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Obesity, a complex disease involving an excessive amount of body fat and a major

threat to public health all over the world, is the determining factor of the onset and

development of metabolic disorders, including type 2 diabetes, cardiovascular

diseases, and non-alcoholic fatty liver disease. Long-term overnutrition results in

excessive expansion and dysfunction of adipose tissue, inflammatory responses

and over-accumulation of extracellular matrix in adipose tissue, and ectopic lipid

deposit in other organs, termed adipose tissue remodeling. The mammalian

Sirtuins (SIRT1–7) are a family of conserved NAD+-dependent protein

deacetylases. Mounting evidence has disclosed that Sirtuins and their prominent

substrates participate in a variety of physiological and pathological processes,

including cell cycle regulation,mitochondrial biogenesis and function, glucose and

lipid metabolism, insulin action, inflammatory responses, and energy homeostasis.

In this review, we provided up-to-date and comprehensive knowledge about the

roles of Sirtuins in adipose tissue remodeling, focusing on the fate of adipocytes,

lipid mobilization, adipose tissue inflammation and fibrosis, and browning of

adipose tissue, and we summarized the clinical trials of Sirtuin activators and

inhibitors in treating metabolic diseases, which might shed light on new

therapeutic strategies for obesity and its associated metabolic diseases.
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Introduction

Obesity has reached epidemic proportions globally in the past several decades, in

both children and adults (1), which is a major contributor to the explosion of obesity-

related metabolic diseases, including non-alcoholic fatty liver disease, cardiovascular

diseases, and type 2 diabetes mellitus (2–4). Excessive energy is stored in adipose tissue
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(AT) in the form of triglycerides (TGs), causing obesity.

Pathological AT expansion, which is accompanied by massive

enlargement of existing adipocytes, the over-production of

extracellular matrix (ECM), inadequate angiogenesis, elevated

immune cell accumulation, pro-inflammatory responses, and

ectopic lipid deposit, is termed AT remodeling (5). Massive

expansion and remodeling of AT occur during obesity, and

different AT depots exhibit various scenery (1). Under high-fat

diet (HFD) feeding, visceral AT and subcutaneous AT expand

through the enlargement of pre-existing adipocytes

(hypertrophy) and the recruitment of newly generated

adipocytes (hyperplasia), respectively; hyperplasia is

metabolically healthy, whereas hypertrophy leads to metabolic

complications (6). Adipose progenitors are a heterogeneous

group of cells with diverse cell fates, contributing to white and

beige adipogenesis, fibrosis, or maintenance of an immature cell

phenotype with proliferation capacity. The factors shaping cell

fate decisions of adipose progenitor cells determine the onset

and development of obesity (7). Lipid mobilization, referring to

fatty acid trafficking in (lipogenesis) and out (lipolysis) of the

adipocytes, is a paramount process in regulating systemic energy

metabolism. Hormone-sensitive lipase (HSL), adipose TG lipase

(ATGL), and monoglyceride lipase (MGL) are considered the

key rate-limiting enzymes responsible for lipolysis in

adipocytes (8).

ECM components, such as fibronectin and collagen, provide

mechanical support for hypertrophic adipocytes, while

abnormal production and deposition of ECM cause the

destruction of normal AT structure and impaired tissue

flexibility in obese subjects (9). Adipocyte stress and death,

and the formation of inflammatory foci occur when

hypertrophic adipocytes lack proper ECM support (10).

Evidence suggests that macrophages are the predominant

leukocytes in AT, and the proportion of macrophages

increases from approximately 5% in lean AT to more than

50% in obese AT (11). In addition, AT inflammation is

accompanied by the shift from the alternatively activated

macrophage (M2) phenotype to the classically activated

macrophage (M1) phenotype in obese subjects (12). M1

macrophages secrete various pro-inflammatory cytokines, such

as tumor necrosis factor-a (TNF-a) and interleukin-1b (IL-1b),
and chemokines, such as monocyte chemoattractant protein-1

(MCP-1) and macrophage inflammatory protein-1a (MIP-1a).
Infiltration and pro-inflammatory polarization of macrophages

are determining factors of systemic inflammation and insulin

resistance (IR) (13). Therefore, AT inflammation and abnormal

ECM deposition play critical roles in obesity-induced metabolic

disorders (14, 15). Unlike white AT, which stores energy, brown

AT contains large amounts of mitochondria and dissipates lipids

as heat by uncoupling protein 1 (UCP1) to maintain body

temperature. Beige cells arise as multilocular adipocytes and

have a highly inducible thermogenic capacity upon stimulation

(16). Igniting white AT browning has become an attractive
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strategy for the treatment of obesity and its related metabolic

disorders (17).

The silent information regulator 2 (Sir2) family of histone/

protein deacetylases (Sirtuins) comprise homologs found across

all kingdoms of life (18). There are seven Sirtuin homologs in

humans, SIRT1–SIRT7. Sirtuins share significant sequence

homology, contain conserved catalytic and nicotinamide

adenine dinucleotide (NAD+)-binding domains, and regulate

multiple cellular processes, including cell survival, senescence,

and metabolic homeostasis (19). Sirtuins differ in their

subcellular localization and substrate specificities. Mounting

evidence indicated that Sirtuins are essential regulators of

multiple processes in obesity-associated AT remodeling (20–

23). Herein, we systematically summarized the roles of Sirtuins

in regulating adipocyte fate, lipid mobilization, AT

inflammation, AT fibrosis, and browning of AT (Table 1). The

purpose of the current review is to provide insight into AT

remodeling and inspire Sirtuins as therapeutic targets for

obesity-associated metabolic disorders.
NAD+ in adipose tissue

As the rate-limiting co-substrate of Sirtuins, NAD+ is

important to regulate the functions of Sirtuins and,

consequently, AT remodeling. Emerging evidence has revealed

that NAD+ biology in AT is associated with metabolic flexibility

in mice and humans (82–84). NAD+ levels in white AT are

decreased in obesity, which is consistent with the activity of

Sirtuins (85, 86). Similarly, long-term HFD feeding reduced the

content of NAD+ in epididymal white AT, inguinal white AT,

and interscapular brown AT, while long-term calorie restriction

(CR) showed the opposite effects; in addition, NAD+ content in

both white and brown AT was negatively associated with the

cholesterol and TNF-a levels in plasma but positively correlated

with adiponectin level in plasma (87). Enhancing NAD+

synthesis in the salvage pathway plays a critical role in the

differentiation of 3T3-L1 preadipocytes (88). Nicotinamide

phosphoribosyltransferase (NAMPT) functions intracellularly

to catalyze the rate-limiting step of the NAD+ salvage

pathway, which is the main source of NAD+ in AT (83). Loss

of NAMPT impairs metabolic pathways involved in

inflammation (84) and decreases adrenergic-mediated lipolysis

in white AT (82). Adipocyte-specific NAMPT deletion causes

local AT inflammation, but not systemic inflammation (89).

