increased platelet counts. Platelet 
counts have been found to be increased in obese non-diabetic rats107 
as well as obese individuals, when compared to non-obese con-
trols,12,21,40 though the correlation has sometimes only been noted 
in women.108 This correlation is further supported by observed 
reductions in platelet count in the setting of weight loss following 
bariatric surgery.109 IL-6 is likely the main driver, working synergis-
tically with other interleukins to increase thrombopoietin and sub-
sequently stimulate megakaryocytopoiesis.110-115 Visceral adipose 
tissue itself may also be an additional source of thrombopoietin.116

5.2 | Obesity and thrombosis

There is substantial evidence that obesity as a pro-inflammatory condi-
tion, promotes a prothrombotic state, supporting arterial and venous 
thrombosis. A meta-analysis by Ageno et al (2008)117 on the influence 
of obesity on the risk of first episode of venous thromboembolism 

F I G U R E  2   Hepcidin expression 
has been shown to be increased in 
obese individuals and correlates with 
inflammation, mainly driven by IL-
6. Leptin also stimulates hepcidin 
expression. Additionally, adipose tissue 
has been shown to express hepcidin itself, 
marking hepcidin as an adipokine. Fpn-1, 
ferroportin-1. All figures were created 
with BioRender.com [Colour figure can be 
viewed at wileyonlinelibrary.com]
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(VTE) estimated an overall odds ratio for VTE of 2.33 (95% CI, 1.68-
3.24). Tsai et al (2002),118 included in that meta-analysis, found an 
even higher hazards ratio of 2.7 for patients with severe obesity (BMI 
≥40 kg/m2). Di Minno et al (2005)119 reported the OR of obesity for 
deep vein thrombosis to be 1.97 (95% CI, 1.4-2.78) for males and 2.29 
(95% CI, 1.85-2.84) for females. There are many additional studies 
not included in the meta-analysis but with similar observations.120-123 
Borch et al (2010)124 and Hansson et al (1999)125 also noted associa-
tions with abdominal obesity and VTE. Eichinger et al (2008)126 re-
ported obesity as a risk factor for VTE recurrence, a risk which may be 
even higher in women compared with men.127 In general, clinically men 
and women appear to experience different thrombotic phenotypes. 
As noted above, obese women appear to be at higher risk for VTE 
and data have shown, though not exclusive to obese individuals, that 
women appear to be at higher risk for stroke, while men are more likely 
to be affected by cardiovascular disease.128 The relative protection of 
women against atherosclerosis before menopause is poorly under-
stood with some thought that a more beneficial lipid profile contrib-
utes or that there is some protection conferred by sex hormones.129

The biological mechanisms underlying this observed connec-
tion are multifactorial and the relationship is confounded by a fre-
quently accompanied metabolic syndrome and associated lifestyle 
factors, whose individual components (hyperinsulinemia, hypertri-
glyceridemia, hypertension) have associations with thrombosis by 
mechanisms independent of obesity. However, despite this, there is 
notable and consistent evidence of an association between obesity 
and thrombosis through damage to the venous endothelial layer, in-
creased platelet reactivity, enhanced coagulation, and impaired fibri-
nolysis, all discussed below and summarized in impressive reviews by 
Vilahur et al (2017)130 and Schafer & Konstantinides (2011).131 The 
physical aspects of an obese body habitus may also contribute to the 
risk by promoting limited venous return through chronically raised 
intra-abdominal pressure and decreased blood velocity through the 

femoral vein132; inactivity and poor gait would likely have a com-
pounding effect.133

5.3 | The role of leptin in thrombosis

Leptin is a suspected driver of these prothrombotic changes through 
multiple mechanisms. There are significant data surrounding leptin-
mediated promotion of ADP-induced platelet aggregation,134-137 
with the inhibition of leptin via a neutralizing antibody being pro-
tective against arterial and venous thrombosis in mice.138 However, 
Ozata et al (2001)139 found no significant increase in platelet aggre-
gation, even at high concentrations of leptin in obese subjects or 
controls. Other studies have also reported a reduction in the pro-
aggregatory effects of leptin from obese individuals, suggesting 
platelet resistance to leptin in obesity.140,141 P-selectin, a significant 
player in platelet aggregation, has been shown to have leptin-medi-
ated increased expression on human platelets in vitro.142 However, 
this observation was not consistent and is without correlation in vivo. 
Less convincing, but also noted in the literature, is a contribution 
to elevated levels of tissue plasminogen activator (tPA) antigen,143 
which would promote thrombosis. Leptin also has been shown to 
induce elevated levels of plasminogen activator inhibitor-1 (PAI-1),144 
which at higher concentrations is known to inhibit fibrinolysis and 
consequently promote a thrombotic state. Lastly, leptin is associated 
with increased factor levels, as noted below.

