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Abstract: Obesity is a chronic and relapsing public health problem with an extensive list of associated
comorbidities. The worldwide prevalence of obesity has nearly tripled over the last five decades
and continues to pose a serious threat to wider society and the wellbeing of future generations. The
pathogenesis of obesity is complex but diet plays a key role in the onset and progression of the disease.
The human diet has changed drastically across the globe, with an estimate that approximately 72%
of the calories consumed today come from foods that were not part of our ancestral diets and are
not compatible with our metabolism. Additionally, multiple nutrient-independent factors, e.g., cost,
accessibility, behaviours, culture, education, work commitments, knowledge and societal set-up,
influence our food choices and eating patterns. Much research has been focused on ‘what to eat’ or
‘how much to eat’ to reduce the obesity burden, but increasingly evidence indicates that ‘when to
eat’ is fundamental to human metabolism. Aligning feeding patterns to the 24-h circadian clock that
regulates a wide range of physiological and behavioural processes has multiple health-promoting
effects with anti-obesity being a major part. This article explores the current understanding of the
interactions between the body clocks, bioactive dietary components and the less appreciated role of
meal timings in energy homeostasis and obesity.
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1. Introduction

Obesity is defined as a BMI (kg/m2) of ≥30 (further classified into class I (BMI 30.0
to 34.9), class II (BMI 35 to 39.9) and class III (BMI > 40.0) and a BMI between 25.0–29.9 is
classified as overweight [1,2]. The World Health Organisation defines obesity as a disease
and not just the biggest risk factor for the development of multiple non-communicable
chronic diseases, such as metabolic syndrome, diabetes, hypertension, cardiovascular
diseases and cancer [3]. The cost to treat obesity and associated diseases puts an immense
pressure not only on the healthcare sector but also wider society. The rate of obesity is
rising globally inexorably and most projections indicate that without a concerted action, by
2035 over 45% of the global population will be either overweight or obese [4].

The pathogenesis of obesity is complex, with multifaceted interactions between an
individuals’ genetics and the environment. Although evidence suggests that there is 40–70%
heritability for obesity, environmental factors, particularly diet and physical activity, are
critical to its onset and progression [5]. At its simplest, obesity is a result of positive energy
balance and the relatively lower cost and abundance of energy-dense foods occurring
concomitantly with an increasingly sedentary lifestyle have driven the obesity pandemic.
In many modern societies, a 24/7 work and social lifestyle has become the norm, leading
to erratic sleep and food-consumption patterns, disrupting the harmony between the
biological day/active phase and metabolic processes and further fuelling the crisis [6,7].

There is no simple solution to address the escalating obesity epidemic. Lifestyle inter-
ventions have been the focus of weight-loss strategies with limited success and issues with
long-term compliance. Body clocks, present in virtually each cell in the body, synchronise
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all physiological and biochemical processes to the external environment of light/dark
cycles, temperature and food availability. The internal body clocks also coordinate the
metabolic processes in a way that light/dark cycles are aligned with active/rest and an-
abolic/catabolic reaction phases and the loss of this harmony leads to adverse metabolic
outcomes. The relatively novel concept of chrononutrition, the interactions between the
food components and timing with circadian mechanisms, offers a promising target for
designing sustainable weight-management strategies.

2. Chronobiology

Life evolved and adapted to the light/dark cycles that are a result of the earth’s
rotation on its own axis. Organisms have an internal 24-hour circadian (from the Latin
words circa diem, about a day) clock that adapts their daily activities to their external
environment. Zeitgebers (external cues that synchronise the biological rhythms) such as
light/dark cycles entrain (synchronise) the circadian system to generate rhythms in bodily
processes, including the sleep/wake cycle, immune activity, metabolism, body temperature
and blood pressure.

At the molecular level, the circadian clock in mammals is composed of two sub-
systems: the core and the peripheral clocks. The core circadian clock is situated in the
anterior hypothalamus and includes the suprachiasmatic nucleus (SCN), composed of
about 20,000 neurons, for which light is the primary zeitgeber. Light enters the eye and
the photic signal is conveyed to the SCN, where it is integrated with non-photic signals
that include food and external temperature [8]. An endogenous rhythm is generated and
communicated to other parts of the brain and to peripheral organs via direct neuronal
synaptic connections and endocrine signals, aligning the whole-body circadian clock to
light. In addition to the core pacemaker, each cell in the body has its own local clock with
its autonomous daily rhythmicity. These peripheral clock systems are influenced by the
SCN but are also entrained by SCN-independent zeitgebers such as meal timing, locomotor
activity and body temperature [9,10]. During the night, the SCN also regulates the synthesis
and release of melatonin by the pineal gland. Melatonin is a sleep-inducing hormone with
24-hr rhythmicity; its production is inhibited by light, hence its low circulatory levels
during the day [11]. The levels of melatonin start to rise approximately 2–3 h prior to the
habitual nocturnal sleep time that also coincides with the onset of dim light conditions in
the evening. This is defined as dim-light melatonin onset (DLMO), and is a reliable marker
for the circadian entrainment [12,13]. Melatonin exerts its biological effects by binding to
melatonin receptors, human melatonin receptor 1 A and 1 B (MTNR1A and MTNR1B).
Sleep is an important modulator for multiple metabolic and endocrine pathways, linking
melatonin levels, sleep duration and quality with obesity [14,15]. Melatonin also inhibits
glucose-mediated insulin secretion and effects free radical scavenging, thus contributing
directly to regulation of metabolic and immune function [16].

Genomics and Epigenomics of Chronobiology

An intricate programme of transcription-translation-posttranslational feedback loops
controls the complex patterns of circadian rhythmicity in physiology and behaviour
(Figure 1). During the day, the key players responsible for the oscillations of circadian
rhythms include the circadian locomotor output cycles kaput (CLOCK) and brain and
muscle Arnt-like protein-1 (BMAL1). These heterodimerise and CLOCK-BMAL1 binds
to the E-box regulatory element in the promoter regions of multiple circadian genes. Pri-
marily, these activate the expression of PER (Period PER1, PER2 and PER3) and CRY
(Cryptochrome CRY1 and CRY2) genes. Upon translation and a time lag (by the end of
the day), these PER and CRY proteins accumulate in the cytoplasm and once they reach
certain level, these heterodimerize to form a repressor complex and translocate to nucleus
where they inhibit CLOCK-BMAL1-mediated transcription. Towards the end of the night,
there is a gradual degradation of PER and CRY proteins that leads to the release of the
CLOCK-BMAL1 dimer from PER/CRY suppression, and this re-initiates the clock cycle by
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inducing the transcription of PER and CRY. This cycle of activation and repression results
in a feedback loop that generates an oscillation pattern of PER and CRY proteins over a
24-h period [9,17,18].
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Figure 1. Circadian clock mechanisms: different zeitgebers lead to intricate transcription-translation
feedback loop. circadian locomotor output cycles kaput (CLOCK) and brain and muscle Arnt-
like protein-1 (BMAL1) heterodimerise and regulate the transcription of multiple clock-dependent
genes (solid arrows). PER, CRY, REV-ERBα, RORα, PPARα, PPARγ, SIRT1 all lead to regulation of
CLOCK and BMAL1 and contribute to their own regulation (dotted arrows). Amplitude, period,
phase and MESOR of the oscillations produced determine the rhythmicity and robustness of the
circadian clock. PER (Period), CRY (Cryptochrome), RORα (receptor-related orphan receptor α),
REV-ERBα (NR1D1 gene producing a protein called REV-ERBα), PPARα (peroxisome proliferator-
activated receptor α), PPARγ (peroxisome proliferator-activated receptor γ), NAMPT (nicotinamide
phosphoribosyltransferase), NAD+ (nicotinamide adenine dinucleotide), AMPK (AMP-activated
protein kinase), CCGs (clock-controlled genes), SIRT1 (sirtuin 1), PGC1α (PPARγ coactivator 1α),
MESOR (midline estimating statistic of rhythm).

A parallel secondary loop exists that improves the robustness of the primary loop,
consisting of the transcriptional factors nuclear receptor subfamily 1, group D, member
1 (NR1D1 gene producing a protein called REV-ERBα) and retinoic-acid-receptor-related
orphan receptor α (RORα). The transcription of these genes is also activated by CLOCK-
BMAL1 through binding to the E-box element in their promoters. REV-ERBα and RORα
then compete to bind to the ROR element (RORE) in the BMAL1 promoter and regulate
BMAL1 transcription; REV-ERBα suppresses while RORα stimulates BMAL1 transcription.
Two other members of the nuclear receptor family, peroxisome proliferator-activated re-
ceptor α (PPARα), and PPARγ coactivator 1α (PGC1α) are activated by CLOCK-BMAL1.
Interestingly, PPARα and PGC1α also activate BMAL1 transcription (Figure 1) [19–22].

The clock components are also under the control of various post-translational modi-
fications including phosphorylation, ubiquitination, acetylation, poly-ADP-ribosylation
and proteasomal degradation. This additional layer of regulation allows plasticity in the
circadian system, making them highly responsive to an organism’s environment [23]. PER,
CRY and PGC1α are all modified in response to the nutritional status of the cell, have
an impact on the inhibitory period on CLOCK-BMAL1 and contribute to the changes in
rhythmic patterns. CLOCK is an acetyltransferase and acetylates its partner BMAL1 and
regulates the transcriptional activity of the heterodimer. CLOCK itself can be modified by
poly-ADP-ribosylation leading to the transcriptional inhibition of CLOCK-BMAL1 target
genes and altering the circadian cycle [24–26].
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Circadian regulation is not limited to the core clock-network genes mentioned above;
approximately 10–40% of the rodent genes in a tissue and >80% of the protein coding genes
in baboons have been found to exhibit 24-hr rhythmic oscillations, resulting in identification
of these genes as clock-controlled genes, “CCGs” [27]. These CCGs regulate various
biological processes including apoptosis, metabolism, detoxification, cell-cycle regulation
and immune function [28–30]. Some genes are under the control of SCN-generated rhythms,
but a large proportion of genes are influenced by tissue-specific peripheral clocks. It has
been shown that in mouse liver, 90% of the transcripts showing circadian oscillations are
under the influence of local clock machinery [31].

