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Lundgren P, Thaiss CA. The microbiome-adipose tissue axis in systemic
metabolism. Am J Physiol Gastrointest Liver Physiol 318: G717–G724, 2020. First
published February 18, 2020; doi:10.1152/ajpgi.00304.2019.—The intestinal com-
mensal microbiome is an important component of host health, in part by contrib-
uting an abundance of metabolites that gain access to the systemic circulation. The
microbiome thereby influences the physiology of numerous organ systems outside
the gastrointestinal tract. The consequences of this signaling axis between the
intestinal microbiome and host are profound, in particular for the modulation of
organismal metabolism. Here, we review recent examples whereby the intestinal
microbiome influences host metabolism by influencing the biology of adipose
tissue. We place a special emphasis on metabolite-driven pathways by which
adipose tissue responds to alterations in intestinal microbial colonization. Given its
accessibility for therapeutic interventions, the gut microbiome is an attractive relay
module for the remote control of systemic metabolism.
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INTRODUCTION

Over the past decades, the prevalence of obesity has reached
alarming levels. Despite increasing attention and substantial
public health measures, more than half of the adult United
States population is overweight, and the global trend is ap-
proaching similar proportions (49). Importantly, obesity is not
only characterized by increased adiposity, but is also strongly
associated with several metabolic conditions, including type 2
diabetes, fatty liver disease, and heart disease (29, 31). All
together, this obesity pandemic has widespread implications on
life span, quality of life, and health care spending. Conse-
quently, there is an urgent need to understand the factors that
regulate systemic metabolic homeostasis.

An emergent factor that plays a role in systemic metabolism
is the intestinal microbiome (4, 5, 33). The intestinal metag-
enome consists of the combined genomes of the trillions of
microbes that reside in the gastrointestinal tract, representing
millions of microbial genes. Importantly, this rich diversity
present in the microbiome substantially increases the range of
biochemical and metabolic activities available to the colonized
host. In turn, depending on the composition of the intestinal
microbiome, distinct biochemical and metabolic activities will
be occurring that can impact the development and function of
the metabolic, immune, and nervous systems (15).

The study of the microbiome has been nucleated by techno-
logical advancements in next-generation sequencing to enable

culture-independent analyses of microbiota composition (22,
24). Most notably, the decreasing cost of 16S ribosomal RNA
(rRNA) sequencing has led to a remarkable quantity of obser-
vational reports finding changes in microbiome community
composition in a number of diverse diseases compared with
healthy controls (as reviewed in Refs. 15, 24). However, these
reports have also elucidated two major limitations of observa-
tional studies of the microbiome. First, correlation does not
mean causation; that is, correlative changes found in micro-
biome composition between disease states does not mean the
microbiome plays a causative role in the pathophysiology of
the disease. Second, microbiota taxonomy is highly diverse,
yet, there exists considerable functional metabolic redundancy
between different microbial species. This suggests that differ-
ences described in microbiome community composition by
16S rRNA sequencing may not accurately predict a difference
in metabolic activity of the microbiome. Thus, the microbiome
field will increasingly focus on moving our knowledge from
correlation to causation and subsequently to the specific mo-
lecular mechanism whereby the microbiome influences host
physiology and disease.

Here, we therefore aim to examine the mechanistic role of
the microbiome in regulating systemic metabolism. A partic-
ular emphasis will be placed on the relationship between the
microbiome and adipose tissue, given the central role of
adipocytes in energy homeostasis and the development of
obesity (16, 25, 45). We will provide structure to our discus-
sion by organizing the review into three parts. First, we will
examine the signals from the microbiome that have been found
to modulate mammalian adipose tissue in the host. Second, we

Address for reprint requests and other correspondence: C. A. Thaiss,
Microbiology Department, Perelman School of Medicine, Univ. of Pennsyl-
vania, Philadelphia, PA (e-mail: thaiss@pennmedicine.upenn.edu).

Am J Physiol Gastrointest Liver Physiol 318: G717–G724, 2020.
First published February 18, 2020; doi:10.1152/ajpgi.00304.2019.

http://www.ajpgi.org G717

http://doi.org/10.1152/ajpgi.00304.2019
mailto:thaiss@pennmedicine.upenn.edu


will consider the potential receivers of these microbiome-
derived signals. Third, we will review the downstream re-
sponse of this signaling on adipose tissue. This signal-receiver-
response framework is a useful structure to analyze the micro-
biome-adipose tissue axis and its relationship to systemic
metabolic homeostasis.