Nicotinamide riboside (NR) was recently identified as a NAD+

precursor; NR supplementation increases NAD+ levels and

activates SIRT1 and SIRT3, ultimately enhancing oxidative

metabolism in brown AT and protecting from metabolic

abnormalities in HFD-fed mice (90). Additionally, NR

supplementation prevents the development of inflammation

and fibrosis in white AT of old, but not young, female HFD-

induced-obesity mice (91). These findings demonstrated the
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TABLE 1 Overview of the role of Sirtuins in adipose tissue remodeling.

Adipocyte fate Lipid mobiliza-
tion

AT inflammation AT fibrosis AT browning

SIRT1 ↓ Adipogenesis (24–26) by promoting
CACUL1 binding to PPARg-
responsive site to repress PPARg (24)

↑ Lipolysis by
activating AMPK
(20), and repressing
PPARg (27) and
FOXO1-mediated
expression of ATGL
(28)

↓ Pro-inflammatory responses (29–43)
by inhibiting NF-kB signaling pathway
(29, 36–42), NLRP3 (34, 35), mTOR/
S6K1 pathway (43), STAT3 (39),
FOXO1-C/EBPa transcriptional
complex (44), and PPARg (45)

↓ ECM and macrophage
infiltration (39)

↑ White AT browning (20,
27, 46–49) by deacetylating
PPARg (27, 48) and
activating AMPK (20) and
FGF21 (49)

Not related to brown adipocyte
differentiation (29)

SIRT1 deficiency suppresses
adipogenesis by increasing the
acetylation of NCOR1 during the early
stage of mESCs to adipocyte
differentiation (50)

SIRT1 deficiency ↑ ECM
by suppressing the
expression of leptin,
adiponectin, and MMP3/
13, and elevating the
expression of Collagen
6A3 (51)

↑ Beige adipocyte differentiation of
elderly AT-MSC via p53/p21 pathway
(52)

↑ Anti-inflammatory responses (46,
53) by deacetylating the transcription
factor NFATc1 (53)

↓ Lipid droplet number, lipid
accumulation, and adipogenesis by
preventing the proper induction of
PPARg2 and C/EBPa in visceral AT-
derived stem cells (26)

SIRT1 deficiency ↑ brown
AT degeneration by
decreasing PGC-1a,
UCP1, and CPT1b (54)

SIRT2 ↓ Adipogenesis (55, 56) by
deacetylating FOXO1 and promoting
FOXO1 binding to PPARg (56)

↑ Lipolysis (55, 57)
by deacetylating
PGC-1a (58)

Not available (N/A) N/A N/A

↓ Lipid droplet number, lipid
accumulation, and adipogenesis, by
preventing the proper induction of
PPARg2 and C/EBPa in visceral AT-
derived stem cells (26)

SIRT3 ↑ Brown adipocyte differentiation
through PGC-1a (59)

↓ Lipid droplet size
and accumulation
(21, 60) by
activating the
AMPK-ULK1
pathway (60)

↓ Pro-inflammatory responses by
inhibiting NLRP3 (61)

SIRT3 deficiency ↑
collagen VI (61)

SIRT3 deficiency ↑ brown
AT whitening (21, 61, 62),
suppresses UCP1 (61) and
perilipin-1 (61, 62) and
promotes collagen IV (61)

SIRT3 deficiency promotes adipogenic
differentiation by decreasing FOXO3a
(63)

No effect on adipogenesis in 3T3-L1
cells (64)

SIRT4 ↑ Adipocyte differentiation by
interacting coordinately with the
transcription factors including C/
EBPb, E2F-1, and HOXA5 (65)

↑ Lipogenesis by
repressing FAO via
deacetylating MCD
(66)

N/A N/A N/A

↑ Adipogenesis by promoting
branched-chain amino acid catabolism
by MCC1 (64)

SIRT5 ↓ Adipocyte differentiation (67, 68),
lipid synthesis, and lipid deposition by
activating AMPK and repressing
MAPK (68)

SIRT5 deficiency ↓
FAO (69) and ↑
lipolysis by
stimulating ATGL
(67)

N/A N/A SIRT5 deficiency ↓ AT
browning (22, 69) by
decreasing the expression
of thermogenic genes
including UCP1, CIDEA,
COX7A1, CPT1b, and
MCAD (21)

↑ Adipogenesis modestly in 3T3-L1
cells (64)

No effect on
lipolysis (70)

SIRT6 ↓ Adipocyte differentiation by
activating AMPKa (71)

↑ Lipolysis via
specific reduction of
PPARg signaling
(72)

↓ Pro-inflammatory responses (23, 73,
74) by increasing the occupancy of c-
Jun (73) and inhibiting NF-kB
signaling pathway (74)

N/A SIRT6 deficiency ↓ AT
browning (75–78) by
decreasing UCP1 (23, 76)
and PGC-1a (76)

↑ Adipogenesis (79) by inhibiting
KIFC and enhancing CK2; SIRT6
deficiency leads to a severe
adipogenesis defect and reduced
expression of adipogenic markers,

SIRT6 deficiency ↓
lipolysis by
suppressing the
expression of ATGL
by regulating

↑ Anti-inflammatory responses (76,
80)

(Continued)
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importance of NAD+ biology in AT remodeling. Further studies

are needed to clarify the source and functions of NAD+ in AT.
Sirtuins in adipose tissue

SIRT1, existing primarily in the nucleus and partially in the

cytoplasm, exhibits a deacetylase activity of histones and non-

histone substrates, which manipulates multiple physiological

processes in AT, including inflammatory responses,

mitochondrial biogenesis, cellular senescence, and apoptosis/

autophagy (92). SIRT2, originally identified as a tubulin

deacetylase, is shuttled between the cytoplasm and the nucleus

(93). SIRT2 participates in the regulation of adipocyte

differentiation, gluconeogenesis, insulin action, and

inflammatory responses by deacetylating various substrates

(94). SIRT3, preferentially localized in mitochondria (95),

possesses regulatory roles in multiple metabolic processes,

including acetate metabolism and thermogenesis, by

controlling mitochondrial biogenesis and function (96). SIRT3,

rather than SIRT4 or SIRT5, is responsible for the overall protein

deacetylation in mitochondria (97). SIRT4 and SIRT5 exist

predominantly in mitochondria, whereas SIRT6 and SIRT7 are

principally found in the nucleus.