The oscillations produced are characterised by their amplitude (magnitude of cycle
reflecting the strength of the rhythm), period (the time interval between two recurring
waves within a rhythm), phase (any time point on a rhythmic cycle, e.g., peak relative to
an external reference such as midnight) and MESOR (midline estimating statistic of rhythm).
These features indicate the rhythmicity and robustness of the circadian clock and any changes
in these parameters can be a predictor of health-related outcomes (Figure 1) [32–34]. Secondly,
the rhythms generated by the core and peripheral clock systems need to be aligned given
that misalignment between the clocks can potentially disrupt the body’s physiological
patterns and metabolism.

3. Chronotypes, Chronodisruption and Energy Homeostasis

The circadian cycle for humans has an average period of 24.2 h, but this period varies
considerably between individuals and is defined as their chronotype [35]. Chronotypes
range between early birds (morning people/advanced sleep phase (ASP)/early chrono-
types, people going to bed and waking up early, circadian period shorter than 24.2 h) to
night owls (evening people/delayed sleep phase (DSP)/late chronotypes, people preferring
late bedtime and waking up late, a circadian period longer than 24.2 h). It is estimated
that about 40% of the population can be classified into either of these extremes [35,36].
There is a continuum between these two extreme phenotypes, and individuals within this
category are referred to as belonging to the intermediate or neutral chronotype; about
60% of the population falls into this category [37]. Melatonin rhythms and DLMO vary by
as much as 2 h between the chronotypes [38]. Certain rare and genetic forms of extreme
chronotypes have also been recognised. A type of insomnia where sleep patterns are shifted
to a delayed onset and offset times compared to the societal norm is known as delayed
sleep phase disorder (DSPD), while a phenotype associated with habitual sleep times that
are earlier than the solar morning or societal norm is termed familial advanced sleep phase
disorder (FASPD) [39]. In addition to the age, gender and societal set-up, an individual’s
chronotype is also influenced by their genetic makeup and various genome-wide associa-
tion studies (GWAS) and candidate-gene approaches have associated more than 350 loci
with the morning chronotype and, not surprisingly, these include the components from the
clock machinery [40]. Genetic variants within the clock machinery have been associated
with sleep patterns, variation in energy intake, waist circumference, obesity and metabolic
diseases (Table 1) [41–43]. Both morning and evening chronotypes are multigenic and are
influenced by the environment, whereas non-genetic factors such as artificial light and so-
cial pressures contribute more to the evening chronotype [44]. Although these chronotypes
result in a preferred choice of sleep and activity patterns, these do not directly contribute to
the pathogenesis of metabolic diseases. However, some recent studies have suggested a
link with these morningness or eveningness tendencies and metabolic health. The evening
chronotype has been associated with unhealthy food choices, binge eating, night snacks and
multiple metabolic disorders, including obesity, while morning individuals are associated
with lower rates of depression and improved mental health [40,44–50]. The chronotype of
an individual determines their sleep, dietary and activity patterns and although they indi-
rectly influence the sleep duration and quality, these are distinct from sleep duration [51].
Any forced disruption to the normal sleep patterns, e.g., shift work or frequent traveling
over two or more time zones (jetlag), can lead to circadian misalignment and have been
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associated with various metabolic diseases. An individual with the evening chronotype
tends to go to bed late but due to external demands (occupational commitments such as
working hours or school start time in case of children) would result in waking up to an
alarm clock that is out of phase from their biological circadian cycle, resulting in shorter
sleep duration. There can also be variation in bedtime within the week, e.g., weekdays vs.
the weekends, leading to the concept of social jet-lag. These societal activities indirectly
contribute to metabolic health (Table 1) [16,44].

Table 1. A summary of genetic variants in clock components and their associations with chronotypes,
eating behaviours and health parameters.

Genetic Variant/Haplotypes Population Observations Ref

CLOCK rs1801260

421 Japanese subjects
C allele associated with an evening chronotype with
significant delayed onset of sleep, shorter sleep times,
greater daytime sleepiness

[52]

500 overweight and obese subjects
during 28-week weight-loss
program

C allele carriers more emotional eaters and more
resistant to weight loss [53]

284, 92 controls vs. 192
overweight and obese with or
without binge eating disorder

C allele predisposes obese individuals to a higher BMI [54]

1272 overweight and obese
participants attending 30-week
weight-loss program

C allele carriers were emotional eaters and lost less
weight and at a lower rate compared to non-emotional
eaters with the same risk allele or non-risk allele

[55]

370 children aged 6–13 years
No association between the genotype and sleep
duration. However, there seems to be a trend between
sleep duration and overweight

[56]

85 overweight women

C allele carriers with significant circadian
abnormalities: lower amplitude and greater
fragmentation of the rhythm, and an evening
chronotype

[57]

1495 overweight/obese subjects
participating in a
Mediterranean-diet-based
weight-reduction program for
28 weeks

C allele carriers are more resistant to weight loss,
shorter sleep duration, higher plasma ghrelin
concentrations, delayed breakfast time, evening
preference and less compliance with a Mediterranean
diet plan

[58]

475 metabolic syndrome subjects
participating in the
CORDIOPREV clinical trial for
1 year

Gene diet interactions; C carriers showed
non-significant improved insulin sensitivity while T
carriers have significantly improved insulin sensitivity
on low-fat diet

[59]

CLOCK haplotype rs1554483 and
rs4864548

715 lean and 391 overweight or
obese

GA haplotype associated with a 1.8-fold risk of
overweight or obesity [60]

CLOCK rs3749474 500 overweight/obese subjects T allele carriers have significantly higher weight, BMI
and waist circumference [53]

CLOCK rs3749474
1100 individual participants in the
Genetics of Lipid Lowering Drugs
and Diet Network (GOLDN)

T allele carriers have significantly higher energy, total
fat, protein and carbohydrate intakes [61]

CLOCK rs3749474 898 subjects T allele associated positively with higher BMI and
evening carbohydrate intake [62]

CLOCK rs6850524
260 cases with abdominal obesity
and 260 controls Chinese
population

CC genotype have a lower risk of overweight or
obesity than those with GG genotype [63]

CLOCK haplotype
rs4864548-rs3736544-rs1801260

537 individuals from 89 families
characterized for inflammatory,
atherothrombotic and metabolic
risk associated with insulin
resistance.

CGC haplotype protective for the development of
obesity and the CAT haplotype is associated with the
presence of the metabolic syndrome

[64]
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Table 1. Cont.

Genetic Variant/Haplotypes Population Observations Ref

CLOCK rs4580704

7098 PREvención con DIeta
MEditerránea (PREDIMED) trial
over a median duration of
4.8 years

G allele with decreased incidence of type 2 diabetes
and associated stroke. Mediterranean diet provides
further protection in G allele carriers.

[65]

897 patients from the
CORDIOPREV clinical trial,
low-fat diet and Mediterranean
diet for 12 months

C allele carriers showed significant reduction in CRP
levels and an improvement in HDL/ApoA1 ratio after
a low-fat diet for 12 months

[66]

1100 individual participants in the
Genetics of Lipid Lowering Drugs
and Diet Network (GOLDN)

G allele show lower blood pressure and higher
erythrocyte membrane oleic acid (MUFA) and
improved insulin sensitivity in high-MUFA intake

[67]

CLOCK haplotype
rs3749474-rs4580704-rs1801260

1100 individual participants in the
Genetics of Lipid Lowering Drugs
and Diet Network (GOLDN)

The haplotype CGA was associated with lower BMI,
weight, waist circumference, adiponectin
concentration, blood pressure and with oleic acid
(MUFA) RBC membrane composition.

[67]

CLOCK rs12649507, rs6858749

14,906 from the CHARGE
(Cohorts for Heart and Aging
Research in Genomic
Epidemiology) Consortium

Longer habitual sleep duration is associated with
lower BMI and a favourable dietary behaviour.
rs12649507 G allele: Higher PUFA intake and more
sleep.rs6858749 T allele: Lower protein intake with
each additional hour of sleep

[68]

CLOCK rs10002541 and
rrs6850524

260 cases with abdominal obesity
and 260 controls, Chinese
population

Significant associations between CG and TG
haplotypes and abdominal obesity. rs10002541 C allele
is protective for abdominal obesity.

[63]

CLOCK rs12649507 and
rs11932595

1011 individuals from Tyrol and
Estonia

The haplotype GGGG in Tyrolean and GGAA in
Estonian population associated with longer sleep [69]

CLOCK rs1801260 BMAL1
rs2278749 507 healthy young adults

CLOCK rs1801260 associated with seasonal affective
disorder and it synergistically interacts with BMAL1
rs2278749. Seasonal variation in body weight and
appetite also associated with BMAL1 rs2278749.

