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Maternal obesity has a significant impact on the metabolism of offspring both in 
childhood and adulthood. The metabolic regulation of offspring is influenced by 
the intrauterine metabolic programming induced by maternal obesity. Nevertheless, 
the precise mechanisms remain unclear. The hypothalamus is the primary target of 
metabolic programming and the principal regulatory center of energy metabolism. 
Accumulating evidence has indicated the crucial role of hypothalamic regulation in 
the metabolism of offspring exposed to maternal obesity. This article reviews the 
development of hypothalamus, the role of the hypothalamic regulations in energy 
homeostasis, possible mechanisms underlying the developmental programming 
of energy metabolism in offspring, and the potential therapeutic approaches for 
preventing metabolic diseases later in life. Lastly, we  discuss the challenges and 
future directions of hypothalamic regulation in the metabolism of children born to 
obese mothers.
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1. Introduction

It has been established that maternal obesity is a significant predictor of offspring health both 
in childhood and adulthood. Maternal obesity greatly increases the risk of metabolic diseases such 
as obesity and type 2 diabetes mellitus in offspring [1–3]. Maternal programming has been proposed 
to have far-reaching implications on the long-term health of offspring, changes their susceptibility 
to metabolic disorders, cardiovascular disease, neurodevelopmental diseases and kidney injury 
[4–7]. The mechanism underlying metabolic disorders in offspring involves intrauterine metabolic 
programming in regulation of hypothalamic energy homeostasis [4].

Maintaining energy homeostasis requires a balance between energy expenditure and energy 
intake. Substantial evidence indicates that hypothalamus is critical both in energy expenditure and 
energy intake by integrating endocrine system and nervous system [8]. Moreover, it is a prime target 
of developmental programming by maternal nutritional condition [4, 9]. Intrauterine metabolic 
programming in the offspring hypothalamus has been linked to lifelong diseases, including obesity, 
metabolic syndrome and neurodevelopmental disorders [5, 10]. Although a growing body of 
evidence has demonstrated the crucial role of hypothalamic regulation in the metabolism of 
offspring exposed to maternal obesity, additional investigations are still needed to clarify the 
underlying mechanisms.

Here, we  reviewed the developmental regulation of the hypothalamus, the pathways of 
hypothalamic regulation in energy homeostasis, the possible mechanisms underlying the 
developmental programming of energy metabolism in offspring, and the potential therapeutic 
approaches for preventing metabolic diseases later in life.
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2. Developmental regulation of 
hypothalamus

Neuronal development in the hypothalamus consists of two stages: 
the differentiation and migration of neurons, and the subsequent 
formation of functional networks (the formation of neuronal projections 
and synapses) [11]. The hypothalamus arises from cells of the 
diencephalon. In mice, hypothalamus development begins at the 
embryonic day 9.5 (E9.5). During E16.5–E18 cells from hypothalamic 
ventricular zone (HVZ) migrate, differentiate and then form each 
hypothalamic nucleus, including highly proliferative progenitor cells in 
arcuate nucleus (ARC) [12]. ARC is crucial in maintaining energy 
hemostasis. There are two types of neuron populations in ARC to play 
a leading role in feeding behavior. One expresses the orexigenic 
neuropeptides agouti-related peptide (AgRP) and neuropeptide Y 
(NPY), and the other expresses the anorexigenic peptides 
proopiomelanocortin (POMC), which together form the melanocortin 
system [12, 13]. POMC expression commences at E10.5  in the vast 
majority of cells in the developing ventral hypothalamus [14]. At E14.5 
to E18.5, however, immature neurons gradually lose the expression of 
POMC and differentiate to NPY/AgRP neurons or alternative cell types 
[15, 16]. The ARC neuronal projections are immature at birth but 
develop postnatally during lactation, and the projections to the  
paraventricular nucleus (PVH) take place on postnatal(P) day 8–10 and 
to the other nuclei on P12–16 [17, 18]. Differently, the critical period of 
hypothalamic development is complete during fetus life in humans and 
nonhuman primates [19]. Reports on human fetal suggest that early 
hypothalamic neurogenesis occurs limitedly to the ninth and tenth week 
of pregnancy, and the differentiation of periventricular zone structures 
takes place during mid and late pregnancy, including suprachiasmatic, 
arcuate, and paraventricular nuclei [20].