THE MICROBIOME IMPACT ON ADIPOSE TISSUE BIOLOGY

Before analyzing the microbiome-adipose tissue axis, we
will evaluate the evidence suggesting the intestinal microbiome
plays a role in regulating adipocyte metabolism.

Seminal studies more than a decade ago documented an
altered microbiota in obesity (36). In the ob/ob mouse, which
is characterized by excessive eating and adiposity due to
recessive mutations in the leptin gene (60), it was found that
feeding the exact same diet to genetically obese ob/ob mice and
their lean siblings (heterozygous ob/� or wild type) resulted in
drastic differences in their microbiome regardless of kinship
(36). Indeed, this altered gut microbiota has been reproduced
independently in both obese mice and humans, showing that
the microbiome has an increased capacity to harvest energy
from the diet upon obesity (33, 44, 55). Several studies have
furthermore addressed the question of causality for the micro-
biome in obesity. One of the earliest studies suggesting a
causative role for the microbiome in regulating systemic me-
tabolism involved the observation that germ-free mice, mice
completely devoid of all microbial exposures from birth, have
reduced body fat compared with mice with an unperturbed
microbiome (4). Moreover, upon transplantation of the micro-
biota from conventionally raised mice into adult germ-free
mice, there was approximately a 60% increase in body fat
content and insulin resistance within 14 days (4, 5). Similar
transplantation experiments have also been performed with the
microbiota from obese mouse and human donors into germ-
free mice, which resulted in enhanced adiposity compared with
transplantation from a lean donor (44, 55). In one particular
study of note, four female twin pairs discordant for obesity
were recruited, and both the uncultured fecal microbiota and
cultured collections of bacteria from these human donors were
transferred into germ-free mice to show that the animals
receiving the transplant from the obese twin developed in-
creased adiposity compared with the transplant from the lean
twin (44).

In addition to these studies involving crude microbiome
transplantations into germ-free mice, there have also been
multiple reports suggesting that targeted supplementations and
alterations to the microbiome in adult animals can influence
their metabolic parameters. In this context, much work has
focused on the bacterium Akkermansia muciniphila. The pres-
ence of this bacterium inversely correlates with body weight in
both humans and mice, and it has been found that administra-
tion of both live (23) and pasteurized (42) versions [but not
heat killed (23)] can improve metabolic outcomes upon diet-
induced obesity. Recently, a randomized, double-blind, place-
bo-controlled pilot study was performed in overweight and
insulin-resistant human volunteers to test the benefits of A.
muciniphila administration (21). This study demonstrated the
safety of this intervention and preliminary evidence suggesting
that it might restrain some aspects of metabolic syndrome in
obese humans. Larger human cohort studies are required to

validate these purported clinical benefits of A. muciniphila
administration. Furthermore, another bacterium that has been
associated with leanness is Lactobacillus plantarum (41),
which has been suggested to ameliorate the effects of obeso-
genic diets through a mechanism that involves the bacteriocin
plantaricin EF (30).

Thus, there is a growing consensus that the gut microbiome
is an important environmental factor that regulates host meta-
bolic homeostasis and may contribute to the development of
obesity and metabolic disease. Moving forward, it will be
crucial to gain a mechanistic understanding of these micro-
biome communications with host systemic metabolism.

On the basis of this rationale for the study of the microbiome
in the context of systemic metabolism, we will now consider
the microbiome-adipose tissue axis, using the signal-receiver-
response framework.

THE SIGNALS

The biochemical and metabolic activities performed by the
intestinal microbiome produces thousands of small, diffusible
metabolites. Some of these metabolites have been found to
regulate basic physiological processes both in the intestine and
in distant tissues (40). Indeed, recent reports have found that a
subset of these metabolites can regulate numerous aspects of
adipose tissue biology, including the metabolic processes in-
volved in the development of obesity (Fig. 1). Some recently
reported examples of such metabolite signals include trypto-
phan-derived metabolites, flavonoids, and propionate. In addi-
tion, structural components of bacteria, such as Toll-like re-
ceptor (TLR) ligands, have been implicated in the microbiome-
adipose tissue axis. Here, we consider each in turn.