[70]

CLOCK rs1801260 + SIRT1
rs1467568

1465 Overweight/obese subjects
over 30 weeks of
Mediterranean-diet-based
weight-loss program

SIRT1 (A allele) ad CLOCK (C allele) are more resistant
to lose weight and have more of an evening preference [71]

PER2 gene rs4663302 rs2304672
454 obese subjects, weight
reduction program based on
Mediterranean diet

PER2 gene rs4663302 rs2304672 associated with
abdominal obesity. rs4663302 T allele and rs2304672 G
allele carriers associated with not completing the
weight-loss programme. rs2304672 G also linked to
extreme snacking, experiencing stress with dieting,
eating when bored, and skipping breakfast than
noncarriers.

[72]

PER2, BMAL1, and NPAS2
189 patients with winter
depression and 189 matched
controls

PER2 rs10870, BMAL1 rs2290035 and NPAS2
rs11541353 significantly association with SAD [73]

CRY1 rs10861688
260 cases with abdominal obesity
and 260 controls, Chinese
population

CRY1 rs10861688 T allele negatively associated with
the risk of abdominal obesity. [63]

REV-ERBα rs2314339

2212 subjects from two
independent populations (1402
from Spanish Mediterranean and
810 North American)

Minor allele carriers (AA + AG) have lower probability
of abdominal obesity than noncarriers. A allele carriers
on low MUFA lead to high BMI while A carriers on
high MUFA reduce BMI and BMI was low in A carriers
in high-PUFA intake

[74]

CLOCK (circadian locomotor output cycles kaput) BMAL1 (brain and muscle Arnt-Like protein-1) PER (Period),
CRY (Cryptochrome), REV-ERBα (NR1D1 gene producing a protein called REV-ERBα), MUFA (mono-unsaturated
fatty acid), SAD (Seasonal affective disorder), NPAS2 (Neuronal PAS Domain Protein 2).

There is an intricate and bidirectional relationship between the circadian clock and
metabolism that contributes to the overall metabolic homeostasis. There needs to be an
optimal alignment between central and peripheral clock requiring energy intake to be
aligned with the active phase/biological day for diurnal organisms such as humans (and
night-time for nocturnal animals such as rodents). Mice consume about 80% and humans
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approximately 100% of the nutrients during the wake/active phase [75]. This pattern is
in-tune with the oscillations in metabolic pathways of primitive hunter-gatherer humans,
who were exposed to feast/famine cycles that coincided with active/rest phases. During
the active phase, when humans could forage and hunt for food, the energy intake was
higher and the metabolic pathways were geared towards replenishing the energy stores.
While famine, generally associated with rest meant that the body had to adapt to starvation
or restriction in food intake and the metabolism would switch to catabolic processes and
mobilisation of energy stores. Humans are genetically programmed to these oscillations in
energy stores, which is incompatible with a modern lifestyle with the constant availability
of high-energy foods.

These results, when combined with a sedentary lifestyle, blunt the oscillations and
lead to metabolic disturbances with a plethora of associated diseases [76–78].

Misalignment in the active/rest and feast/famine phases can be due to endogenous
factors, e.g., genetic variants in the core clock machinery or due to external lifestyle factors
such as extended exposure to artificial light, increased shift work, sedentarism, untimely
and frequent snacking and jetlag, and leads to chronobiological vulnerabilities to var-
ious diseases (Table 2) [46,79–82]. An umbrella term used for circadian disruptions is
‘chronodisruption’. The term has evolved since it was first coined in 2003, with short-term
disturbance being called circadian disruption. In contrast, long-term disturbances leading
to adaptations without a negative impact on health are termed chronodisturbance, and
long-term desynchronisation contributing to disease is called chronodisruption [83]. Artifi-
cial light exposure, even at low levels such as from electronic devices including phones,
also interferes with the DLMO and melatonin levels, sleep onset and duration [16,44,84].
Additionally, night eating, irregular eating patterns or feeding over the resting periods
even in the absence of evening chronotype lead to misalignment and impact the robustness
of the oscillations, compromising the metabolic homeostasis and leading to higher BMI
and disease development (Figure 2) [76,85–95].
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Figure 2. Master (blue) and peripheral clocks (pink) alignment is key to optimal metabolic health.
Chronodisruption by various means leads to misalignment of circadian rhythms and has health
consequences. Chrononutritional approaches have the ability to reverse deleterious chronodisruptive
rhythms. The dotted line represents MESOR (midline estimating statistic of rhythm).

Table 2. A summary of evidence establishing the role of chronodisruption by mistimed eating habits
and associated BMI and metabolic health outcomes.

Late Night Eating, BMI and Metabolic Health

180 bariatric surgery candidates,
93 non-surgical weight-loss intervention and
158 general community candidates

Night-eating syndrome associated with binge eating, higher BMI and male gender.
Night-eating syndrome, consuming nocturnal snacks leads to more hunger and
depressive symptoms.

[87]
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Table 2. Cont.

Late Night Eating, BMI and Metabolic Health

26,902 men over 16 years follow-up
Late night eaters have a 55% higher risk of CHD, are more likely to have baseline
hypertension and men who did not eat breakfast have a 27% higher risk of CHD
than those who ate breakfast.

[90]

8153 adults over an average of 3.9 yrs. Night-time eating associated with dyslipidaemia in both men and women but
metabolic syndrome and an increase in the risk of obesity only in women [96]

10 participants on glucose solution at 8 am and
8 pm and 9 participants taking a
low-glycaemic-index meal at 8 am, 8 pm and
midnight.

Even low-glycaemic-index meals late at night disturb glucose metabolism [86]

19,687 Japanese women Skipping breakfast, late dinner and bedtime snack associated with overweight and
obesity in Japanese women [97]

397, 8–12 yr old children Late dinner eaters (after 21.07 h) were more likely to be overweight and obese, with
higher waist circumference and inflammatory markers [98]

49 participants Inconsistent meal time, especially late, eaters have significantly higher BMI [99]

100 subjects Correlation between night-time eating and binge eating and BMI [88]

Later chronotype, BMI and metabolic health

2200 9–16 yr old in Australia The later chronotype more likely to be overweight and obese [100]

54 college freshmen An evening chronotype associated with higher BMI as compared to morning or
neutral chronotypes [49]

511 UK 11–13 yr old children An evening chronotype was associated with higher BMI, higher frequency of
unhealthy food choices. Sleep duration is an independent risk factor for BMI [101]

194 participants Later chronotype and larger dinner are associated with poorer glycaemic control in
patients with type 2 diabetes independently of sleep disturbances. [45]

439,933 adults from a UK biobank Evening preference associated with high risk of cardiovascular disease [46]

800 undergraduate students Evening chronotype associated with BMI that can be negated by a decrease in
sugary beverage intake, increases in physical activity [47]

2133 prediabetic patients More evening preference is directly associated with higher BMI [48]

872 adults
Later chronotypes with higher percentage of daily energy intake during the night
are associated with overweight and obesity while earlier chronotypes consuming
more energy in the morning are at a lower risk of weight gain.

[102]

1197 middle-aged men and women An evening chronotype associated with obesity [50]

Circadian misalignment, BMI and metabolic health

14 healthy participants on 8-day protocol for
short-term misalignment and cross over

Short-term circadian misalignment leads to increased systolic and diastolic blood
pressure and serum inflammatory markers [103]

14 adults in a 6-day simulated shift-work
environment

Eating during the biological night, e.g., for shift workers, decreases total daily
energy expenditure and increases the risk of weight gain and obesity [89]

10 adults underwent a 10-day protocol with
eating and sleeping in all phases

Forced desynchrony protocols cause circadian misalignment and disturb
postprandial glucose response typical of prediabetes [104]

2494 participants (1259 day and 1235 shift
workers) Shift work is associated with higher risk of being overweight/obese [105]

Late Night Eating, BMI and Metabolic Health

26,382 participants (9088 shift workers) Long-term shift work is associated with metabolic syndrome [106]

9912 male employees (8892 daytime workers
and 920 rotating three-shift workers High risk of obesity among male shift workers [107]

905 shift workers Strong association between sleep deprivation and obesity in shift workers [108]

200 shift workers Night work is a risk factor for abdominal obesity, social jetlag is higher in night shift
workers and it was associated with the presence of obesity. [109]

3188 shift workers and 6395 non-shift workers Shift work associated with obesity, lower physical activity, poor dietary choices [110]

4. Chrononutrition

Understanding the molecular basis of chronodisruption can potentially allow us to
develop practical strategies to improve circadian alignment to mitigate the burden of
metabolic diseases. One such relatively novel approach is termed ‘chrononutrition’, en-
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compassing two elements: dietary components that regulate circadian system and meal
timings to synchronise misaligned molecular clocks, which can act either positively or
negatively on metabolic activity. These interventions (including physical activity) can
improve the blunted rhythmic oscillations; even if these are not as robust as those accom-
panying feast/famine cycles, they can potentially be associated with positive metabolic
health outcomes (Figure 2) [111].

4.1. What to Eat

It is well-established that nutritional components, including macronutrients and natu-
ral bioactive compounds, have the ability to (directly or indirectly) regulate the expression of
various genes, and clock-network genes are no exception [112–115]. While feeding/fasting
patterns mainly act as a potent zeitgeber for peripheral clocks and minimally impact the
master clock, nutritional components are also able to influence the master clock in the
SCN [116–118]. High-fat diets are the best-known circadian rhythm disruptors and can lead
to the reversal of feeding patterns and perturbed metabolic parameters [117,119–122]. The
relative distribution of macronutrients in diet can also contribute to central and peripheral
clock modulation in humans [115,123]. Other nutrients have been investigated for their
role in circadian remodelling; a ketogenic diet increases the activation of CCGs via CLOCK-
BMAL1 activation, high sodium and high salt intake causes a phase delay in BMAL1 and
CRY1 and PER2 peak expression and caffeine and theophylline lengthen the period of the
cellular circadian clock [124–127].