The expression of Sirtuins in AT has been widely

investigated, while the outcomes were controversial. The

expression levels of SIRT2, SIRT4, and SIRT6 are comparable

in white and brown AT, SIRT1 and SIRT7 maintain higher

expression in white AT, and SIRT3 and SIRT5 are preferentially

expressed in brown AT versus white AT (98). Compared with

that of normal-weight individuals, the mRNA level of SIRT1 is

lower and that of SIRT7 is higher in visceral and subcutaneous

ATs from obese humans, while the expression of the other five

Sirtuins is not related to body mass index (BMI) (99). In

addition, the level of SIRT1 was found to be negatively

correlated with BMI and AT macrophage infiltration in

humans (100). The expression of SIRT1, SIRT3, and SIRT6 in

subcutaneous AT was upregulated during weight loss (101).

Consistently, the expression of SIRT1, SIRT3, and SIRT5 in
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subcutaneous AT is lower in the heavier co-twins of the BMI-

discordant twin pairs (102). Another study showed that the

mRNA expression of SIRT1, SIRT3, and SIRT7 is lower in

subcutaneous AT of healthy obese subjects than that of lean

subjects (86). Interestingly, overweight subjects showed lower

SIRT3 and SIRT6 mRNA levels than normal-weight subjects; no

differences in SIRT1 or SIRT6 levels were observed between

obese and overweight subjects; the obesity group exhibited the

highest expression, while overweight subjects showed the lowest

expression of SIRT2 (103). The SIRT3 expression is relatively

high at the initial stage of adipocyte differentiation and declines 4

days after hormonal stimulation in 3T3-L1 adipocytes (60).

Inhibition of SIRT5 promoted the expression of SIRT6 in the

differentiation process of bovine preadipocytes (71). Taken

together, the expression profiles of Sirtuins and their functions

in different physiologic contexts of AT vary, which in turn affect

adipose tissue functions, and the change patterns are

complicated and worthy of further exploration.

Diet and environmental stresses have been reported to target

Sirtuins, as well as some small molecules. HFD feeding decreases

the expression levels of SIRT1–4 and SIRT6 and increases the

expression of SIRT5 in AT (104). Long-term CR increases the

levels of SIRT1 (105, 106), SIRT2 (107), SIRT3 (98), and SIRT6

(108, 109) in AT but represses the level of SIRT4 (110). In

addition, one report suggested no change of SIRT7 expression in

white AT after short-term CR (111). Additionally, cold exposure

upregulates the expression of SIRT1 (112), SIRT2 (55), SIRT3

(98), SIRT5 (22), and SIRT6 (75) in brown AT. It remains

unclear how CR affects SIRT5 expression in AT and how cold

exposure regulates SIRT4 and SIRT7 in AT.
Sirtuins in manipulating
adipocyte fate

During obesity, white AT expands excessively by increasing

the size of pre-existing adipocytes or generating new adipocytes

from precursor cells. The process of preadipocyte differentiation

into mature adipocyte is termed adipogenesis. It is worth noting
TABLE 1 Continued

Adipocyte fate Lipid mobiliza-
tion

AT inflammation AT fibrosis AT browning

including PPARg, C/EBPa, aP2, and
adiponectin

FOXO1 acetylation
(73)

SIRT7 ↑ Adipogenesis by suppressing SIRT1
(81)

N/A N/A N/A N/A
CACUL1, CDK2-associated cullin 1; PPARg, peroxisome proliferator-activated receptor g; FOXO, forkhead box O; ATGL, adipose triglyceride lipase; NLRP3, nucleotide-binding
oligomerization domain, leucine-rich repeat and pyrin domain-containing 3; mTOR, mammalian target of rapamycin; ECM, extracellular matrix; AT, adipose tissue; NCOR1, nuclear
receptor corepressor 1; mESCs, mouse embryonic stem cells; NF-kB, nuclear factor-kB; MMP3/13, matrix metalloproteinases 3/13; PGC-1a, proliferator-activated receptor-g coactivator-
1a; UCP1, uncoupling protein 1; CPT1b, carnitine palmitoyltransferase 1b; ULK1, unc-51-like kinase 1; E2F-1, E2F transcription factor-1; HOXA5, homeobox A5; MCC1, methylcrotonyl-
CoA carboxylase 1; FAO, fatty acid oxidation; CIDEA, cell death-inducing DFFA-like effector a; COX7A1, cytochrome c oxidase subunit 7A1; MCAD, medium-chain acyl-coenzyme A
dehydrogenase; KIFC, kinesin family member C; CK2, casein kinase 2; AMPK, adenosine 5′-monophosphate-activated protein kinase; MCD, deacetylating malonyl CoA decarboxylase;
N/A, Not available.
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that adipocyte expansion via adipogenesis can offset the negative

metabolic effects of obesity, and increasing reports are focused

on exploring the mechanisms and regulators of this adaptation

process (113). Among them, Sirtuins have attracted more and

more attention.
SIRT1–3 and SIRT7

Peroxisome proliferator-activated receptor g (PPARg) is one
of the master regulators of adipocyte differentiation and is

closely related to the development of obesity (24). Under

fasting conditions, SIRT1 is activated to promote CDK2-

associated cullin 1 (CACUL1) binding to PPARg-responsive
site without affecting CACUL1 expression, in turn repressing

the transcriptional activity and adipogenic potential of PPARg in
3T3-L1 cells (24). It has been reported that ECM in AT

accelerates early adipogenesis, and SIRT1 mediates

proadipogenic events triggered by ECM in subcutaneous AT

(25). Conversely, SIRT7 promotes adipogenesis in mice by

inhibiting the autocatalytic activation of SIRT1 (81). Strikingly,

another report suggested that SIRT1 plays a positive role in the

early stage of mouse embryonic stem cell (mESC) differentiation

to adipocyte and exhibits a negative effect on the late stage of

adipogenesis (50). SIRT1 deficiency increases the acetylation of

nuclear receptor corepressor 1 (NCOR1) to inhibit adipogenesis;

thus, SIRT1 plays a positive role during the early stage of mESCs

to adipocyte differentiation (50).