TLR Ligands

Metabolic endotoxemia is the systemic low-level elevation
of gut-derived TLR ligands including lipopolysaccharide
(LPS). Such metabolic endotoxemia has been shown to con-
tribute to the onset and progression of insulin resistance and
metabolic disease (10). Indeed, a recent example highlighting
the importance of TLR signaling in adipose tissue involved the
study of mice fed two different diets, lard and fish oil (9). The
rationale behind this approach was that food rich in saturated
dietary fat (e.g., lard) has been associated with enhanced white
adipose tissue inflammation and metabolic dysfunction (32),
whereas food rich in polyunsaturated fats (e.g., fish oil) results
in reduced inflammation and promotes improved metabolic
measures (8). The authors then asked whether these diets might
in part be exerting their divergent effects on host metabolism
through the microbiome. The study showed that mice fed a lard
diet had increased TLR signaling and white adipose tissue
inflammation compared with mice fed an isocaloric fish oil
diet. In addition, mice genetically deficient in various compo-
nents of the TLR signaling pathway (Trif�/� and Myd88�/�)
were protected against this inflammation in white adipose
tissue. The authors also showed that transplantation of the “fish
oil microbiome” into mice pretreated with antibiotics were
more protected from lard diet-induced adiposity and white
adipose tissue inflammation than the mice transplanted with the
“lard microbiome” (9). Taken together, this study suggests a
link between the diet, the gut microbiome, systemically circu-
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lating gut-derived TLR ligands, and TLR signaling in white
adipose tissue influencing systemic metabolic homeostasis.

Tryptophan-Derived Metabolites

Tryptophan is an essential amino acid in humans, meaning it
must be obtained from the diet. However, tryptophan not only
forms an integral component of many proteins as an amino
acid, but the microbiota can also convert tryptophan to indole
compounds that can accumulate to millimolar concentrations in
the gut lumen (58). A recent report studied these tryptophan-
derived metabolites in the context of a group of miRNAs that
exhibit increased expression in obese white adipose tissue,
called the miR-181 family. It was found that genetic ablation of
the two most abundantly expressed miR-181 clusters protected
mice from developing diet-induced obesity. Furthermore, it
was found that germ-free mice had a greatly reduced expres-
sion of these miRNAs compared with conventionally reared
mice, suggesting a role for signals from the microbiome.
Likewise, antibiotic treatment of the conventional mice also
decreased miR-181 expression in the white adipose tissue. A
tryptophan-derived metabolite (indole-3-carboxylic acid) was
identified as a metabolite reduced in high-fat diet-fed mice,
which acts on adipocytes to inhibit miR-181 expression to
regulate energy expenditure and insulin sensitivity (58).

Flavonoids

Polyphenols consumed by mammalian organisms through
their diet are extensively modified by the metabolic activities
of the intestinal microbiota (7, 56). Certain polyphenols, such
as the flavonoids apigenin and naringenin, have been found to
act on brown adipose tissue to increase the expression of
uncoupling protein-1 (Ucp1), with the effect of enhancing
energy expenditure (52, 53). Commensal bacteria express the
enzymatic machinery to reduce the pool of bioavailable fla-
vonoids, thereby limiting Ucp1 expression in brown adipose
tissue and reducing energy expenditure. This mechanism has been
implicated in postdieting weight regain, whereby flavonoid-de-
grading members of the commensal microbiome persist following
a period of obesity. The reduced levels of flavonoids promote
weight regain after successful weight loss (52).

Propionate

Propionate is a naturally occurring short-chain fatty acid
(SCFA), useful as a potent inhibitor of molds that is exten-
sively used as a food preservative, and is also endogenously
produced by the intestinal microbiota (54). In a recent study,
the metabolic effects of propionate consumption were investi-
gated in both mice and humans. It was found that propionate
can stimulate glycogenolysis and hyperglycemia in mice, but