A growing body of evidence is emerging that links the use of natural bioactive com-
pounds to health via synchronising or improving circadian rhythmic patterns and poten-
tially acting as a natural chronobiotic—an agent with the ability to adjust the timing of
one’s internal biological rhythm. The best studied chronobiotic is melatonin, which when
administered exogenously can shift the circadian clock phase and alter circadian rhythms in
endogenous hormones, body temperature and behaviour [128]. There is also evidence that
melatonin supplementation not only modulates body weight and metabolic parameters
but also has the ability to reverse the metabolic perturbations caused by chronodisrup-
tion [129,130]. Most of the melatonin supplementation has been in a synthetic form through
capsules, but melatonin also exists in natural food sources such as fish, eggs, poultry, milk,
nuts, fruits and seeds [131]. Natural plant derivatives such as phytochemicals, plant bioactives
and nutraceuticals have gained significant attention for their health-promoting properties.
Plant polyphenols are one of the most abundant and widely distributed group of secondary
metabolites driven from plants. A diverse range of polyphenolic compounds, including
phenolic acids, flavanones, flavonoids, tannins, lignans, stilbenes and curcuminoids, have
been associated with anti-obesity activities via a variety of mechanisms [132–135]. Although
the exact mechanisms of their actions remain unclear and there are issues around their absorp-
tion, bioavailability and bio-accessibility, evidence suggests that some of the beneficial effects
of these compounds are mediated by their ability to interact with circadian clocks via ge-
netic/epigenetic mechanisms or indirectly via altering the gut microbiota (Table 3) [136,137].
These interactions are complex; phytochemical content from the plant source depends on
various agricultural factors such as soil, light, season, temperature and even the endoge-
nous circadian clock of the plant [138]. There are also seasonal factors, e.g., availability,
polyphenolic composition from the same source and human-consumption patterns, which
can add another layer of complexity to the seasonal biological oscillations over the period of
12 months, called circannual rhythms [138–140]. The timing of consumption of these com-
pounds is also critical, as demonstrated by a study using tryptophan-enriched milk formula
in infants. Infants taking tryptophan-enriched formula during the night had improved
sleep parameters as compared to those who consumed it during the day [141]. Table 3
presents some of the direct interactions observed between the polyphenolic compounds,
circadian mechanisms and health outcomes.
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Table 3. A summary of polyphenols with their interactions with circadian system and role in health.

Polyphenol Interactions with Circadian Clocks Reference

Resveratrol

Improvement in rhythmic expression of core clock and various
clock-controlled genes including NAMPT, SIRT1, PPARα

[142–148]

Improvement of insulin, glucose, lipid metabolism impairments caused
by chronodisruption

Prevention of neuron damage and memory impairment caused by
circadian disruption

Enhanced expression of PER1, PER2 and BMAL1 in rat fibroblasts

Downregulation of high-fat diet induced REV-ERBα in adipose tissue

Reversal of free-fatty-acid-induced loss of oscillation amplitude in core
clock genes in HEPG2 cells

Amelioration of acrylamide suppressed amplitude and phase of
oscillations in core clock genes and increased expression of SIRT1 and
PGC1α

Increase in expression of BMAL1, PER1, SIRT6, SIRT1 and REV-ERBα
mRNA in fibroblasts

Proanthocyanidins

Modulation BMAL acetylation, increase in PER2 expression and
inhibition of REV-ERBα and RORα in rat models of diet-induced
obesity [149]

Modulation of NAMPT expression and NAD+ levels in rat liver

Epigallocatechin-3-gallate

Altered circadian expression patterns of CLOCK, BMAL1 and key
appetite-regulating genes in mice

[150–152]
Ameliorated diet-induced metabolic misalignment by regulating the
rhythmic expression of the circadian clock genes in the liver and
adipose tissue in mice

Repressed CLOCK expression in lung cancer cell lines and reduced the
self-renewal capacity of the cells

Nobiletin

Affects amplitude, period and phase of mutant mice cells with weaker
rhythmic amplitude.

[153–162]

Activation of RORs and protection against metabolic syndrome in a
clock-dependent manner.

Enhances BMAL1, reverses the loss of oscillation amplitude observed
in metabolic disease state

Induction of AMPK-SIRT1 signalling and lipogenesis

Ability to induce circadian rhythmicity and inhibit oncogenicity in
MDA-MB-231 cells

Modulates expression of core clock and clock-controlled genes in the
cortex

Restores endogenous rhythm of clock genes in steatosis liver

Modulates clock and Alzheimer’s-disease-related genes in cortex of AD
model mice

Cardioprotective role in ischemia reperfusion injury by upregulating
midazolam-inhibited PER2

Improves metabolic fitness in naturally aged mice and promotes
healthy aging in high-fat diet by activating genes to promote
mitochondrial function

Improves insulin secretion by enhancing the amplitude of circadian
gene expression in T2D islets
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Table 3. Cont.

Polyphenol Interactions with Circadian Clocks Reference

Oolong tea polyphenols

Improves Firmicutes:Bacteroidetes ratio in the intestinal flora in mice

[163,164]
Promotes the growth of strains of gut microbiota and positively
regulates the production of SCFA

Restoration of CLOCK, BMAL1, PER and CRY expression disturbed by
constant day feeding in mice

Chichoric acid Regulation of rhythmic expression of clock genes [165]

Quercetin

Upregulation of BMAL1, SIRT1, SIRT6, REV-ERBα and reduction in
PER1 expression in fibroblasts

[148,166]Suppresses breast cancer metastasis to lymph nodes promoted by
circadian disruption

CLOCK (circadian locomotor output cycles kaput), BMAL1 (brain and muscle Arnt-like protein-1), PER (Period),
CRY (Cryptochrome), RORα (receptor-related orphan receptor α), REV-ERBα (NR1D1 gene, producing a protein
called REV-ERBα), NAMPT (nicotinamide phosphoribosyltransferase), SCFA (short chain fatty acids), T2D (type
2 diabetes), SIRT6 (Sirtuin 6), SIRT1 (sirtuin 1), AMPK (AMP-activated protein kinase).

4.2. When to Eat

Interestingly, other than what goes on your plate, chrononutrition also highlights
the significance of aligning the meal timing, frequency and the patterns of energy intake
with the circadian rhythm [167]. The concept of ‘when you eat’ was first proposed in
1967 as a link between the meal timing, energy metabolism and chronic diseases by Franz
Halberg [168,169]. Food consumption is a strong entrainer for peripheral circadian clocks.
Optimal health requires an alignment of energy intake with the biological day and active
phase and to generate feed/fast cycle that human physiology is adapted to. The transition
between the feed/fast cycles requires a different set of transcription factors and associated
proteins, which display diurnal variation. Genes that are active and peak during the day are
mainly associated with glycogenesis and lipogenesis, with an overall aim of replenishing
the energy stores, while the fasting phase is enriched with genes responsible for growth,
repair, glycogenolysis and lipolysis. Any perturbations in the availability of the key players
in either of these phases and dietary intake could lead to the dysregulation of energy
metabolism [21,170,171]. The same meal consumed at different times during the circadian
cycle could have a varied impact on energy metabolism. The current 24/7 lifestyle and
a constant supply of nutrients interrupts human circadian physiology. Emerging data
suggest that the eating window for more than 50% of the population (non-shift-work) is
approximately 15 h a day, with less than 30% of energy consumption happening before
noon and 30–45% of daily energy consumed during dinner and post-dinner snacks and part
of it spanning over the circadian rest period [172–174]. The increased eating window and
shorter overnight fast contributes to increased energy intake. Mistimed eating accompanied
by erratic sleep patterns leads to dampened circadian rhythms and increases the risk of
metabolic disorders (Table 2). Interestingly, the dampening of circadian rhythms by a
high-fat diet can be recovered from by just limiting food intake during the biological active
phase, highlighting the importance of “when to eat” and aligning meals with our biological
clocks [175].

Time-restricted feeding (TRF) in animals (time-restricted eating (TRE) in humans) is an
approach that aims to align meal times with the circadian rhythm and has gained significant
attention in recent years. Multiple animal and human studies have been conducted and
some human feasibility studies and clinical trials are summarised in Table 4.
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Table 4. A summary of human studies investigating the impact of time-restricted eating in humans and metabolic health outcomes.

Time-Restricted Feeding (TRF)

Participants Eating Restrictions Study Type/Duration Health Outcomes Energy Intake Reference

n = 49 obese subjects BMI
30–50 kg/m2

Eating window of 4 h
(3 pm–7 pm) vs. 6 h
(1 pm–7 pm) vs. controls
(7 am–7 pm)

Randomized parallel-arm
trial over 8 weeks

Both TRF regimens showed reduction
in body weight, insulin resistance,
oxidative stress levels. Four-hour TRE
did not result in greater weight loss
compared to six-hour TRE.