In AT-derived mesenchymal stem cells (AT-MSCs), SIRT1

activated beige adipocyte differentiation in elderly AT-MSC via

p53/p21 pathway, but not SIRT3 (52). On the contrary, another

study indicated that the effects of SIRT1 on brown AT are not

related to the differentiation process of brown adipocytes (29).

The expression patterns of SIRT3 are correlated with brown

adipocyte differentiation, and SIRT3 directly deacetylates PPAR

coactivator-1a (PGC-1a) to promote the differentiation of fully

thermogenic competent brown adipocytes (59). Depletion of

SIRT3 decreases the protein level of forkhead box O 3a

(FOXO3a) and subsequently impairs the ability of AT-derived

human MSCs to undergo adipogenic differentiation, resulting in

adipocyte dysfunction and IR (63).

It is worth noting that SIRT2 inhibits adipocyte

differentiation. Apparently, the effects of SIRT1 and SIRT2 are

similar in adipogenesis. Overexpression of SIRT1 and SIRT2

reduced lipid droplet number, attenuated lipid accumulation

and adipocyte conversion, and prevented the proper induction

of adipogenic markers, including PPARg2 and CCAAT/

enhancer-binding protein a (C/EBPa), in visceral AT-derived

stem cells. Thus, the decreased expression of SIRT1 and SIRT2

promotes the differentiation capacity of visceral AT stem cells

from obese humans, which is associated with fostering visceral

AT expansion (26). SIRT2 directly deacetylates FOXO1 to affect

FOXO1 acetylation/phosphorylation, increase its nuclear
Frontiers in Immunology 05
translocation, and suppresses adipogenesis (56). Moreover,

SIRT2 promotes FOXO1 binding to PPARg and subsequently

inhibits its transcriptional activity to suppress adipogenesis (55).
SIRT4–6

In bovine AT, SIRT4 interacts coordinately with the

transcription factors, including E2F transcription factor-1

(E2F-1), C/EBPb, and homeobox A5 (HOXA5), to promote

adipocyte differentiation (65). SIRT4 promotes branched-chain

amino acid catabolism through methylcrotonyl-CoA

carboxylase 1 (MCC1), resulting in the greatest enhancement

of adipogenesis, and SIRT5 only modestly promotes

adipogenesis, but not SIRT3 (64).

A recent study reported that SIRT5 inhibition stimulates

brown-like adipogenesis in 3T3-L1 preadipocytes (67). SIRT5

inhibits the differentiation of bovine preadipocytes and

simultaneously inhibits lipid synthesis and lipid deposition in

adipocytes by activating the adenosine 5′-monophosphate

(AMP)-activated protein kinase (AMPK) and repressing the

mitogen-activated protein kinase (MAPK) (68). Similarly,

SIRT6 inhibits preadipocyte differentiation and synergizes with

SIRT5 to reduce lipid deposition in preadipocytes through the

activation of the AMPKa pathway (71). On the contrary,

another study showed that SIRT6 promotes mitotic clonal

expansion during adipogenesis by inhibiting the expression of

kinesin family member C (KIFC) and enhancing casein kinase 2

(CK2) activity, while SIRT6 deficiency leads to a severe

adipogenesis defect and reduced expression of adipogenic

markers, including PPARg, C/EBPa, adipocyte protein2 (aP2),

and adiponectin (79).

In summary, SIRT1 regulates adipogenesis either positively

or negatively, which depends on the stage of adipocyte

differentiation, whereas SIRT7 promotes adipogenesis by

inhibiting the autocatalytic activation of SIRT1 (Figure 1).

SIRT2 exerts an inhibitory effect on adipogenesis by

deacety la t ing FOXO1. SIRT3 and SIRT4 promote

adipogenesis, while SIRT5 and SIRT6 impair preadipocyte

differentiation and lipid deposition. Manipulation of the

activity of SIRT1–6 might be a promising strategy to control

adipocyte fate.
Sirtuins in regulating lipid mobilization

Obesity is characterized by the pathological expansion and

dysfunction of AT. Lipogenesis is a process of the synthesis of

fatty acids from non-lipid precursors. Lipolysis is a process of

breaking down long-chain fatty acids to produce acetyl-CoA,

which provides energetic needs for cells under physiological

circumstances. Lipid mobilization, comprising lipogenesis and

lipolysis, is critical for energy homeostasis. Sirtuins have received
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significant attention for their important roles in lipid

mobilization in AT (114).
SIRT1 and SIRT2

It was reported that upregulation of SIRT1 triggers lipolysis

and loss of fat, including the hydrolysis of TGs and the release of

free fatty acid (FFA), by repressing PPARg (27). ATGL protein is

considered the rate-limiting lipolytic enzyme since the rates of

lipolysis are directly proportional to the levels of the ATGL

protein. SIRT1 controls fat storage and mobilization, at least in

part by regulating lipolysis in adipocytes via FOXO1-mediated

expression of ATGL (28). Another study indicated that SIRT1

activates AMPK, which plays a crucial role in adipocyte lipolysis

(20). Consistently, in white AT, SIRT1 knockdown not just fully

recovered the resveratrol-elevated ATGL and positive regulatory

domain containing 16 (PRDM16) protein but also reduced the

resveratrol-elevated AMPK phosphorylation, suggesting that

SIRT1 is the upstream factor of AMPK to control lipid

metabolism (57).