Fig. 1. Microbiome-adipose tissue axis in systemic metabolism through a signal-receiver-response framework. The gut microbiota produce molecules that act
as signals to influence adipose tissue responses through various receptors. These secreted molecules can gain access to the systemic circulation and thereby reach
adipocytes and other cells present in adipose tissue depots. The consequences of metabolite sensing by adipose tissue include modulation of thermogenic activity
and inflammatory processes in adipose tissue. TLRs, Toll-like receptors; NOD1/2, nucleotide-binding oligomerization domain-containing protein-1/2; WAT,
white adipose tissue; SCFAs, short-chain fatty acids; TMA, trimethylamine; miR, micro-RNA.
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this effect was abrogated in mice deficient in fatty acid-binding
protein-4 (FABP4) and liver glucagon receptor. Thus, propi-
onate-induced glycogenolysis and hyperglycemia is dependent
on FABP4 and glucagon. However, propionate did not directly
promote glucagon or FABP4 secretion in ex vivo rodent
pancreatic islets and adipose tissue, but instead seemed to act
indirectly by activating the sympathetic nervous system, lead-
ing to the secretion of these hormones systemically to regulate
glycogenolysis in adipose tissue and other metabolic organs. In
humans, consumption of a meal containing propionate yielded
increased plasma glucagon, FABP4, and norepinephrine post-
prandially (54). Thus, this study suggests that propionate and
perhaps other gut-derived SCFAs play important roles in reg-
ulating adipose tissue and systemic metabolism. In addition,
this study highlights the important notion that metabolite sig-
nals may regulate adipose tissue indirectly, for example
through the nervous system, to influence systemic metabolic
homeostasis. However, more work is required to further inves-
tigate the effect of 1) different routes of administration of
SCFAs (e.g., oral propionate vs. colonic microbiome-derived
propionate) as well as 2) different doses of SCFAs. Indeed, the
unfavorable metabolic effects observed in this study directly
contrast with previous reports attributing metabolic benefits to
propionate, including suppressing food intake (3, 39) and
reducing plasma fatty acid content (1). These differences likely
stem from points 1 and 2 highlighted above, which are caveats
that extend to many studies involving metabolite signals from
the microbiome. Thus, more work is needed to understand the
metabolic effects of propionate and other SCFAs, as well as
metabolite signals from the microbiome more generally. More-
over, SCFAs have also been suggested as modulators of the
transcription factor peroxisome proliferator-activated recep-
tor-� (PPAR�) (19, 34), which is a key regulator of adipocyte
differentiation and metabolism and is also the target of the
insulin-sensitizing drugs thiazolidinediones (TZDs) (35). Fur-
ther research into the specific mechanisms between micro-
biome-derived SCFAs and the activity of PPAR� in adipose
tissue will be an important avenue of future research.

Having reviewed some recent reports of metabolite signals
from the microbiome influencing systemic metabolism, we will
now move our discussion to the receivers of these signals.

THE RECEIVERS

Receivers in biological signal cascades serve three main
purposes: 1) specificity in signal reception, 2) signal propaga-
tion and amplification, and 3) signal translation into appropri-
ate responses. Although it is still poorly characterized how
adipose tissue senses signals derived from the gastrointestinal
tract, recent examples have highlighted distinct mechanisms
whereby receivers in the host recognize circulating factors
originating in the gut to impact adipose tissue biology (Fig. 1).
In the previous section we already considered the TLRs in the
context of their signals, the TLR ligands; here, we therefore
turn our attention to another type of pattern recognition recep-
tors, nucleotide-binding oligomerization domain-containing
(NOD) proteins NOD1 and NOD2.

NOD1 and NOD2, are intracellular pattern recognition re-
ceptors that recognize specific muropeptide sequences present
in peptidoglycan-based bacterial cell walls (12). NOD1 specif-
ically detects diaminopimelate-containing N-acetylgluco-

samine-N-acetylmuramic acid (GlcNAc-MurNAc) tripeptide
motifs present in peptidoglycan (26), whereas NOD2 detects
muramyl dipeptide (MDP) motifs, also present in peptidogly-
can (27).

Recently, NOD1 and NOD2 have been associated with
metabolic disease. Specifically, acute activation of NOD1 re-
sults in insulin resistance (46), and deletion of NOD1 protects
against diet-induced insulin resistance in mice (2, 12). In
addition, NOD1 activators are elevated in serum in response to
high-fat diet in mice, and NOD1 is specifically required in the
hematopoietic compartment for the accompanying metabolic
inflammation and insulin resistance upon diet-induced obesity
(13). In contrast, mice lacking functional NOD2 have increased
adipose tissue inflammation and insulin resistance when fed a
high-fat diet, independent of altered adiposity (20).