A series of factors are involved in the proliferation and differentiation 
of hypothalamic progenitor cells. Important among them is the Notch-
Hes1/5-Mash1-Ngn2/3-Nhlh2/PC1 pathway. Notch receptor anchoring 
to its ligand activates the Notch signaling pathway [21]. The repressor 
Hes1 is suppressed and mammalian achaete scute homolog-1 (Mash1) 
is upregulated when separated from their ligands. Mash1 is essential for 
POMC differentiation through downstream factors including 
neurogenin 2/3 (Ngn2/3) and nescient helix–loop–helix 2/prohormone 
convertase 1 (Nhlh2/PC1) [14]. Nhlh2, which is regulated by Ngn3, 
mediates the expression of PC1, which induces the proteolytic cleavage 
of the POMC precursor into melanocyte-stimulating hormones (MSH) 
[18, 22].

Metabolic hormones, such as leptin, ghrelin and insulin, which 
reflect alterations in the nutritional environment, can further influence 
the development of hypothalamus. Rats with reduced central leptin 
sensitivity have a decreased density of ARC projections in the PVH and 
abnormal dendrite morphology in the  ventromedial hypothalamus 
(VMH), which appears to be the result of leptin’s inability to directly 
stimulate neurite outgrowth from ARC neurons [23]. Leptin influences 
ARC neuronal axon growth by modulating signal transducer and 
activator of transcription 3 (STAT3) signal [18, 24]. Investigations in 
mice also revealed the significant negative action of elevated ghrelin on 
the development of ARC projection, and deeper investigation found the 
underlying mechanism is associated with STAT3 signal, which implied 
an interaction with leptin [25]. Meanwhile, insulin promotes 
neurogenesis on fetal hypothalamic progenitor neurospheres and 
changes hypothalamic neuronal amounts. Insulin also has a 
neurotrophic effect and promotes neurite outgrowth to maintain 

connections hypothalamic nucleus [11, 26]. However, the definitive 
mechanisms underlying the programming of neuroendocrine 
hypothalamic networks remain poorly understood. Moreover, adenosine 
5′-monophosphate (AMP)-activated protein kinase (AMPK), a cellular 
sensor of energy availability, also plays an important role in 
hypothalamic development. Dephosphorylated AMPK regulates the 
Notch pathway by affecting the transcription of basic helix–loop–helix 
(bHLH) genes (including genes such as Hes1/Hes5), thereby influencing 
the differentiation of hypothalamic neurons and altering the NPY/
POMC neuron ratio [9]. In addition, brain-derived neurotrophic factor 
(BDNF) is a critical gene in the regulation of synaptic plasticity, neural 
circuit development, and energy metabolism regulation [27, 28].

All of the aforementioned factors determine the function of 
hypothalamus ARC during embryonic development, ultimately 
influencing the lifetime metabolism health.

3. Hypothalamic regulations of energy 
homeostasis

The metabolic regulation of hypothalamus is accomplished 
primarily by hypothalamic nuclei perceiving and integrating metabolic 
signals from the periphery [29]. Each nucleus contains a highly diverse 
population of interconnected neurons and glial cells that are 
interconnected. Key to this regulatory function is the melanocortin 
system, which locates in ARC and projects to PVH and other brain 
regions to regulate feeding behavior and energy expenditure further. [18, 
30] Activated POMC neurons result in decreased energy intake by 
regulating appetite and feeding habits, while AgRP neurons are activated 
to induce feeding, inhibit energy expenditure, and regulate glucose 
metabolism [8].