SIRT2 increases lipolysis in mature adipocytes (55). SIRT2

mediates the increase in fatty acid oxidation (FAO) upon

hypoxia-inducible factor-1a (HIF-1a) inactivation via PGC-

1a, but not SIRT1 (58).
SIRT3 and SIRT4

SIRT3 is able to prevent the loss of brown AT during obesity

and metabolic disorders. Knockout of SIRT3 obviously

promoted lipid droplet accumulation in brown AT (21).

Interestingly, SIRT3 plays a minimal role in AT mitochondrial
Frontiers in Immunology 06
biology and systemic metabolism in adipocytes from SIRT3

knockout mice. Loss of SIRT3 in adipocytes showed no

obvious change in metabolic responses to HFD feeding and

aging (115). Overexpression of SIRT3 activated macroautophagy

in mature adipocytes by activating the AMPK–unc-51-like

kinase 1 (ULK1) pathway, which in turn resulted in smaller

lipid droplet size and reduced lipid accumulation (60).

HFD feeding increases SIRT4 levels in mice (116), while in

nutrient-replete conditions, SIRT4 is active to repress FAO by

deacetylating malonyl CoA decarboxylase (MCD), an enzyme

that produces acetyl-CoA from malonyl-CoA and stimulates

lipogenesis (66).
SIRT5 and SIRT6

SIRT5 deficiency impairs FAO, glutamate dehydrogenase

(GDH) activity, and metabolic flexibility in brown adipocytes

(69). In addition, a recent study reported that SIRT5 deficiency

stimulates brown adipogenesis and ATGL function, which

reduces intracellular lipid storage by promoting lipolysis and

ultimately affects brown AT function (67). Strikingly, one study

reported that SIRT5 deficiency did not cause any significant

metabolic abnormalities under either chow or HFD conditions

(70). Consistently, another study suggested there were no

differences in the expression of genes related to fatty acid

synthesis or transport, lipolysis, mitochondrial oxidative

phosphorylation, or glucose transport in brown AT-specific

SIRT5 knockout mice under standard housing conditions (22°

C, normal chow diet) (69). Contradictory results might be due to

different experimental subjects and conditions. Therefore, more

studies are needed to confirm the effects of SIRT5 on

lipid mobilization.
FIGURE 1

The roles of Sirtuins in regulating adipocyte differentiation. PPARg and C/EBPa are the master regulators of preadipocyte commitment and
terminal differentiation. FOXO plays an important role in the integration of hormone-activated signaling pathways with the complex
transcriptional cascade that promotes adipocyte differentiation. PPARg, peroxisome proliferator-activated receptor g; FOXO, forkhead box O.
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SIRT6 overexpression is associated with the downregulation

of a selective group of PPAR-responsive genes and genes

associated with lipid storage, including angiopoietin-like

protein 4 (ANGPTL4), adipocyte fatty acid-binding protein

(FABP4 or aP2), and diacylglycerol acyltransferase 1 (DGAT)

(72). Fat-specific SIRT6 knockout sensitized mice to HFD-

induced obesity, which was attributed to adipocyte

hypertrophy instead of adipocyte hyperplasia by decreasing

expression of ATGL. Furthermore, SIRT6 deficiency

suppresses the expression of ATGL by regulating FOXO1

acetylation and subcellular localization, thereby inhibiting

lipolytic activity (73).

In conclusion, SIRT1 triggers lipolysis by repressing

PPARg, activating AMPK, and increasing the expression of

ATGL. SIRT2 mediates the increase in FAO via PGC-1a.
SIRT3 reduces lipid droplet size and lipid accumulation by

activating the AMPK-ULK1 pathway. SIRT4 represses FAO by

deacetylating MCD. The role of SIRT5 in lipid mobilization is

controversial and needs further investigation. SIRT6 deficiency

leads to decreased l ipolyt ic act ivi ty by increasing

phosphorylation and acetylation of FOXO1. In contrast, little

is known about SIRT7 in lipid mobilization (Figure 2).

Understanding the roles of Sirtuins in lipid mobilization

would l ikely provide key insights into developing

therapeut i c s aga ins t obes i ty and obes i ty - induced

metabolic disease.
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Sirtuins in controlling adipose
tissue inflammation

Elevating evidence suggests that the sequential course of

inflammation is linked with immune responses, energy

metabolism, and insulin sensitivity, which are regulated by

Sirtuins (117). The roles of Sirtuins in acute/chronic

inflammation have been summarized previously (117–119).

AT is generally considered to be an active endocrine organ

and takes a pivotal role in systemic energy homeostasis. AT

inflammation, characterized by augmented infiltration and

altered polarization of macrophages, results in IR and its

associated metabolic diseases (15). In human stem cells from

subcutaneous and visceral fat depots, the levels of Sirtuins 1-7

are involved in obesity-associated inflammation, as well as the

interplay with PPARd (120). Herein, the roles of Sirtuins in

manipulating AT inflammation were summarized.
SIRT1

SIRT1 has been reported to alleviate inflammation in a

variety of tissues and cells (93). SIRT1 in AT plays a protective

role against inflammation through multiple mechanisms.

Macrophage infiltration and the gene expression of

inflammatory cytokines were elevated in the heterozygous
FIGURE 2

The roles of SIRT1-SIRT6 in manipulating lipid mobilization. Lipid mobilization is comprised of lipogenesis and lipolysis. Large lipid droplets are separated
into small ones to initial lipolysis. TGs stored in lipid droplets are mobilized by the hydrolytic action of the three main lipases of the adipocyte to release
FFAs, which are broken down to produce energy through FAO. TGs, triglycerides; FFAs, free fatty acids; FAO, fatty acid oxidation.
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SIRT1 knockout mice fed with a moderate-fat diet (30). AT

macrophages surround and ingest dying or dead adipocytes to

form crown-like structures (CLSs). Myeloid SIRT1 deficiency

promotes massive macrophage infiltration in AT and increases

the number of CLSs (31, 32). Myeloid SIRT1 regulates pro-

inflammatory cytokines and macrophage infiltration in AT from

HFD mice (32). In addition, mice with AT-selective

overexpression of human SIRT1 (H363Y), a dominant-

negative mutant that inhibits endogenous SIRT1 activity,

exhibited elevating inflammation (33). AT-specific-SIRT1

(H363Y) overexpressed mice exhibits hyperglycemia,

dyslipidemia, and ectopic lipid deposition at a much younger

age than their wild-type littermates (33). However, the pro-

inflammatory effect of HFD is the triggering signal of

SIRT1 cleavage.