Reduction in energy intake by
550 kcal/day in both cases
without calorie counting

[176]

n = 11 Obese sedentary males
BMI: 30.2–34.2 kg/m2

Eating window 10 am–5 pm
vs. 7 am–9 pm

Randomized crossover trial;
3 weeks each intervention of
5 days with 10 days washout
period

Improved glycaemic control and
decrease in evening hunger Isocaloric intake [177]

n = 19 with T2D BMI:
29–39 kg/m2 4-week TRE 10 am–7 pm non-randomised 2-week

baseline, 4-week intervention

Compliance 72 ± 24%, no
improvement in glycaemic control or
body mass

Isocaloric intake [178]

n = 23 obese subjects BMI 30
and 45 kg/m2

Eating over 8-h window
(10 am–6 pm) vs. ad libitum
eating

2-week baseline intake,
12-week intervention

Time-restricted eating showed
reduction in body weight and systolic
blood pressure

Decreases caloric intake by
~300 kcal/d [179]

n = 34 resistance-trained
weight 84.6 ± 6.2 kg

TRF (1 pm–8 pm) vs. control
(8 am–8 pm)

Randomized parallel-arm
trial over 8 weeks

TRF only showed a reduction in fat
mass but no other metabolic
parameters were altered. Fat free mass
and muscle mass area in arm and thigh
remain unchanged

Isocaloric intake [180]

n = 9 overweight sedentary
older adults BMI
25–40 kg/m2

16 h fast (14–18 h range) Baseline assessment followed
by 4-week intervention

TRE resulted in short-term weight loss
and improved waist circumference,
cognitive and physical function and
health-related quality of life

No data available [181]

n = 8, prediabetic
BMI 32.2 ± 4.4 kg/m2

eTRF; 6-h eating period and
dinner before 3 pm for
5 weeks, vs. 12-h eating
period

Randomized crossover trial
for 17 weeks, each
intervention 5 weeks

eTRF reduced insulin levels and
improved insulin sensitivity, lowered
blood pressure; reduction in oxidative
stress and appetite in the evening.

Isocaloric intake [182]
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Table 4. Cont.

Time-Restricted Feeding (TRF)

Participants Eating Restrictions Study Type/Duration Health Outcomes Energy Intake Reference

n = 19 with metabolic
syndrome

Eating over self-selected 10-h
window

2-week baseline intake,
12-week intervention

TRE improves cardiometabolic health
(reduction in weight, BMI, waist
circumference, percentage body fat,
systolic and diastolic blood pressure,
improved lipid parameters, glucose
and insulin homeostasis

Decreases caloric intake [183]

n = 8 overweight
BMI > 25 kg/m2

Eating over self-selected 10-h
window

3-week baseline intake,
16-week

Reduction in body weight. Significant
improvement in sleep, hunger at
bedtime, energy levels

Reduced estimated energy
intake by 20–26% [170]

n = 11, BMI 25.0 and
35.0 kg/m2

eTRF (8 am to 2 pm) vs.
control (8 am to 8 pm)

Randomized crossover 4-day
intervention, 3.5–5 weeks’
washout period between
interventions

eTRF improves 24-hour glucose levels,
alters lipid metabolism and expression
of SIRT1 and LC3A (autophagy gene),
BDNF (a neurotrophic factor
promoting neuronal growth) and
mTOR

Isocaloric intake [184]

n = 11 overweight BMI
25–35 kg/m2

eTRF (8 am–2 pm) vs. control
(8 am–8 pm)

Randomized crossover 4-day
intervention, 3.5–5 weeks’
washout period between
interventions

Meal-timing interventions facilitate
weight loss primarily by decreasing
appetite rather than by increasing
energy expenditure. eTRF may also
increase fat loss by increasing fat
oxidation.

Isocaloric [185]

n = 21 healthy adults BMI
29.6 ± 2.6 kg/m2

TRE (12 pm to 8 pm) vs.
control eating habits with
concomitant aerobic exercise
for 8 weeks

Randomized, controlled trial

TRF individuals lost significantly more
body mass (3.3% vs. 0.2%) and fat
mass (9% vs. 3.3%). Lean mass
increased but no significant difference
between the groups.

Reduction in caloric intake in
TRE (~300 kCal/day) [186]

n = 27 BMI 21.9–26.9 kg/m2
TRE included an elimination
of caloric intake between
7 pm and 6 am vs. controls

Crossover 2-week
intervention with one-week
washout period

TRE led to a loss in small amount of
body weight

Reduction in energy
(~240 Kcal) and fat intake un
TRE group

[187]
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Table 4. Cont.

Time-Restricted Feeding (TRF)

Participants Eating Restrictions Study Type/Duration Health Outcomes Energy Intake Reference

n = 18 Body weight
79.0 ± 13.5 kg in control
group and 87.4 ± 19.2 in
TRE group

TRE (eating over any 4-h
window between 4 pm and
12 pm on the four days a
week when they exercised
but ad libitum on days
without exercise) vs. control
without any restrictions

Randomized controlled trial
8 weeks

No significant loss of body weight, no
adverse effect on lean mass retention
or muscular improvements.

TRF reduced caloric intake by
~667 kCal a day [188]

n = 13 BMI 20–39 kg/m2

TRF with delayed breakfast
and advanced dinner by 1.5 h
vs. controls with habitual
eating patterns

2-week baseline, 10 weeks’
intervention

No significant reduction in weight, but
reduction in adiposity, fasting glucose
observed

Reduction in energy intake in
TRE group [189]

n = 40 resistance-trained
females Body weight 57.1 to
73.4 Kg

Control diet vs. TRF
(12 pm–8 pm) vs. TRF+ a
leucine metabolite β-hydroxy
β-methyl butyrate (HMB)
supplementation

randomized,
placebo-controlled for
8 weeks

TRF did not produce changes in
physiological variables including
resting metabolic rate, substrate
utilization, blood lipids, glucose and
insulin, blood pressure, arterial
stiffness, or cortisol responses. No
significant difference in physical
performance.

No significant variation
between the groups [190]

n = 40 with abdominal
obesity BMI 25.1–37.6 kg/m2 TRF eating window 8–9 h 3-month single arm trial Moderate weight loss, improved waist

circumference, HbA1C No data available [191]

n = 22 men BMI:
28.5 ± 8.3 kg/m2

Isocaloric TRF (8-h eating
window, caloric intake within
300 Kcal of habitual intake)
vs. ad libitum TRF (8-h eating
window but no restriction on
calories)

28 days randomised control
trial

Decrease in body mass, decrease in fat
body mass, decrease in BP and
increase in HDLC in both groups.

No significant difference in
caloric intake [192]

n = 20 obese BMI
34.1± 7.5 kg/m2

TRE (self-selected 8-h eating
window) vs. control on ad
libitum

12 weeks Decrease in eating frequency, weight,
lean mass, visceral fat No data reported [193]

n = 116 overweight and obese
BMI 27.4–35.4 kg/m2

TRE (12–8 pm) eating vs. ad
libitum

12 weeks’ randomised control
trial Loss of body weight in TRE group No significant difference in

caloric intake [194]



Nutrients 2022, 14, 5080 15 of 38

Table 4. Cont.

Time-Restricted Feeding (TRF)

Participants Eating Restrictions Study Type/Duration Health Outcomes Energy Intake Reference

n = 271 NAFLD BMI
> 24 kg/m2

Control vs. ADF (25% energy
intake on fast days) vs. TRF
(self-directed 8-hour window)

12 weeks’ randomised control
trial

Significant weight loss and fat mass
loss, reduction in cholesterol and
triglycerides both in ADF and TRF
with ADF achieving better outcomes

No significant difference in
caloric intake [195]

n = 15 PCOS women BMI
≥ 24 kg/m2 TRE (8 am–4 pm)

Non-randomized 1 week
baseline, 5 weeks’
intervention

Reduction in body weight, BMI, body
fat mass, body fat percentage,
improved insulin sensitivity

Isocaloric [196]

n = 22
BMI = 24.7 ± 0.6 kg/m2

TRE (eating within 8-h
window but first meal
between 10–11 am) vs.
controls with normal feeding
patterns

Randomized controlled trial,
1 week baseline, 6-week
intervention

No weight loss or improvement in
cardiovascular function with modest
improvement in functional endurance
and glucose tolerance, 84–95%
adherence

Isocaloric [197]

n = 60 BMI ≥ 30 kg/m2

14:10 TRE (14-h metabolic
fast with snack with 200 kcal
mixed nuts 12 h after the fast
started) vs. 12:12 TRE (12-h
fast without any snack)

Randomized controlled trial 8
weeks intervention

Weight loss observed in both cases but
more in 14 h metabolic fast group,
improved fasting blood glucose.
Fasting snack decreased hunger

500–1000 kcal deficit each day [198]

n = 45 with at least one
metabolic syndrome
component and usual eating
window of 14 h. BMI
≥ 20 kg/m2

TRE (self-selected window of
12 h) vs. no restriction

Randomised control trial
4 weeks’ baseline, 6-month
intervention

No significant difference in weight loss No difference reported [199]

n = 80 males

TRF (8-h eating window, 7.30
pm–3.30 am) vs. normal diet
daily fasting for 16 h for 25
days

25 Days

TRF improved lipid parameters,
reduced inflammatory markers,
enhanced gut microbial richness with
enrichment of Prevotellaceae and
Bacteroideaceae; activated SIRT1

No data available [200]
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Table 4. Cont.

Participants Eating Restrictions Study Type/Duration Health Outcomes Energy Intake Reference

Time-restricted feeding (TRF) vs. Continuous caloric restriction (CR)

n = 16 BMI 24.0 ± 0.6 kg/m2 eTRF (8 am till 4 pm) vs.
control on caloric restriction

Non-randomised 1-week
baseline, 2 weeks’
intervention

eTRF improved insulin sensitivity,
glucose uptake, reduction in energy
intake and weight loss

Isocaloric [201]

n = 37 overweight BMI
26.4–28.55 kg/m2

TRE (8 am–4 pm) vs. BMI
matched participants on
hypocaloric diet based on
orthodox fasting

Both groups showed reduction in BMI
and fasting group also showed a
reduction in total and LDL cholesterol

Isocaloric [202]

Early time-restricted feeding (eTRF) vs. late time-restricted feeding (lTRF)

n = 15 men at risk of T2D BMI
33.9 ± 0.8 kg/m2

eTRF (8 am–5 pm) vs. late
TRF (12 pm–9 pm) over
2-time 7-day TRF with 2
weeks’ washout period

Randomised crossover trial,
1-week baseline, 1-week
intervention, 2 weeks’
washout period

Both TRF regimens showed reductions
in body weight, glycaemic responses to
a test meal, triglycerides.