POMC neurons and AgRP neurons regulate energy homeostasis by 
neurotransmitters secreted from their synaptic terminals. POMC 
neurons are activated under conditions of high energy availability. After 
receiving positive energy signals such as elevated circulating levels of 
insulin and leptin, POMC neurons initiate the production of POMC 
peptides. POMC peptide is processed to form various peptides, 
including ɑ-MSH. MSH is released from the synaptic terminals of 
POMC neurons and binds to melanocortin receptors MC4R on neurons 
in the PVH to inhibit food intake further. On the contrary, AgRP/NPY 
neurons are activated by increased energy consumption [8, 18]. AgRP/
NPY neurons inhibit POMC neurons directly by releasing gamma-
aminobutyric acid (GABA), antagonize central MC4R signal and 
counteract the anorectic effect of α-MSH via the release of AgRP, thereby 
positively regulating feeding behavior [31, 32]. PVH neurons are part of 
an energy homeostatic circuit that projects to autonomic centers in the 
hindbrain, such as the solitary tract nucleus (NTS). In order to maintain 
energy homeostasis, the NTS process appropriate responses to satiety 
signals and engage in adaptive eating behavior [8, 18].

Besides regulating appetite, ARC neurons also affect peripheral 
energy expenditure. POMC neurons facilitate the beigeing of white 
adipose tissue WAT; beige the conversion of WAT to brown adipose 
tissue (BAT) and the thermogenesis of BAT [33]. AgRP activation 
elevates peripheral carbohydrate utilization and reduces lipolysis and 
suppresses the thermogenic program of WAT [30]. By regulating the 
activation of the sympathetic nervous system, ARC neurons are known 
to increase thermogenesis in adipose tissue [30, 33]. Further studies 
suggested the mechanism could be  related with protein tyrosine 
phosphatase 1B (PTP1B) and T cell protein tyrosine phosphatase 
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(TCPTP) or the sirtuin family, all of which participate in the leptin 
signal transduction pathway in hypothalamus [33–35] (Figure 1).

4. The impact of maternal obesity on 
the hypothalamus of the offspring

A study in children aged 7–11 years revealed that maternal Body 
Mass Index (BMI) during pregnancy was positively associated with the 
hypothalamic response to glucose in children, which predicted the 
increases in BMI of the children after 1 year [36]. It highlighted the 
important role of hypothalamic alteration in the energy metabolism of 
offspring exposed to maternal obesity prior to the onset of obesity. 
Animal studies provided additional evidence. Offspring born to high-fat 
diet-fed mothers exhibit induced expression of NPY and reduced 
expression of POMC in hypothalamus, resulting in increased appetite 

and food intake [37]. Increased intrauterine metabolic mediators, such 
as glucose, insulin, leptin, and free fatty acid, could be  primarily 
responsible for these hypothalamic programming alterations [38]. 
Hypothalamic inflammation, proliferation and differentiation of 
neurons, as well as mitochondrial autophagy, oxidative stress and clock 
genes, are the primary factors involved in the process of 
hypothalamic programming.

4.1. Activation of hypothalamic inflammation 
and gliosis

Hypothalamic inflammation and gliosis are thought to be  the 
foundation of hypothalamic circuit dysfunction, which can result in 
metabolic disorders like obesity [39]. Maternal high-fat diets (HFD) lead 
to lipid deposition and extensive proinflammatory gene expression in 
uterus. Following, inflammation factors could cross the blood–brain 
barrier(BBB) and act on the offspring hypothalamus to cause 
inflammation [40]. Hypothalamic inflammation is mainly associated 
with endoplasmic reticulum stress (ERS), which induces dysregulation 
of hypothalamic energy homeostasis. Gliosis, including astrocytes and 
microcytes, participates in hypothalamus dysfunction mainly by 
producing and releasing inflammatory factors while altering the 
neuronal responsiveness to metabolic signals.