In general, SIRT1 regulates both pro-inflammatory and anti-

inflammatory cytokines. The pro-inflammatory signals that

act ivate caspase-1 through the nucleot ide-binding

oligomerization domain, leucine-rich repeat and pyrin

domain-containing 3 (NLRP3) inflammasome, such as TNF-a,
cause the cracking of SIRT1. Indeed, AT-specific SIRT1

knockout mice obviously develop IR (34). In visceral AT, a

negative correlation between the mRNA level of SIRT1 and IL-

1b was observed (35). In addition, SIRT1 blocks the infiltration

of macrophages and promotes the polarization toward anti-

inflammatory M2 macrophages, which in turn ameliorates

inflammation in AT (46); concomitantly, SIRT1 deacetylates

the transcription factor NFATc1, thereby enhancing the binding

of NFATc1 to the IL-4 gene promoter and finally modulating

macrophage polarization (53).

Nuclear factor-kB (NF-kB) acts as a key regulator of

inflammation to induce pro-inflammatory cytokines, which in

turn increase adiposity and AT dysfunction (121). SIRT1 acts as

a negative regulator of the inflammatory pathway and a positive

regulator of insulin signaling in adipocytes by deacetylating NF-

kB and inhibiting binding to the promoter of its target genes

(36–40). Consistently, SIRT1 knockdown in white AT leads to

NF-kB nuclear translocation by reducing histone H3 lysine 9

(H3K9) deacetylation (122). Interestingly, loss of SIRT1 leads to

compensatory SIRT6 deacetylase activity on H3K9,

demonstrating that SIRT1 and SIRT6 act on NF-kB through

different mechanisms (40). Moderate SIRT1 overexpression

ameliorates the effects of LPS on brown AT inflammation by

the reduced acetylation of NF-kB, STAT3, and p38 MAPK (29,

39, 123). It is generally believed that the cluster of differentiation

40 (CD40)/CD40 ligand (CD40L) pathway is an integral part of

the onset and maintenance of inflammatory reactions in obesity.

SIRT1 modulates TNF-a-induced expression of CD40 partially

via the NF-kB pathway in 3T3-L1 adipocytes (41). SIRT1 is a key

upstream regulator in AT inflammation, by controlling the gain

of pro-inflammatory transcription in response to inducers
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including fatty acids, hypoxia, and endoplasmic reticulum

stress. The activation of SIRT1 by small molecules reduces the

inflammatory response induced by FFA in macrophages and

alleviates inflammation in white AT (38). SIRT1 suppresses NF-

kB signaling pathway, which might provide another way to

maintain AMPK activity against inflammatory challenges (42).

Phosphorylation of protein kinase B (Akt) activates the

mammalian target of rapamycin (mTOR) signal in

macrophages and then triggers inflammation and IR in obese

mice (124). SIRT1 interacts with Akt2 and inhibits the mTOR/

S6K1 pathway to attenuate AT inflammation in mice (43).

Adiponectin, an adipocyte-derived relaxation factor with anti-

inflammatory activity, promotes nitric oxide production in the

endothelium. SIRT1 upregulates adiponectin mRNA expression

in 3T3-L1 adipocytes via a FOXO1-C/EBPa transcriptional

complex (44). SIRT1 improves the release of adiponectin from

perivascular AT to fight against inflammatory insult (42).

Strikingly, adipocyte-specific deletion of SIRT1 exacerbates

the detrimental effects of acute HFD feeding but shows

protective effects in the context of chronic HFD exposure.

Consistent with the more glucose tolerant and less insulin

state of the adipocyte-specific SIRT1 knockout mice after

chronic HFD, these mice possessed lower circulating levels of

MCP-1 and TNF-a but increased levels of IL-10 and arginase in

epididymal AT, which were mediated through hyperacetylation

and dephosphorylation of PPARg Ser273 along with reduced

CDK5 activity. Additionally, increased p65 acetylation (NF-kB)
was detected in these mice. Therefore, in the case of chronic

HFD-induced obesity, inhibition of SIRT1 in adipocytes might

result in improved metabolic functions (45). During the onset of

obesity, SIRT1 deficiency in adipocytes (rather than myelocytes)

accelerates peripheral IR by regulating macrophage infiltration

and polarization, which has nothing to do with obesity (53).

Most studies have shown that SIRT1 plays a protective role

in AT inflammation, but there are still very few studies with the

opposite observation. The types of diet and the stage of obesity

could affect the roles of SIRT1 in AT inflammation. Therefore,

more studies are needed to further confirm the roles of SIRT1 in

AT inflammation in the future.
SIRT3 and SIRT6

The roles of other Sirtuins in AT inflammation have been

seldom studied. SIRT3 mediates a metabolic switch in

macrophages by deacetylating pyruvate dehydrogenase E1a
(PDHA1) lys ine , which in turn promotes NLRP3

inflammasome activation (61). Jun N-terminal kinase (JNK) in

macrophages contributes to the accumulation of macrophages

and plays a key role in the metabolic response to obesity,

including IR (125). SIRT6 deficiency causes elevated
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inflammation in AT of mice by increasing the occupancy of c-

Jun, downstream of JNK, on the gene promoters of IL-6 and

MCP-1 (73). Another study suggested that SIRT6 regulates at

least two stages of adipose inflammation: augmenting the

migration potential of macrophages toward AT-derived

chemoattractants and facilitating pro-inflammatory M1

polarization; SIRT6 deletion in macrophages promotes the

activation of NF-kB and production of IL-6, resulting in

STAT3 activation and the positive feedback circuits for NF-kB
stimulation (74). Furthermore, adipocyte SIRT6 drives

macrophage polarization toward M2 by increasing the

production of the canonical type 2 cytokine IL-4 by adipocytes

in a cell autonomous manner, which in turn attenuates pro-

inflammatory responses in AT (80). Consistently, adipocyte

SIRT6 decreases the M1 composition in white AT, and SIRT6

deficiency in adipocytes leads to an aggravating inflammatory

reaction in white AT (23). Eosinophils secrete Th2 cytokine IL-

4/IL-13 promoting M2 macrophage polarization. Myeloid-

specific SIRT6 deficiency affects both eosinophils and M2

macrophage content in subcutaneous AT upon cold exposure,

confirming a close link between eosinophils and M2

macrophages (76).

