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Brown adipose tissue human biomarkers
Which one fits best? A narrative review
Angelo Alito, MDa,*  , Angelo Quartarone, MD, PhDb, Giulia Leonardi, MDc, Adriana Tisano, MDd, 
Antongiulio Bruschetta, MDe, Francesca Cucinotta, MD, PhDb, Demetrio Milardi, MD, PhDa,  
Simona Portaro, MD, PhDc

Abstract 
Adipose tissue (AT) is an endocrine metabolically dynamic active tissue that plays a central role in the systemic energy balance 
and metabolic regulation. Brown AT represents approximately 1% of adult human AT, with an energy-burning function that uses 
fat to create heat. Brown AT activity was measured using 18F-fluorodeoxyglucose positron emission tomography/computed 
tomography. It has been shown that cold exposure could promote brown AT activation. However, many factors, such as aging 
and body mass index, may interfere with this activity. Many authors have discussed the role of factors specifically secreted by 
the AT in response to cold exposure. The aim of this review is to properly understand the effects of cold on AT and biomarkers 
and their possible application in rehabilitation medicine. A comprehensive literature review was performed to identify published 
studies regarding biomarkers of cold effects on Brown AT searching the following databases: PubMed, Science Direct, and Web 
of Science, from 2012 to 2022. After evaluation of the inclusion and exclusion criteria, 9 studies were included in this review. We 
reported the overall influence of cold exposure on brown AT activity, its related biomarkers, and metabolism, demonstrating that 
the therapeutic role of cold exposure needs to be better standardized. From our data, it is important to design proper clinical trials 
because most cold applied protocols lack a common and homogeneous methodology.

Abbreviations: AT = adipose tissue, BAT = brown AT, BMI = body mass index, CE = cold exposure, FA = fatty acid, FGF21 
= fibroblast growth factor 21, miRNAs = microRNAs, NE = noradrenaline, PBMC = peripheral blood mononuclear cell, PET = 
positron emission tomography, UCP1 = uncoupling protein 1, WAT = white AT.

Keywords: adipose tissue, bat activation, brown adipose tissue, brown fat, cold exposure

1. Introduction

Adipose tissue (AT) is an endocrine metabolically dynamic 
active tissue that plays a central role in systemic energy bal-
ance and metabolic regulation.[1] In the past 2 decades, scien-
tific interest has developed in this topic due to concerns about 
obesity and its metabolic sequelae, and to the recognized role 
of adipocytes in some homeostatic processes.[2] AT, based on its 
thermogenic potential, is classified as white AT (WAT), beige, 
or brown AT (BAT), with different structures and functions, 
even though they all store lipids as triglycerides[3,4] WAT is the 
primary storage site for lipids without thermogenic capacity; it 
is the most represented fat type in human adults, and quickly 
stores and releases lipids in response to various metabolic 
conditions.[3,5]

BAT represents approximately 1% of adult human AT and 
is mainly localized in the neck and upper body regions.[6–8] 
BAT has an energy-burning function that uses fat to cre-
ate heat (i.e., non-shivering thermogenesis) because of the 