No data available [203]

n = 82 BMI 18.6–25.8 kg/m2
Early TRF (6 am–3 pm) vs.
mid-day TRF (11 an–8 pm) vs.
controls

Randomised control trial, 5
weeks’ intervention

Early TRF was more effective in
improving insulin sensitivity, fasting
glucose, reduction in body mass and
adiposity, reduction in inflammation
and increased gut microbial diversity

Reduction in caloric intake in
both TRF groups vs. control [204]

n = 8 prediabetic
BMI 32.2 ± 4.4 kg/m2

eTRF (6-h eating window and
dinner before 3 pm) vs. 12-h
eating period

Randomised crossover trial, 5
weeks’ intervention with a
7-week washout period

eTRF reduced insulin levels and
improved insulin sensitivity, lowered
blood pressure, reduction in oxidative
stress and appetite in the evening.

Isocaloric [181]

Breakfast vs. dinner calories

n = 93 Overweight and obese
women
BMI 32.4 ± 1.8 kg/m2

1440 KCal consumed over
breakfast/lunch/dinner 700,
500, 200 kcal vs. 200,500, 700
kcal

Randomized parallel-arm
study for 12 weeks.

High caloric breakfast group showed
greater weight loss and waist
circumference, fasting glucose, insulin,
triglycerides, HOMA-IR. Ghrelin,
hunger vs satiety improved.

[205]

n = 1245 non-obese,
non-diabetic middle-aged
adults

Daily caloric intake at dinner
(<33% vs. 33–48 vs. ≥48% of
daily kcal)

6 years
Consuming more calories at dinner is
associated with an increased risk of
obesity, metabolic syndrome and NAFLD

[206]

TRF (time-restricted feeding), TRE (time-restricted eating), NAFLD (non-alcoholic fatty liver disease), HOMA-IR (homeostatic model assessment for insulin resistance), HbA1C (haemoglobin
A1C), BDNF (brain-derived neurotrophic factor).
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5. Time-Restricted Eating—Just Another Approach to Reduce Caloric Intake or a
Circadian Alignment Tool

The role of calorie consumption in energy homeostasis is not disputed, and creating a
negative energy balance is a logical approach to tilt the scales. Calorie restriction (CR) refers
to a consistent dietary regimen low in calories, generally a daily 20–40% reduction as com-
pared with ad libitum feeding, without malnutrition (Figure 3). This is not simply another
term for fasting, which is commonly defined as the total abstinence from energy-containing
foods and beverages for periods ranging from 12 h to 3 weeks, although some protocols
employ modified fasting in which a minimal number of calories may be consumed [207].
CR is one of the most effective interventions for weight loss, improving health parameters
in animals including primates and is a highly successful strategy for reducing age-related
diseases and extending the mean and maximum lifespan in multiple species [208–210].
In addition to animal studies including mice and monkeys, CR over a 6-year period in a
cohort of 18 participants showed improved BMI, glucose homeostasis and lipid profile
and reduced inflammatory markers and blood pressure [211–213]. Although short-term
caloric restriction is associated with 5–10% weight loss, long-term compliance is a massive
challenge and there is a tendency to regain the lost weight [214,215]. To overcome these
challenges, alternative dietary strategies such as intermittent caloric restriction have gained
attention.
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Figure 3. Dietary weight-loss approaches. Continuous caloric restriction includes reducing caloric
intake on each day of the week but does not restrict time of the day. Intermittent fasting, e.g., 5:2 diet,
introduces two caloric restriction days with ad libitum eating for the rest of the week. Time-restricted
feeding limits the eating window and extended fast period regularly.

The intermittent fasting (IF) approach involves introducing intermittent periods of
eating deprivation, providing a less restrictive alternative to CR. The regimen includes
periods of fasting where the energy restriction ranges from 60–100%, interrupted by periods
of normal dietary intake (isocaloric/ad libitum). This approach is adopted in a variety
of protocols; alternate day fasting (no calories on fasting day and ad libitum on feast
days), alternate-day modified fasting (consuming <25% of usual caloric intake on fasting
days and ad libitum on feast days), 5:2 diet (with 2 days of fasting with 60–100% energy
restrictions and 5 days of isocaloric intake), 4:3 (with 3 days of fasting with 60–100% energy
restrictions and 4 days of isocaloric intake) (Figure 3) [214,216–218]. Certain religious
fasting practices observed including the Islamic month of Ramadan have been studied
as part of IF approaches [219]. This approach, as compared to continuous CR, introduces
periods of fasting when the metabolism shifts towards the catabolic state and mimics
the feast/fast physiology of our hunter-gatherer past [220]. Even though the IF regimen
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suggests ad libitum feeding on non-fasting days, there is no full compensation for the
fasting days/time, and overall there is an energy deficit or lack of calories. Various studies
have compared IF approaches to continuous CR and reported comparable or better weight
loss and improvement in metabolic health [189,221–228].

Time-restricted feeding (TRF) is considered a modified version of IF, where the energy
intake is limited to a window of 4 to 12 h in order to extend the time spent in the fasted
state regularly, without changes in caloric intake (Figure 3) [229]. Even though caloric
restriction is not intentional in TRF, multiple studies have reported that restricting the
feeding window to 8 h produces a mild caloric deficit [176,179]. In fact, any restriction to
the eating window helps reduce the energy intake, e.g., just stopping night-time eating in
healthy individuals leads to a reduction in energy intake [187]. Considering the deleterious
effects of chronodisruption, extended eating duration and the imbalanced spread of energy
intake during the day, it is clear that the timing of a meal is instrumental in fine tuning
the energy balance. Thus, TRF is more than just a mode for caloric restriction or IF; it also
synchronises the feeding time with the awake/active phase when the body is best able
to metabolise it. More recently, the health-promoting role of caloric restriction has been
shown to be partly due to TRF rather than just caloric intake and extended periods of
fasting independent of caloric content share the same if not better health outcomes [230].
This leads to an alignment of the feeding-fasting cycle with circadian rhythms and offers
a promising dietary strategy to mitigate the deleterious effect of chronodisruption [231].
Mice fed with a high-fat diet showed a dampened diurnal rhythm in physiology, which
was recovered in the cohort on same diet but over a time-restricted period [232]. There is
a plethora of research supporting TRF being beneficial in not only reducing body weight
but also improving metabolic health in general (Table 4) [184,204,231–234]. Interestingly, as
well as the length of the restriction window, the timing of the TRF within the 24-hour cycle
is important and may provide slightly different outcomes. Restricting the feeding period
to earlier in the day (eTRF) provides advantageous outcomes than mid-day TRF (mTRF)
or later TRF (lTRF), as this aligns better with circadian biology, though larger studies and
more data are required to fine-tune the interventions [204]. Attempts have also been made
to have a pragmatic approach to adapt TRF approaches to life/work schedules. It has
been shown that TRF for 8–9 h a day for 5 days and ad libitum for 2 days, still reverses or
restricts diet-induced obesity [235,236].

Caloric restriction and intermittent fasting are not strictly part of the chrononutrition
strategy, as the focus is not about aligning meal times with the biological clock. However,
due to the common mechanisms of an overall negative energy balance, which is involuntary
in IF and TRF, they share certain molecular mechanisms that contribute to the overall energy
homeostasis. Each of the above-mentioned strategies have challenges and potential barriers
to adherence for a long-term weight-loss strategy, though the current view supports TRF as
a promising tool with greater-than-ordinary adherence, a good safety profile, and socially
acceptable flexible implementation [237–240]

6. Mechanisms of Chrononutrition in Energy Homeostasis and Obesity
6.1. Appetite Control

Appetite, eating behaviour, hunger/satiety and energy homeostasis are controlled by
the melanocortin system. This includes melanocortin receptor 4 (MC4R), which is present
in the brain and is activated by its ligand, melanocyte-stimulating hormone (MSH). MSH
is produced by the arcuate nucleus (ARC) in the hypothalamus that consists of two dis-
tinct types of neurons: anorexigenic neurons expressing proopiomelanocortin (POMC) the
orexigenic neurons expressing NeuroPeptide-Y (NPY) and agouti-related protein (AgRP),
having opposite effects on energy homeostasis. Leptin, an adipocyte-derived satiety hor-
mone, activates POMC neurons, and its circulatory levels directly relate to adiposity. This
results in the proteolytic conversion of POMC and the release of α-MSH, which activates
MC4R, promoting satiety, reduced food intake and increased energy expenditure. Leptin
also binds to AgRP neurons, resulting in the suppression of AgRP release, which is a potent
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antagonist for MC4R and increases food intake, energy conservation and weight [241,242].
An incretin hormone GLP1 (glucagon-like peptide-1) that stimulates insulin secretion, and
PYY (peptide YY), both secreted from the gastrointestinal tract, are also anorexigenic and
delay gastric emptying and promote satiety [243]. As opposed to leptin, ghrelin is an orexi-
genic hormone mainly derived from the stomach, which promotes hunger via activating
AgRP neurons, which increases appetite and decreases energy expenditure (Figure 4) [244].
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Figure 4. Mechanisms of chrononutrition: the bidirectional interactions between clock machinery,
dietary polyphenols and meal times lead to rhythmic expression of various genes involved in sleep,
energy balance, metabolism and regulation of gut microbiota. NAD, AMPK, SIRT1, SCFA, all
derived from gut microbiota via PGC1a, lead to mitochondrial biogenesis and browning of white
adipose tissue. MC4R pathway, via leptin, ghrelin, GLP1 and PYY, controls energy expenditure
and satiety. Gut microbiota influenced by chrononutritional approaches also contributes to the
overall energy homeostasis and BMI regulation. UCP1 (uncoupling protein 1) SCFA (short chain fatty
acids), GLP1 (glucagon-like peptide-1), PYY (peptide YY), AgRP (agouti-related protein), POMC 9
(proopiomelanocortin), α-MSH (melanocyte-stimulating hormone), MC4R (melanocortin receptor
4), AMPK (AMP-activated protein kinase), NAD+ (nicotinamide adenine dinucleotide), PPARγ
(peroxisome proliferator-activated receptor γ), NAMPT (nicotinamide phosphoribosyltransferase),
NAD+ (nicotinamide adenine dinucleotide), AMPK (AMP-activated protein kinase), CCGs (clock-
controlled genes), SIRT1 (sirtuin 1), PGC1α (PPARγ coactivator 1α).