Taken together, SIRT1, SIRT3, and SIRT6 participate in the

regulation of AT inflammation, while other Sirtuins remain

poorly understood and need further researches (Figure 3).
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Sirtuins in manipulating adipose
tissue fibrosis

ECM, a basic component of the specialized adipose niche,

provides architectural elements and non-structural molecules

that affect progenitor cells and regulate the expandability of AT

(25). Fibrosis consists of excessive deposition of ECM, which

eventually leads to organ failure and death in several chronic

diseases (126). The important roles of Sirtuins in regulating AT

fibrotic response have been gradually revealed.
SIRT1

SIRT1 modulates fatty acid metabolism and lipid

mobilization in adipocytes via modification of the extracellular

environment. Small adipocytes, less ECM between adipocytes,

and reduced macrophage infiltration in AT were observed in

SIRT1 null animals (46). Consistently, SIRT1 deficiency

suppresses the expression of leptin, adiponectin, and matrix

metalloproteinases 3/13 (MMP3/13) and elevates the expression

of the pro-fibrotic collagen (Collagen 6A3) in adipocytes.

Pathway analysis revealed SIRT1-dependent key transcription

factors, including PPARa, sterol regulatory element-binding

transcription factor 1/2 (SREBF1/2), and PGC-1a (51).
FIGURE 3

SIRT1, SIRT3, and SIRT6 participate in the regulation of AT inflammation via different pathways. AT inflammation is initiated and sustained over
time by dysfunctional adipocytes that secrete inflammatory adipokines and by infiltration of bone marrow-derived monocytes that signal via
production of cytokines and chemokines. White AT is the major source of obesity-related inflammation; in turn, AT inflammation leads to IR and
metabolic dysfunction. AT, adipose tissue; IR, insulin resistance.
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Moreover, SIRT1 overexpression downregulates the genes

related to ECM remodeling (i.e., collagens, metalloproteases,

and integrins) accompanied by a lower degree of inflammation-

related fibrosis in visceral AT (39).
SIRT3

Upon Angiotensin (Ang) II stimulation, adipocytes adjacent

to the adventitia enlarge, while collagen IV deposition in

perivascular AT increases. Myeloid SIRT3 deficiency resulted

in severe loss of brown AT characteristics and increased

expression of collagen VI, which ultimately aggravated Ang II-

induced perivascular AT dysfunction (61).

SIRT1 participates in the regulation of AT fibrosis by

controlling collagens and metalloproteases. The roles of other

Sirtuins in AT fibrosis are seldom studied.
Sirtuins in controlling adipose
tissue browning

Browning of white AT is characterized by the induction of

beige adipocytes, endowing brown AT-like characteristics onto

white AT, and remodeling it to energy processing capacity in

addition to energy storage capacity (54). AT browning plays a

crucial role in energy metabolism, which could be a potential

therapeutic strategy against obesity and metabolic syndrome.
SIRT1

Pro-opiomelanocortin (POMC) neurons selectively regulate

brown AT-like remodeling of perigonadal white AT, and SIRT1

deficiency affects the survival of POMC neurons (47). SIRT1

promotes AT browning in mice via the deacetylation of PPARg
on Lys268 and Lys293, which in turn recruits the transcriptional

coactivator PRDM16 to PPARg, resulting in selective induction of

brown AT genes and repression of white AT genes (27, 48). It has

been reported that SIRT1 regulates angiogenesis by modulating

angiogenic factors (such as vascular endothelial growth factor,

platelet-derived growth factor, and transforming growth factor-b),
which in turn controls AT function (46). PGC-1a, highly
expressed in brown AT, is a key factor of brown fat

thermogenesis and white AT browning (20, 75). SIRT1

deficiency displays a lower thermogenic activity and a

significant decrease of UCP1 and PGC-1a expression in brown

AT from HFD-fed mice, which are accompanied by aggravated

mitochondrial dysfunction. In line with this, oxidation genes were

downregulated, including PPARa, peroxisomal acyl-coenzyme A

oxidase (ACOX), and carnitine palmitoyltransferase 1b (CPT1b),

and the mitochondria content was lower, ultimately leading to

brown AT degeneration (54). Furthermore, SIRT1 is an
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endogenous activator of FGF21 in hepatocytes, which in turn

systemically controls white AT browning and energy homeostasis

(49). Another study reported that SIRT1 induces white AT

browning following sleeve gastrectomy by activating AMPK (20).
SIRT3

SIRT3 deletion aggravates brown-to-white adipocyte

conversion induced by high salt via inhibiting mitochondrial

biogenesis and perilipin-1 expression; however, restoring SIRT3

prevents high salt-induced brown AT to white AT conversion by

improving mitochondrial respiration (62). Consistently, knockout

of SIRT3 promotes the accumulation of lipid droplets in brown

AT and blocks the inhibitory effect of capsaicin on HFD-induced

brown AT whitening (21). Myeloid SIRT3 deficiency reduces

UCP1 and perilipin-1 protein levels and promotes collagen IV

deposition in brown AT, which in turn exacerbates perivascular

AT remodeling and AT dysfunction (61).
SIRT5

SIRT5 deficiency in mice resulted in less browning capacity

in subcutaneous AT and a slight imbalance in energy and

glucose homeostasis, which might be related to the inhibition

of isocitrate dehydrogenase (IDH) activity and reduction of a-
ketoglutarate concentration (22). In inguinal AT from SIRT5

knockout mice, the expression of thermogenic genes including

UCP1, cell death-inducing DFFA-like effector a (CIDEA) and

cytochrome c oxidase subunit 7A1 (COX7A1), and FAO genes,

including CPT1b and medium-chain acyl-coenzyme A

dehydrogenase (MCAD), was downregulated, while the

expression of adipogenic genes (PPARg and C/EBPa) was not
changed (22). Another report suggested that mice lacking SIRT5

in brown AT showed difficulty converting fuel from FFA to

glucose after overnight fasting. Strikingly, there was no

difference in the expression of genes related to browning in

brown AT-specific SIRT5 knockout mice (69).
SIRT6

SIRT6 regulates AT browning in response to either cold

exposure or b-adrenergic agonist (75). Similarly, SIRT6

deficiency in POMC neurons impairs the browning and

lipolytic functions of AT in HFD-fed mice by modulating

leptin signaling (77). Additionally, SIRT6 deficiency in mice

resulted in impaired AT browning and reduced expression of

UCP1, accompanied by downregulation of p38 MAPK/ATF2

signaling (23). SIRT6 deficiency leads to impairment of

thermogenesis and browning by decreasing UCP1 and PGC-

1a in subcutaneous white AT of myeloid SIRT6 knockout mice
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(76). SIRT6-deficient mice showed a significant increase in

glucose uptake in brown AT, and HIF-1a is required to

recruit SIRT6 to glycolytic gene promoters (78).