5.4 | Obesity is associated with elevated levels of 
coagulation factors and von Willebrand factor

BMI has been shown to positively correlate with elevated factor 
levels and markers of fibrinolysis (fibrinogen, factor VII, factor VIII, 

F I G U R E  3   PAI-1, which blocks the 
activation of fibrinolysis, correlates 
with BMI and has been shown to be 
produced in adipose tissue. PAI-1, 
Plasminogen activator inhibitor-1; tPA, 
tissue plasminogen activator; FDP, fibrin 
degradation products. All figures were 
created with BioRender.com [Colour 
figure can be viewed at wileyonlinelibrary.
com]

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com
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factor IX, PAI-1, tPA antigen),120,145,146 with reductions in thrombin, 
tissue factor, PAI-1, and (prothrombin fragment 1.2) noted in weight 
loss.147 Plasma levels of tissue factor, a significant driver of thrombus 
formation, are increased in obese subjects compared with healthy 
controls.148 Leptin has been shown to increase tissue factor in hu-
mans,149,150 and elevated levels of circulating tissue factor have been 
recognized as a contributor to the prothrombotic tendency of pa-
tients with high-grade obesity.31 Levels of fibrinogen, von Willebrand 
factor, and factors VII and VIII have all been found to be increased in 
obesity, with abdominal obesity noted to have a particular associa-
tion.146,151 Although elevations in factor levels are strongly associ-
ated with increased risk of VTE, one study did show that adjusting 
for clotting factor levels did not affect the risk estimate for obesity 
and VTE120; we did not find other studies that commented on this 
possibility. It remains unclear whether these factors are merely bio-
markers of inflammation, or direct contributors to thrombosis and 
this is an area that would benefit from further research.

5.5 | Obesity impairs fibrinolysis

There is evidence tying PAI-1, which blocks the activation of fibrinol-
ysis by inhibiting tPA (Figure 3), to obesity-associated thrombosis, 
particularly through the metabolic syndrome and its interactions 
with insulin.152 PAI-1 levels correlate with BMI146 and body fat distri-
bution plays a role, with an association noted between waist-to-hip 
ratio and PAI-1 levels.151,153 It has also been shown to be produced 
in adipose tissue154,155 and levels have been shown to decrease with 
weight loss.156,157 As stated above, leptin may be a player in PAI-1 
over expression, but TNF-α and transforming growth factor-β, which 
is produced in visceral fat, have also been proposed to be involved in 
the regulation of PAI-1 expression in adipose tissue.133 CRP may also 
participate by enhancing the expression of PAI-1 in human endothe-
lial cells.158-160 Counter to this, tPA expression has also been associ-
ated with BMI,146 with noted reductions following weight loss.153,161

5.6 | Obesity promotes platelet hyperactivity

Platelet activation is also a key component of thrombogenesis, and 
platelet hyperactivity has been noted in obese individuals. Particularly, 
android obesity (abdominal obesity characterized by increased waist-
to-hip ratio) has been found to have higher levels of platelet activa-
tion, as reflected by urinary excretion of the major metabolite of TXA2, 
11-dehyhdro-TxB2, when compared to gynoid obese (gluteal-femoral 
obesity) women and non-obese women.162 P-selectin expression is a 
marker of platelet activation, mediating the rolling of platelets on acti-
vated endothelial cells and promoting thrombogenesis by stabilizing in-
itial GPIIb/IIIa-fibrinogen connections, permitting the development of 
large stable platelet aggregates in a venous thrombus. Epidemiological 
evidence has shown that platelet activation markers such as CD40L 
and P-selectin are increased in obesity and may reflect persistent in 
vivo platelet and endothelial activation,163 with increased P-selectin 

expression noted in genetically and diet-induced obese mice.164 CRP 
levels have been shown to increase P-selectin expression and platelet 
adhesion.165 Mean platelet volume, an element of platelet function, is 
an emerging risk factor for thrombotic disease166,167 and has positively 
correlated with BMI.168 Platelet-derived microparticles are considered 
an index of platelet activation and have pro-inflammatory and pro-
thrombotic effects. These too may be playing a role, as circulating lev-
els of platelet-derived microparticles are elevated in obese subjects in 
comparison with age-matched non-obese subjects.153 Lastly, platelets 
from obese subjects have been found to retain greater reactivity after 
suppression by aspirin, compared with non-obese individuals after as-
pirin therapy.169,170 These effects are summarized in Figure 4.