Leptin and ghrelin levels both exhibit diurnal oscillations and are influenced by obesity
and food intake [245–249]. Circulating leptin levels peak at night and are lowest in the
afternoon, but in obese subjects the amplitude in these oscillations is lost [249]. Circadian
disruption abolishes circadian oscillation patterns of plasma leptin and induces leptin
resistance [104,247,250]. Leptin is high in obese subjects, but, due to leptin resistance, the
satiety signal is absent/compromised. Diets rich in fat inhibit the anorectic effects of leptin
while sucrose- and fructose-rich diets promote leptin resistance [251,252]. Fasting leads
to a drop in leptin levels and intermittent fasting improves leptin resistance. [253–256].
Leptin also regulates energy homeostasis through AMP-activated protein kinase (AMPK)
by increasing fatty acid oxidation and reducing fatty acid biosynthesis [257,258]. Leptin also
increases the expression of uncoupling protein-1(UCP1) and the browning of white adipose
tissue and thermogenesis, discussed later in this section [259]. GLP1 and PYY are under
the control of clock machinery and exhibit circadian patterns of rhythmicity [260,261].
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Ghrelin levels increase during fasting or just before the habitual feeding time, dropping
postprandially. Overweight and obese subjects lose this variation with a lesser drop
in postprandial ghrelin levels leading to lower level of satiety after a meal, promoting
snacking and overconsumption of food [262]. Ghrelin levels increase in response to caloric
restriction and remain high for a considerable length of time, leading to increased food
intake and regaining weight [263–265]. The response of plasma ghrelin levels to time-
restricted feeding are inconsistent, with some studies reporting its reduction, while others
show no effect [182,185,266,267].

Sleep duration also regulates ghrelin and leptin levels in circulation and contribute to
energy homeostasis [268–270]. Insufficient sleep possibly works via altering the levels of
melatonin, which plays a key role in food intake and energy expenditure. Melatonin reduces
the expression of AgRP/NPY and increases the expression of POMC, hence regulating
energy homeostasis via the MC4R pathway in the hypothalamus. Melatonin also inhibits
leptin secretion and ameliorates leptin resistance, which accompanies obesity [249]. Lack of
sleep also interferes with the weight loss achieved by caloric restriction, indicating the key
role of sleep in terms of the efficacy of weight-loss strategies [269]. TRF and multiple natural
bioactive compounds have been associated with an improvement in sleep [76,271,272].

6.2. Energy Sensors in the Body
6.2.1. AMP-Activated Protein Kinase (AMPK)

AMP-activated protein kinase (AMPK) is the key energy sensor in the cell and has the
ability to regulate whole-body metabolism. AMPK is activated upon a fall in intracellular
ATP levels and increases in ADP or AMP levels, which reflects the energy status of the cell.

Upon activation, AMPK switches on the catabolic pathways, leading to ATP genera-
tion and switching off the anabolic ATP-consuming pathways. ATP generation happens
by promoting glycolysis and fatty acid oxidation and in the long term, by increasing
mitochondrial content and the use of mitochondrial substrates as an energy source [273].

Fasting/intermittent fasting/nutritional deprivation activates AMPK, converting this
nutritional signal to a circadian signal by phosphorylating CRY, resulting in its degradation.
AMPK also phosphorylates casein kinase I epsilon, which in turn phosphorylates and
degrades PER [274]. This removes repression on CLOCK-BMAL1, shortens the timing
of the feedback loop and activates the transcription of the target genes including REV-
ERBα, PER and CRY [275]. When a high-fat diet is administered ad libitum, this leads to a
disturbed and dampened circadian rhythm of AMPK, while eTRF increases the amplitude
of expression of AMPK [232,276].

One key target for activated AMPK is nicotinamide phosphoribosyltransferase (NAMPT),
an enzyme that promotes an increase in intracellular levels of nicotinamide adenine dinu-
cleotide (NAD+) levels (Figure 4). NAD+ is essential for cellular energy maintenance and
central to cell health. NAD+ acts as a redox carrier that gets converted to NADH in various
metabolic pathways including glycolysis, the TCA cycle and fatty acid oxidation. NADH
serves as the hydride donor to the electron-transport chain for the production of ATP in
mitochondria. Additionally, NAD+ acts as a cofactor or co-substrate to enzymes such as
sirtuins and poly (ADP-ribose) polymerases (PARPs). All these processes continuously
deplete the NAD+ pool in the cell, which can be replenished by de novo pathway from
tryptophan and the predominant salvage pathway from the NAD+ degradation product
nicotinamide (NAM) [277]. In the salvage pathway, NAM is converted by NAMPT, the rate-
limiting enzyme in the pathway, to an intermediate product, nicotinamide mononucleotide
(NMN). NMN adenyltransferase 1-3 (NMNAT1-3) then converts NMN into NAD+ [278].
The CLOCK-BMAL1 complex binds to the E-boxes in the NAMPT promoter and con-
trols its transcription and the levels display robust circadian oscillations providing a 24-h
rhythm to NAD+ levels in the cell. NAD+ levels peak approximately 4 h after the peak in
NAMPT [279,280]. NAD+ levels depend on cellular energy levels. Glucose deprivation,
fasting, caloric restriction and exercise lead to an increase, and high-fat diets decrease
NAD+ levels [281–283]. Fasting or calorie restriction increases cellular NAD+ levels by acti-
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vating NAMPT and feeding suppresses NAMPT, providing a link between metabolism and
the circadian clock [21,280,283,284]. Sirtuins and PARPs (poly (ADP-ribose) polymerases)
depend on and compete for the cellular pool of NAD+. Cellular NAD+ stores are important
for cell health, delay the onset of multiple diseases and enhance longevity, and lifestyle
interventions that lead to increased NAD+ bioavailability are recommended for positive
health outcomes [285].

Sirtuins (silencing information regulator) are a seven-member superfamily of proteins,
which deacetylases histones and non-histone proteins and use NAD+ as a co-substrate,
converting it into nicotinamide (NAM). The dependence of sirtuins on NAD+ suggests their
role as energy sensors of the cell [286]. Studies over the past two decades have provided
strong evidence that sirtuins are the key mediators of the beneficial effects of caloric
restriction [287–291]. NAD+ levels are increased in fasting, intermittent fasting or caloric
restriction, leading to the activation of sirtuins. Activated sirtuins deacetylate a number
of proteins playing key roles in metabolism, inflammation, autophagy, aging, apoptosis,
oxidative stress, neurodegeneration and cancer [286,292]. SIRT1, the most extensively
studied sirtuin, interacts with the clock machinery contributing to the circadian rhythms.
SIRT1 expression follows circadian patterns mainly due to circadian regulation of NAMPT
and NAD+ levels. In turn, SIRT1 binds to the CLOCK-BMAL1 complex in a circadian manner
and regulates clock-dependent gene expression and oscillations, NAMPT being one of them
(Figure 1) [293,294]. CLOCK is an acetyltransferase and acetylates BMAL1, which results in
the activation of the dimer while SIRT1 counterbalances CLOCK activity and deacetylates
BMAL1. Additionally, SIRT1 also deacetylates PER2 and enhances its degradation. The
absence of SIRT1 leads to PER2 stabilisation and the inhibition of CLOCK-BMAL1 activity,
impacting the expression of various clock-dependent genes while PER2 negatively regulates
SIRT1 [293–296]. SIRT1, playing a dual role as an energy sensor and a regulator of clock
components, couples metabolism and circadian mechanisms. SIRT1 activation also leads to
deacetylation and enhanced PGC1α transcriptional activation [273,297–299].

In addition to caloric restriction, multiple dietary polyphenols have been investigated
for their health-promoting properties via activating sirtuins—resveratrol being the most
extensively researched (Table 3) [300–302]. In fact, a new term has emerged for food
components that modulate sirtuin activities mainly by increasing the bioavailability of
NAD+: ‘Sirtfood” [303–306].

Although a vast amount of data is available connecting sirtuins and caloric restriction,
fasting and intermittent fasting, the data on the link between the time-restricted feeding
and sirtuins have only started to emerge. In mice, TRF has been shown to increase SIRT1
expression and reverse the loss of circadian rhythm in SIRT1 expression caused by a high-
fat ad libitum diet [200,307]. Human studies indicate that restricting eating time to the
earlier part of the day upregulates SIRT1 expression and the amplitude of SIRT1 circadian
oscillations and associated health benefits [184,200].