uncoupling protein 1 (UCP1) expression in the mitochon-
dria.[3] Beige or brite (brown-in-white) AT, which develops 
from WAT in response to chemical signaling or cold exposure 
(CE),[9] may exert the same BAT metabolic functions, pro-
ducing a small UCP1 amount upon prolonged CE or direct 
adrenergic stimulation in a process known as browning.[10,11] 
UCP1 is located in the inner mitochondrial membrane and 
uncouples the mitochondrial proton gradient from ATP 
production.[12] It has been shown that cold activates sympa-
thetic neurons, which release noradrenaline (NE) activating 
the β3-adrenergic receptor, which has a key-role on UCP1 
activation and mitochondrial thermogenesis.[13] On such a 
basis, UCP1 represents the classic BAT activity biomarker.[14] 
BAT activity and browning are influenced by several factors, 
such as CE[15,16] drugs,[17] altered glucose and lipid metabo-
lism[18–20] and dysthyroidism,[21] which trigger thermogenesis. 
The mechanisms of action of such BAT activators, bringing 
to an augmented β-adrenergic and/or UCP1 activity and 
decreasing existing WAT storage, are increasing lipolysis, with 
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a subsequent free fatty acid release from WAT; and conversion 
of white adipocytes to thermogenic-active beige adipocytes.[22] 
Such cold-induced thermogenesis processes are attributable to 
voluntary (i.e., physical exercise) or involuntary (i.e., shiver-
ing) skeletal muscle activity.[23] In fact, the same β-adrenergic 
activity or UCP1 induction may come from: exercise, which is 
considered a potential signaling cue to stimulate BAT activity 
and browning[24,25]; and shivering, which starts immediately 
or several minutes after CE, where all the metabolic energy 
expended even for a little effort performed is released as 
heat.[23,26] However, few studies have specifically measured the 
changes in UCP1 levels before and after CE in humans, which 
is most likely due to the difficulty in obtaining multiple BAT 
biopsies.[27] Therefore, increased BAT activity has been more 
easily measured by 18F-fluorodeoxyglucose positron emission 
tomography (PET)–computed tomography,[8,28] even though 
this activation is not observed in all humans.[29] In fact, some 
authors divided the patients into 2 groups: BAT-positive (with 
PET measured metabolically active BAT) and BAT-negative 
(with PET undetectable BAT), even though stratified by homo-
geneous anthropometric characteristics (i.e., body mass index 
[BMI] and fat mass).[30,31] In addition, other factors, such as 
aging and BMI, may interfere with BAT activity.[32,33] Aging is a 
negative regulator of brown adipocyte development and func-
tion regulator.[32] In humans, a reduction in BAT and weak-
ened thermogenesis activation is observed with increasing age, 
possibly due to a phenotypical switch described as whitening 
(e.g., brown to white-like AT conversion), accompanied by 
reduced UCP1 expression and activity.[34] This thermogenic 
defect could also be linked to mitochondrial mature brown 
adipocyte dysfunction and reduced proliferative expansion of 
brown adipogenic progenitor cells.[35] Furthermore, BAT may 
lose the ability to respond to adrenergic stimulation because 
of a defect in post-receptor signaling events.[36]

Body weight is another BAT activation interfering factor. In 
fact, people with high BMI, after PET study, seems to present 
a lower BAT body percentage and a reduced activation of the 
same after stimuli.[33]

Several authors, over the years, have discussed the role of fac-
tors specifically secreted by AT in response to CE, apart from 
UCP1.

The aim of this review is to properly understand the effects 
of cold on AT and biomarkers and their possible application in 
rehabilitation medicine.

2. Methods
A comprehensive literature review was performed to iden-
tify published studies regarding biomarkers of cold effects 
on BAT. Two researchers using the same keywords performed 
the examination process independently. Finally, papers were 
chosen by consensus. The PubMed, ScienceDirect, and Web 
of Science databases were searched. The following string was 
used: (brown adipose tissue activation OR fat browning) 
AND biomarker AND cold. Identified articles were screened 
using the following inclusion criteria: study design: random-
ized controlled trials, review, mini review, articles, written 
in English, published in indexed journals over the last 10 
years (2012–2022), and dealing with brown AT activation 
biomarkers. Exclusion criteria were drug use, animal stud-
ies, radiological studies, and disease-specific interventions. 
Ethical approval was not required due to the study setting. 
First, the articles were screened by title and abstract and then 
by full-text analysis. The following data were collected: study 
design; cold application modality, biomarkers relevance, and 
their correlation with brown fat activation. A flowchart of 
the process is shown in Figure  1. The initial search yielded 
600 articles (PubMed, 48; Web of Science, 15; ScienceDirect, 
537). Duplicate articles were excluded. After evaluation of the 

inclusion and exclusion criteria, 9 studies were included in 
this review.

3. Results
We analyzed articles considering BAT activation conditions, 
including cold exposure and its effects on the human body, 
considering changes in the blood levels of some biomark-
ers. The articles included in this review are listed in Table 1. 
In 2014, Pinho Júnior et al[37] in a clinical trial studied cre-
atine phosphokinase and lactate dehydrogenase after inten-
sive training and a 19 minutes cold-water immersion session. 
Lactate dehydrogenase levels were lower in the cryotherapy 
group as the Delta creatine phosphokinase with the finding 
of lower values. These findings demonstrate a cold effect on 
muscle damage.