5.7 | Obesity promotes endothelial dysfunction

Obese individuals exhibit endothelial dysfunction, and this is likely 
induced by the continuous exposure to inflammatory stimuli and 
oxidative damage. It has been shown that endothelial cells exposed 
to cytokines secreted by adipose tissue from obese individuals have 
enhanced expression of endothelial adhesions molecules.171 Leptin 
again may be contributing, promoting oxidative stress; leptin has been 
shown to increase levels of markers of endothelial cell dysfunction 
and activation.172 Individual components of the metabolic syndrome 
(ie, hyperlipidemia) which often accompany obesity also contribute to 
activate the endothelial layer by enhancing endothelin-1 production, 
a vasoconstrictor, and pro-inflammatory peptide, and conversely im-
pairing nitric oxide and endothelium-derived hyperpolarizing factor-
related vasodilation leading to endothelial dysfunction.130

5.8 | Conclusion

In summary, obesity is associated with increased platelet counts. 
IL-6 is likely a main contributor to this phenomenon, increasing 
thrombopoietin and subsequently stimulating megakaryocytopoie-
sis, resulting in thrombocytosis. There is also substantial evidence 
that obesity as a pro-inflammatory condition significantly increases 
the risk of VTE. The mechanisms underlying this are multifactorial 
and confounded by lifestyle factors, as well as the individual compo-
nents of a frequently accompanying metabolic syndrome. However, 
despite this, there is extensive literature discussing elevated factor 
levels, impaired fibrinolysis, platelet hyperactivity, and endothelial 
dysfunction, all driven by obesity and its associated inflammatory 
state; encouragingly, many of these abnormalities improve with 
weight loss.

6  | CONCLUSION

There is a sizeable amount of data demonstrating that obesity is 
a state of chronic low-grade inflammation. Future studies to fur-
ther understand the underlying mechanisms would be helpful; 
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particularly, future investigations of leptin would be of high inter-
est, given the high suspicion that it is involved in many of the per-
turbances to hematologic parameters and thrombosis. Also, future 
studies looking to unmask the underlying mechanisms driving an 
even higher inflammatory state in women compared with men 
would be important in identifying risk factors that could be inter-
vened on. There is an observed relative, and sometimes absolute, 
leukocytosis driven by this inflammatory state. Recognizing this as-
sociation may prompt clinicians to avoid unnecessary and exten-
sive work-ups by providing reassurance regarding an unexplained, 
stable and mild, neutrophilic leukocytosis in obese individuals who 
have the demographic features present in the above studies (eg, 
middle-aged females). The association between obesity, ID, and 
red blood cell counts remains uncertain and future well designed 
studies are needed to accept or reject this association, as well as 
to establish if a causal relationship exists. Given the accompanying 
state of chronic inflammation, identifying abnormalities of iron me-
tabolism is particularly challenging in the obese, but this presents 
an opportunity to use and validate additional and novel biomarkers 
of iron status in future investigations and to standardize the meth-
ods used to diagnose ID in obese individuals. Also, recognizing that 
in obesity there is impaired iron absorption via the gut, making oral 
supplementation insufficient, and encourages future studies to fur-
ther explore and identify underlying mechanisms (eg, hepcidin) as 
potential therapeutic targets that could prevent the development 
of ID in the obese. Lastly, there is sufficient evidence associating 
obesity with VTE, and some evidence that weight loss resolves 

some of the underlying mechanistic abnormalities. Considering that 
the relative risk of first and recurrent VTE associated with obesity 
are comparable to those for other established risk factors such as 
hereditary thrombophilia and estrogen therapy,173 and given the 
high morbidity and mortality that VTE can carry, this presents an 
additional opportunity for clinicians to more vigorously encourage 
weight loss among their obese patients. This also further incentiv-
izes future research in the area, particularly with regard to anti-
coagulation and anti-inflammatory therapies to prevent thrombosis 
in obesity.
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