The mechanisms underlying these divergent effects of NOD1
and NOD2 are not fully understood; furthermore, how NOD1 or
NOD2 detection of bacterial muropeptides influences glucose
metabolism is largely unknown. To address some of these ques-
tions, one recent study (12) found that injecting MDP, recognized
by NOD2, into obese mice lowered adipose inflammation and
reduced glucose intolerance without affecting weight or intestinal
microbiome composition. In contrast, and in line with previous
observations, NOD1-activating muropeptides decreased glucose
tolerance. Furthermore, the insulin-sensitizing effect of MDP was
dependent on interferon regulatory factor 4 (IRF4), whereas the
NOD1-induced glucose intolerance was unaffected by the genetic
ablation of IRF4. Thus, IRF4 is suggested to play a key role in
distinguishing these opposing glycemic responses to different
types of peptidoglycan. It was also found that mifamurtide, a
synthetic NOD2-activating adjuvant with orphan drug status, was
an insulin sensitizer at clinically relevant doses in obese mice (12).

Collectively, these studies suggest that both NOD1 and
NOD2 play important roles as receivers of microbiome-derived
signals to influence adipose tissue biology and therefore sys-
temic metabolism. However, many questions remain. What are
the specific genera or species in the microbiota that lead to
NOD1 versus NOD2 activation? It is known that the NOD1-
binding motif is present in all Gram-negative bacteria and
some Gram-positive bacteria (26), and the NOD2 motif is
present in both Gram-negative and Gram-positive bacteria
(27), but a more granular understanding of the microbes
present in the gut that activate NOD1 and NOD2 has not yet
been achieved. In addition, NOD1 and NOD2 are intracellular
receptors, and understanding how gut-derived microbial cell
products reach the intracellular milieu of distant cells remains
unclear. Indeed, it has been suggested that some of the NOD1
or NOD2 activators may be endogenously produced and not
necessarily derived only from the microbiome (13). Last, more
work is required to identify the receivers of other microbiome-
derived signals and how each of these receivers, both singly
and integrated with the activity of other receivers, evokes a
unique response.

THE RESPONSE

Several common themes have emerged over the past few
years regarding the downstream response of the microbiome
impact on adipose tissue. In the previous sections we have
already broadly considered the effects of metabolic endotox-
emia and white adipose tissue inflammation. Here, we will
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therefore highlight another specialized metabolic process in
adipose tissue that appears to adapt to the state of intestinal
microbial colonization: thermogenesis.

Thermogenesis refers to the generation of heat in organisms,
and it has been suggested that this process can be leveraged to
neutralize the hypercaloric state of obesity (17). Thermogene-
sis can be separated into shivering and nonshivering types.
Nonshivering thermogenesis is facilitated by brown adipose
tissue (BAT) and beige adipocytes to maintain host body
temperature during cold exposure by a UCP1-dependent mech-
anism (11). The finding that adult humans have active depots
of BAT, and that the activity of this tissue appears reduced in
people with obesity (18, 57), has garnered significant interest to
modulate nonshivering thermogenesis for potential therapeutic
benefit in metabolic disease. Indeed, supporting this interest is
the finding that BAT activity is a major determinant of plasma
glucose and triglyceride levels (6, 48, 59).

Given the suggested relationship between the intestinal micro-
biome and systemic metabolism, several recent reports have
studied the relationship between the microbiota and nonshivering
thermogenesis in mice. The results to date are controversial. First,
the composition of the gut microbiome has been found to be
altered upon cold exposure, and the transfer of this “cold micro-
biota” increases white adipose tissue browning, energy expendi-
ture, and cold tolerance (14). Second, the depletion of the micro-
biota both by antibiotics and in germ-free mice promoted upregu-
lation of Ucp1 and a browning phenotype in white adipose tissue
at room temperature (22°C) and at thermoneutrality (30°C) (50),
thus suggesting that depleting the microbiota enhances thermo-
genic activity. In contrast, a more recent study reported that Ucp1
expression and whole body energy expenditure was impaired
upon microbiota depletion (37). Indeed, most data in this study
(37) were in conflict with the previous report (50), likely indicat-
ing that the microbiome influences thermogenesis in multiple
different ways, which, depending on local microbiome composi-
tion in different animal facilities, determine the outcome of anti-
biotic treatment.