Taken together, emerging evidence has demonstrated that

the Sirtuin family plays crucial roles in AT browning,

comprehensively contributing to metabolic functions (Figure 4).
Clinical progresses of Sirtuins

As Sirtuins are potential therapeutic targets for metabolic

diseases, considerable efforts have been paid to develop specific

Sirtuin activators and inhibitors in recent years. Unfortunately,

there is still no drug approved for clinical use. Till now, one

selective SIRT1 inhibitor, selisistat (also known as Ex-527 or

SEN0014196), and several small-molecule SIRT1 activators have

been evaluated in clinical trials (127). Data on Sirtuin activators

and inhibitors are still limited, and their therapeutic efficacy

remains under investigation. Considering Sirtuins are involved

in multiple signaling pathways, the side effects of Sirtuin

activators and inhibitors should be paid attention to in clinical

trials. Here, we summarized the application of Sirtuin activators

and inhibitors on obesity-related metabolic diseases.
Inhibitor of Sirtuins

Selisistat, a selective SIRT1 inhibitor, was shown to be safe

(128) and well tolerated in healthy volunteers and Huntington’s
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disease (HD) patients in short-term studies (129). Strikingly, a

study showed that administration of selisistat over 14 days

showed no pro-inflammatory effects (129), although some pre-

clinical studies suggested its pro-inflammatory effect.
Activators of Sirtuins

Resveratrol was identified as the most potent SIRT1 activator

(130). One study showed that 150 mg/day trans-resveratrol

(99.9%) supplementation in obese subjects for 30 days

decreased the expression levels of inflammation-related genes,

plasma levels of several inflammatory markers, and leukocyte

numbers, and reduced AT lipolysis (131). However, resveratrol

supplementation (75 mg/day) in non-obese, postmenopausal

women with normal glucose tolerance did not change body

composition, resting metabolic rate, plasma lipids, or

inflammatory markers (132). Longevinex is a modified form of

resveratrol; it had no effect on insulin sensitivity or the

inflammation markers (IL-6) in 34 patients diagnosed with

metabolic syndrome (133).

Because resveratrol suffered from low bioavailability and

potency, as well as low target specificity, synthetic Sirtuin

activators are emerging, such as SRT501, SRT2104, SRT2379,

and SRT3025 (127). SRT501 has entered phase III clinical trials

for the treatment of type 2 diabetes, and the pharmacokinetics

and safety study of SRT2379 evaluated in healthy male

volunteers have been completed (130). The promising clinical

data on SRT2104 revealed that small-molecule SIRT1 activators
FIGURE 4

The roles of SIRT1, SIRT3, SIRT5, and SIRT6 in controlling AT browning. AT browning is a promising anti-obese strategy to enhance energy
expenditure through heat production. Sirtuins widely participate in beige cell differentiation and function. AT, adipose tissue.
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with good pharmacokinetics and tolerability profiles could

provide important new therapeutic paradigms and be

developed as candidates to treat inflammatory diseases (134,

135). There is still no Sirtuin activator or inhibitor approved for

clinical use; further structural modifications, pharmacological

evaluations, and clinical trials are needed.
Perspectives

Understanding the roles of Sirtuins in AT remodeling could

help to untangle the comprehensive regulatory circuits of

obesity. Each member of the Sirtuin family participates in the

regulation of adipogenesis, lipid mobilization, AT inflammation,

AT fibrosis, and AT browning through multiple pathways.

Among them, SIRT1 has been widely investigated with

multiple functions in AT remodeling. Specifically, SIRT1

suppresses adipogenesis by modifying the activity of PPARg in
preadipocyte and white AT; triggers lipolysis by repressing

PPARg and activating the AMPK pathway; exerts anti-

inflammatory effect by repressing NF-kB, NLRP3, and mTOR

pathways; and regulates ECM deposition and AT fibrosis. SIRT3

not only promotes brown adipocyte differentiation but also

stimulates thermogenesis. SIRT3 reduces lipid droplet size and

lipid accumulation by activating the AMPK pathway and

mediates NLRP3 inflammasome activation to exhibit an anti-

inflammatory effect. SIRT6 suppresses preadipocyte

differentiation and lipid deposition through the activation of

the AMPK pathway. However, the roles of other Sirtuins in AT

remain poorly understood. Adipocyte-, leukocyte-, or myeloid-

specific knockout or knockin animal models are powerful tools

to investigate the physiological function of Sirtuin deacetylases

and their possible cross-regulation in AT remodeling. It should

be noted that the pathway of Sirtuins and the interaction

between Sirtuins vary greatly in different models, which need

further exploration. Since the functions of Sirtuins are related to

the stage of adipocyte differentiation, cell types (preadipocytes,

white adipocytes, brown adipocytes, or beige adipocyte), and

tissues (white or brown AT), the studies about Sirtuins on AT

remodeling should be more comprehensive. Sirtuins mainly play

protective roles in AT remodeling, while the effects of Sirtuin

inhibitors and activators on obesity and obesity-related

metabolic diseases remain elusive.

In summary, AT remodeling is a series of physiological and

pathological responses of AT under the challenge of positive

energy. By regulating AT remodeling, Sirtuin deacetylases could

revolutionize obesity and its related complications. This review
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may contribute to a better understanding of AT remodeling in

obesity and the possible development of Sirtuins as new

therapeutic targets.
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