In their article, Chen and Pfeifer[38] analyzed BAT activation 
via cold whole-body exposure, showing an increase in miRNA. 
In particular, miR-92a expression is inversely correlated with 
BAT activity. Villaroya et al, in a review, claimed that circu-
lating fibroblast growth factor 21 (FGF21) levels reflect BAT 
activity under some conditions, but other tissues also express 
and release these molecules. In addition, they considered 
miRNA-92a blood concentration as a negative BAT activity 
biomarker.

In their review, Martin et al[39] compared BAT activation 
due to cold with that due to exercise trying to parallel these 2 
conditions mediated by activation of the sympathetic nervous 
system. The analyzed biomarkers were UCP1, Peroxisome pro-
liferator-activated receptor gamma coactivator 1-alpha, irisin 
and FGF21. They found that BAT activation biomarkers were 
upregulated under both conditions.

Soundarrajan et al,[40] after a non-shivering cold exposition, 
tested fasting glucose, insulin, glycated hemoglobin HbA1c, 
triglycerides, total cholesterol, low-density lipoproteins, 
high-density lipoproteins, thyroid-stimulating hormone and free 
thyroxine, FGF21, interleukin 6, adiponectin and leptin blood 
levels. They suggested that active BAT may be associated with 
lower fasting glucose and FGF 21 levels.

Efremova et al[41] investigated the peripheral blood mononu-
clear cell (PBMC) expression profiles of regulators of BAT activ-
ity (CIDEA, PRDM16), white adipocyte browning (HOXC9 and 
SLC27A1), and fatty acid β-oxidation (CPT1A) in an extremely 
cold-exposed environment compared to a thermoneutral-ex-
posed population. Human PBMC express the brown adipocyte 
marker CIDEA and browning marker HOXC9, suggesting fat 
browning and BAT activation.

Xiang et al[42] explored the effects of cold on lipid and 
glucose metabolism, thyroid function, and blood NE con-
centration. The increase in non-esterified fatty acids concen-
tration after CE was correlated with BAT activity and NE 
modifications.

In their research article, Mengel et al[43] investigated the 
variation in fasting glucose, plasma insulin, leptin, adiponec-
tin, non-esterified fatty acids, triglycerides, C-reactive protein, 
and free triiodothyronine after a device-mediated 120 minutes 
cooling session at a non-shivering temperature. They found that 
fasting glucose levels decreased and triglycerides and adiponec-
tin levels significantly increased during cold exposure. After CE, 
plasma leptin levels were lower and serum C-reactive protein 
levels were higher than before cold exposure. However, the 
response to cold was diminished in participants with an elevated 
BMI.

Leow et al[31] showed that plasma exosomal methylene tet-
rahydrofolate dehydrogenase (NADP + dependent) 1-like over-
expression correlates with human BAT activity, as confirmed 
by PET–magnetic resonance imaging. This increased level was 
observed for all 3 BAT activation modes analyzed (cold expo-
sure, capsinoid intake, and hyperthyroidism).
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4. Discussion
To date, CE is often applied with the aim of reducing local 
metabolism and inflammatory responses; however, there is insuf-
ficient supporting evidence for such an effect in humans. The 
primary effect of CE is to maintain a reduction in intramuscular 
temperature for as long as possible, particularly in the immedi-
ate stages following injuries, intense exercise, or other clinical 
conditions, to delay the proliferation of secondary damage.[44]

This review reports the overall influence of CE on BAT activ-
ity, its related biomarkers, and metabolism, demonstrating that 
the therapeutic role of CE needs to be better standardized. In 
fact, CE has been shown to induce various metabolic adjust-
ments, leading to an increase in BAT activation and metabolic 
heat production; however, several factors may interfere with 
such processes, depending on the timing and duration of CE, 
chronic inflammation states, metabolic diseases, dysthyroidism, 
and patients’ anthropomorphic features, including individual 
response to BAT activation (Sun, 2018).