PARPs (poly (ADP-ribose) polymerases) catalyse the transfer of poly (ADP-ribose)
from NAD+ to acceptor proteins to modulate their activity and deplete the cellular NAD+

stores. PARP1 is the best characterised member and responsible for about 90% of the
total cellular poly-ADP-ribosylation activity. PARP1 plays a critical active role in DNA
repair, metabolism, inflammation and cell death [285,308,309]. PARP1 expression exhibits
circadian patterns and poly-ADP-ribosylates and modulates the activities of CLOCK-
protein-inhibiting CLOCK-BMAL1 binding activity in a circadian manner [24]. Fasting
reduces while a high-fat diet increases PARP1 protein and its activity [310]. The knockdown
or inhibition of PARP1 in mice leads to leaner phenotype, increased availability of NAD+,
activation of SIRT1 and related metabolic effects, while the reverse was observed in the
case of a PARP1 inducer [310]. Loss of PARP1 contributes to the browning of white adipose
tissue, partly by activating SIRT1 and PPARγ [311–313].
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6.2.2. Mitochondrial Dynamics

Mitochondria play a pivotal role in cellular metabolism by generating the basic unit of
energy, ATP. Metabolic diseases such as obesity, a high-fat diet or excessive caloric intake
all lead to mitochondrial dysfunction, which leads to energy deficiency and an increase
in the production of reactive oxygen species, causing cell damage [314,315]. Cellular
quality control processes including mitophagy and mitochondrial biogenesis ensure that
mitochondrial capacity, function and integrity are preserved. Mitochondrial biogenesis
is regulated by many transcriptional regulators present in the cell, PGC1α being the key
one. PGC1α is an inducible transcriptional coactivator that regulates multiple transcription
factors involved in energy metabolism and exhibits strong circadian rhythms in multiple
tissues [316–319]. The activity of PGC1α is regulated by posttranslational modifications;
the deacetylation and phosphorylation of PGC1α lead to its activation (Figure 4) [320,321].

Caloric restriction via fasting, intermittent fasting or time-restricted feeding leads to
SIRT1 and AMPK activation, which leads to the deacetylation and phosphorylation of
PGC1α, respectively; both these modifications activate PGC1α and an increased mitochon-
drial biogenesis [298,299,321–323]. The process of mitochondrial biogenesis is generally
associated with improved cell health and has been reported in various cell types [324–326].
Inactive phase feeding in rats leads to an altered regulation of mitochondrial biogene-
sis [327]. Dietary interventions such as whole-grain bioactive compounds and various
polyphenolic compounds also contribute to mitochondrial biogenesis, mainly via the SIRT-
PGC1α pathway [328–330]. One of the tissues where mitochondrial biogenesis contributes
to obesity and energy homeostasis is adipocytes.

6.2.3. Adipose Tissue

There are two distinct categories of adipose tissue, white adipose tissue (WAT) and
brown adipose tissue (BAT). WAT stores energy in the form of triglycerides in times of
caloric excess and is associated with metabolic disease states. BAT is rich in mitochondria
and has a high expression of uncoupling protein-1 (UCP1), can uncouple fatty acid oxida-
tion from ATP production and is specialized for energy expenditure via thermogenesis,
modulating the energy homeostasis. It has a protective role in metabolic health. BAT
can also protect against diet-induced obesity, and genetic variants in key genes involved
in the process have been recognised to contribute to impaired thermogenesis [331,332].
In addition to classical WAT and BAT, trans-differentiation of WAT can lead to a beige
or brite adipose tissue via a process called ‘browning’, with positive health outcomes.
These beige cells start to express UCP1 accompanied by mitochondrial biogenesis leading
to an increased mass of mitochondria (Figure 4). PGC1α, PPARγ and PRDM16 are the
three key modulators of browning of WAT and all have been associated with circadian
clocks [333–335]. PPARγ is a nuclear transcription factor and a nutrient sensor that plays
critical roles in adipocyte differentiation. PPARγ exhibits circadian rhythmicity at mRNA
and protein level. Nocturin, a circadian-regulated gene also positively regulates PPARγ
activity. PPARγ induces REV-ERBα expression and PER2 directly inhibits the expression
of PPARγ [336]. PPARγ activation by synthetic ligands can upregulate browning in WAT
and it requires the recruitment of PR (PRD1-BF1-RIZ1 homologous)-domain-containing
15 (PRDM16) to form the transcription complex. PRDM16 also induces the expression of
PGC1α and UCP1 [337–339]. Additionally, the circadian components BMAL1, RORα and
REV-ERBα also regulate BAT differentiation [335,340–342]. Thus, the modulation of the
adipocyte phenotype to BAT contributes to enhanced energy homeostasis, and any strategy
mediating this effect can positively contribute to health.

Caloric restriction and exercise contribute to PGC1α activation and associated health
outcomes [343–348]. Aligning meal times with the circadian rhythms by time-restricted
feeding in animal models can also modulate PGC1α activity and mitochondrial biogen-
esis. [323,349–353]. Additionally, various polyphenolic compounds contribute to mito-
chondrial biogenesis via PGC1α activation, which is mediated via AMPK-SIRT1 activa-
tion [354,355]. Sleep, melatonin and leptin pathways also contribute to the browning of
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WAT and energy homeostasis via the induction of UCP1 expression and mitochondrial
biogenesis (Figure 4) [249,259].

6.2.4. Gut Microbiota

One of the mechanisms for health benefits from chrononutrition is via modulation of
the gut microbial community. The gut is not just the site of nutrient absorption, it is also
the home to a vast, complex, diverse microbial community. The delicate balance in gut
flora diversity and its species/phyla distribution is critical for host health. In addition to
dietary components, circadian oscillations also influence the microbial composition and
functional profile during the 24-h period. Chronodisruption, including CLOCK mutant
models, leads to dysbiosis and promotes obesity, while fasting, intermittent fasting or
time-restricted feeding help re-set the balance. Multiple mechanisms are involved between
these complex interactions [356–359]. Firstly, the species distribution of the microbes varies
significantly between obese and lean individuals. The two dominant divisions of bacteria
in human gut are Firmicutes and Bacteroidetes, and an increased Firmicutes:Bacteroidetes ratio
has been associated with obesity [360]. High-fat diets and feeding during the biological
night led to an increase in Firmicutes, while caloric restrictions, intermittent fasting, time-
restricted feeding, plant-based, high-fibre diets, green tea, cranberry extracts, quercetin,
resveratrol and persimmon tannins normalise this ratio and contribute to weight loss
(Figure 4) [307,359,361–367].

Secondly, the gut flora is not a passive and silent community with actions limited to
the gut; they are metabolically active and release metabolites into the gut, which are ab-
sorbed, enter host circulation and contribute to host physiology, including nutrient sensing.
The dietary components and dietary patterns both define the microbial diversity, species
distribution and microbial metabolites and have been linked to BMI, glucose homeostasis,
metabolic disorders, several inflammatory and cardiovascular diseases, intestinal health,
bio-activation of nutrients and vitamins, sleep disorders, neurodegenerative diseases and
malignancy [368,369]. Plant-based diets, rich in fruit, vegetables, whole grains and polyphe-
nols, promote microbial diversity, while Western diets, rich in fats and low in fibre, reduce
gut microbial diversity [367]. One class of metabolites, called short-chain fatty acids (SC-
FAs), play multiple roles, including the regulation of energy derived from food, reducing
inflammation, preventing pathogen invasion and maintaining barrier integrity. These
also act as ligands to G-protein coupled receptors (GPCRs), which upon activation can
lead to a variety of metabolic effects, including the stimulation of the secretion of insulin,
glucagon-like peptide 1 (GLP-1) and peptide YY (PYY), which in turn, act to increase satiety
and increase transit time [368–371]. Butyrate, a SCFA, also leads to AMPK activation and
accompanying beneficial effects discussed above. Butyrate, a type of SCFA in the cecum
of mice fed with regular chow, showed diurnal patterns with the ability to enhance the
circadian gene amplitude in the liver, which was absent in high-fat-diet fed mice [372]. TRF
and intermittent energy restriction caused the enrichment of species that upregulated the
generation of SCFA [373]. The gut microbiota also contributes to the adipocyte phenotype
and the expression of UCP1. Mice fed with a high-fat diet but over a limited feeding
period showed an improved rhythmic expression of UCP1 and improved night-time energy
consumption and oscillations in PPARα expression [232]. There is a reciprocal relationship
between dietary polyphenols and the gut microbiota. Gut microbiota, as demonstrated
by germ-free models, influence the metabolism and bioavailability of these compounds,
while the health-promoting properties of polyphenols are partly mediated by their ability
to act as a prebiotic to promote growth, reshape the microbial composition and reverse the
disturbances in microflora caused by chronodisruption [137,163].

7. Conclusions

Obesity is a critical global public health threat that without urgent and multifaceted
approaches will continue its inexorable rise. Diet and energy balance remain key targets for
any weight-regulatory intervention, but their application to manage long-term body weight
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have yielded limited success. The key to a successful dietary intervention requires sustained
adherence with pragmatic implementation, such that there is minimal interference to day-
to-day activities. Optimising circadian mechanisms via nutritional means is a valid and
innovative approach to address energy balance. Additionally, educating and empowering
the public to make informed lifestyle choices is key for sustainable behavioural changes.
These modifications based on the appreciation of interactions between ‘what we eat’ and
‘when we eat’ can potentially prevent, delay the onset of and manage obesity. However,
larger and longer human studies with clearly defined bioactive dietary components, timing
of consumption, eating windows and energy content in genetically diverse populations are
required before translating chrononutritional strategies into effective interventions for the
general population.
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