Despite these seemingly inconsistent results with respect to
microbiome depletion and thermogenic capacity, further stud-
ies have provided evidence to suggest specific mechanisms
underlying the relationship between the microbiome and non-
shivering thermogenesis in BAT and beige adipocytes. Here,
we highlight three reported mechanisms relating to 1) bile acid
synthesis, 2) the trimethylamine/flavin-containing monooxy-
genase-3/trimethylamine N-oxide (TMA/FMO3/TMAO) path-
way, and 3) intermittent fasting. First, enhanced hepatic con-
version of dietary cholesterol to bile acids during cold exposure
has been found to play an important role in the response to cold
temperatures in mice (59). In turn, this elevation of bile acids
in the plasma and feces results in metabolically beneficial
changes in the gut microbiome and adaptive thermogenesis
(59). It remains to be seen whether these effects relating to bile
acid synthesis will translate to humans. Second, the gut micro-
biota-initiated TMA/FMO3/TMAO pathway has been impli-
cated as a potential modulator of metabolism. This pathway is
an endocrine axis between the microbiome and host, whereby
gut microbial metabolism of nutrients such as phosphatidyl-
choline, choline, and L-carnitine (abundant in Western diets)
results in the production of TMA, which is metabolized into
TMAO by the enzyme FMO3. TMAO levels are elevated in
type 2 diabetic patients, and FMO3 levels in adipose tissue are

correlated with obesity (47). Both knockdown and knockout of
FMO3 protected mice from diet-induced obesity and stimu-
lated the beiging and enhanced thermogenesis of white adipose
tissue, thus suggesting a negative regulatory role for FMO3 in
the beiging process (47). Third, intermittent fasting, or more
precisely, an every-other-day fasting (EODF) regimen, has also
been reported to stimulate beiging in white adipose tissue in
mice through a gut microbiome-dependent mechanism (38). It
was reported that EODF on a high-fat diet reduced obesity,
insulin resistance, and hepatic steatosis and also resulted in an
altered gut microbiota composition. The transplantation of the
EODF-microbiota into microbiota-depleted mice stimulated
white adipose tissue beiging, while EODF-induced beiging did
not occur in mice treated with antibiotics. In addition, a
systemic elevation of acetate and lactate was found, as well as
the elevated expression in beige adipocytes of the monocar-
boxylate transporter 1, a lactate and acetate transporter. Previ-
ously, acetate and lactate have been implicated as beiging-
inducers, suggesting a potential mechanism of EODF-induced
beiging (38).

Taken together, the link between the microbiome and the
thermogenic response in adipose tissue is a maturing field. Al-
though there are some reports that have yielded conflicting results,
as a whole, it appears that the microbiome can influence thermo-
genesis and other adipose tissue responses in multiple different
ways. Moving forward, it will be crucial to gain a finer mecha-
nistic understanding of these different responses in the adipose
tissue and how these responses integrate with different gut-
derived signals and different host receivers. Understanding these
microbiome communications with host systemic metabolism has
the potential to allow the therapeutic modulation or engineering of
these signals, receivers, and responses, with the aim to improve
outcomes in metabolic disease.

CONCLUSION

Although the study of gut microbiome-adipose tissue inter-
actions is still a young field of research, several concepts have
emerged from the recent literature. First, the microbiome can
influence adipose tissue biology through secreted molecules
that gain access to the systemic circulation and thereby reach
adipocytes and other cells present in different adipose tissue
depots. These secreted molecules can broadly be classified into
metabolites (products of microbial metabolism) and microbial
components (constituents of the microbial cell). Examples
exist for how both types of molecules influence aspects of
adipose tissue function, as discussed above.

The chemical nature of these molecules is of great diver-
sity, ranging from SCFAs, cell wall components, flavonoids,
and indoles as signals, to pattern recognition receptors,
microRNAs, and transcriptional changes as receivers and
responses. Future studies will show whether unifying pat-
terns will emerge that provide a specific teleology behind
the different signaling axes engaged by the microbiome to
modulate adipose tissue biology.

Finally, given that most of the examples discussed in this
review stem from animal models, it is important to consider the
evidence for an impact of the intestinal microbiome on adipose
tissue biology in humans. In a recent human trial, the impact of
short-term oral antibiotic treatment in overweight individuals on
insulin resistance was negligible (43). In contrast, long-term
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antibiotic exposure, done on human individuals several decades
ago and commonly practiced in livestock until today, consistently
leads to an overall increase in body fat mass (28, 51). Timing,
duration, and specificity of the microbial impact on adipose tissue
are therefore critical determinants of the metabolic outcome.
Whether the same microbiome-derived molecules identified in
mice are also active in humans remains to be determined. This
young field of study is poised to experience several transformative
discoveries in the near future.
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