Several studies have demonstrated that the upregulation of 
UCP1 expression plays a role in BAT activation, dissipating 
heat from free fatty acid, and decreasing body temperature 
during CE.[39,45] As Efremova and colleagues showed, there are 
other potential BAT-activity markers, such as brown adipocyte 
marker CIDEA and beige adipocyte marker HOCX9, which 

are expressed in PBMC in a cold-environment-exposed human 
cohort. During BAT activation, lipolytic conditions are gener-
ated, leading to a reduction in CIDEA levels because of its role in 
liposynthesis, which inhibits UCP1 expression.[46] Conversely, 
they found increased HOXC9 expression, showing WAT-to-
beige conversion after CE.[41] Several lines of evidence suggest 
that AT lipid metabolism-secreted products may contribute 
essential regulatory cues to integrate nutrient handling in ATs 
and other organs, thereby affecting systemic lipid homeostasis 
and development of metabolic dysfunction development.[47,48] 
For instance, cardiolipins in BAT were recently described as 
important regulators of energy metabolism,[49] and the ther-
mogenic lipokine 12,13-dihydroxy-9Z-octadecenoic acid is 
involved in BAT activation in response to cold, leading to an 
increase in fatty acid (FA) uptake.[50] This is important because 
excess serum FA levels may trigger inflammatory responses by 
activating toll-like receptors, which could lead to insulin resis-
tance.[51] In dysfunctional AT, an increased appearance of lipo-
toxic intermediates such as ceramides and diacylglycerol have 
been observed.[52] Diacylglycerols can activate certain protein 
kinase C isoforms that inhibit insulin signaling in the liver and 
muscles.[53] Additionally, FAs are ceramide biosynthesis pre-
cursors that have been linked to oxidative stress, lipotoxicity, 
and insulin signaling inhibition.[54] The inhibition of ceramide 

Figure 1.  Preferred reporting items flowchart resuming the paper’s selection process.
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synthases prevents their formation, promotes WAT browning, 
and improves glucose and lipid metabolism.[55]

In line with this evidence, Soundarrajan et al[40] supported the 
CE BAT activation effects on glucose metabolism. This effect 
may be related to increased circulating levels of FGF21 because 
its cold-induced overexpression augments lipid cell glucose 
intake.[56]

Other promising markers include exosomes,[38] which are 
circulating small lipid vesicles carrying proteins and nucleic 
acids, including microRNAs (miRNAs) and methylene tet-
rahydrofolate dehydrogenase (NADP + dependent) 1-like, 
which play an essential role in cellular communication 
between cells.[31] Exosomal miRNAs function as signaling 
molecules that regulate the transcription of their target genes 
and can cause the phenotypic transformation of recipient 
cells.[57] Moreover, it has been shown that miRNA levels in 
BAT-derived exosomes change after BAT activation in vitro 
and in vivo. Thus, BAT-derived exosomes could be used as 
potential biomarkers of BAT activity as a valid alternative and 
noninvasive technique compared to 18F-fluorodeoxyglucose 
PET-computed tomography.[31] Thus, a better understand-
ing of BAT-derived exosomes and their role in metabolism 
could be a good strategy to improve metabolic crosstalk with 
other organs and biomarkers, consequently increasing BAT 
activity.[58]

All of these aspects are worth mentioning because their effects 
on functional recovery from injury or muscle damage need to 
be better clarified, and the current best available evidence is 
often misunderstood or misconstrued. This topic has faced sev-
eral limitations over the years, as demonstrated by this review, 
because of the heterogeneity among the applied CE protocols 
and considered outcome measures.

From such data, it is important to design proper clinical trials, 
as most of the applied protocols lack a common and homoge-
neous methodology. It would be interesting to study the effects 
of different temperatures more precisely (is there a dose-effect?), 
duration and number of exposures, patients’ features (i.e., 
anthropometric characteristics, gender, associated diseases, age), 
application sites (local or whole body) with the same CE device, 
outcome measures considered, and wide-scale applicability.

In conclusion, this review will hopefully stimulate profession-
als to set large-scale clinical trials, possibly divided on specific 
diseases, to define specific guidelines and best suited protocols to 
optimize and improve patients’ health.

It is quite possible that CE’s potential benefits of CE have 
been limited by the short duration of application and undosed 
CE modalities (i.e., ice therapy or ice bath).

Future studies should be carried out on the real existence of 
a reliable, cheap, and easily applicable molecule to confirm BAT 
activation and its consequent effects on other organs.
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