Researchers observed obvious ERS in the hypothalamic neurons of 
offspring of high-fat diet-induced obese dams. Meanwhile, the activity 
of endoplasmic reticulum-associated degradation (ERAD) was reduced 
with a higher risk of unfolded protein response (UPR) [41]. The ERS 
pathway was vital for free fatty acid-induced inflammation and insulin 
resistance in hypothalamic neurons [42, 43]. In the hypothalamic 
neurons of mice born to obese dams, ERS signaling activated the 
pro-inflammatory c-Jun NH2-terminal kinase 1(JNK1) and nuclear 
factor kappa B(NF-κB) pathways and induced neural inflammation [43]. 
In hypothalamic neurons, the activated NF-κB pathway promoted the 
expression of suppressor of cytokine signaling 3 (SOCS3), which 
inhibited neuronal insulin and leptin signaling pathways [44]. ERS 
promotes the activation of autophagy during key windows of 
development, leading to long-term effects on hypothalamic 
development, which further progress to dysfunction of energy 
homeostasis [45].

Microglia are the tissue-resident macrophages of the central nervous 
system (CNS). They sense changes in microenvironment and make 
proper inflammatory responses [46]. In offspring of obese dams, the 
expression of ionized calcium binding adaptor molecule 1(IBA1), a 
marker of hypothalamic microglia activation, was increased [47]. 
Activated microglia released various pro-inflammatory factors and 
activated astrocytes inflammation via NF-κB signaling pathway [48]. 
More importantly, microglia sense pro-inflammatory signals associated 
with overeating and transmit inflammatory signals to the medial basal 
hypothalamus (MBH) to regulate neuronal responses to leptin and 
maintain energy homeostasis [49].

Astrocytes, located around blood vessels, also play a significant role 
in hypothalamic inflammation. They primarily take up glucose and 
metabolized it to lactate to supply neurons [50]. Maternal obesity during 
pregnancy stimulated the proliferation of astrocytes in the fetal as well 
as early neonatal hypothalamus, which may be  driven by elevated 
interleukin-6 (IL-6) levels in fetal circulation [51]. Obesity during 
pregnancy increased fatty acid transport from the placenta to the fetus. 
It activated inflammatory signaling pathways in astrocytes and triggered 

FIGURE 1

Hypothalamus achieves the energy homeostasis mainly via 
neurotransmitters secreted from synaptic terminals of agouti-related 
peptide (AgRP)/neuropeptide Y (NPY) neurons and 
proopiomelanocortin (POMC) neurons in arcuate nucleus (ARC). Under 
conditions of high energy availability, POMC neurons are activated to 
produce MSH, which binds to MC4R in the paraventricular nucleus 
(PVH) to inhibit food intake and increase peripheral energy expenditure 
through promoting beigeing of white adipose tissue (WAT) and the 
thermogenesis of brown adipose tissue (BAT). Instead, under 
conditions of low energy availability, AgRP/NPY neurons release GABA 
to inhibit POMC neurons directly, and produce AgRP to antagonize 
central MC4R signal, thereby positively regulating feeding behavior and 
decreasing the thermogenesis of WAT. By analyzing energy availability 
and regulating energy intake and expenditure, hypothalamus maintains 
of energy homeostasis.
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the release of inflammatory cytokines such as IL-6, which enhanced the 
proliferation of astrocytes in fetal hypothalamus [38, 48, 52]. In the 
PVH, proliferating astrocytes alter the activity of neighboring neurons, 
thereby changing the energy balance and peripheral glucose metabolism 
[39]. Activated astrocytes also produced and released transforming 
growth factor-β (TGF-β). Excess TGF-β induced hypothalamic  
RNA stress response and mRNA metabolism-driven hypothalamic 
NF-κB activation which links obesity to hypothalamic  
inflammation [53].

Maternal over-nutrition leads to sustained hypothalamic 
inflammatory processes in offspring via interactions between neurons 
and non-neuronal cell populations, resulting in dysregulation of 
peripheral metabolism and reducing adaptive thermogenesis of brown 
adipose tissue [54]. Ultimately, offspring are unable to maintain the 
balance between caloric intake and energy expenditure, leading to 
overeating and further weight gain.

4.2. Defects in the proliferation and 
differentiation of hypothalamic neurons

Studies revealed that maternal obesity affects the development of 
offspring hypothalamic neurons by regulating neuronal proliferation. By 
assaying the expression of the proliferation marker Ki67 protein in rats, 
the offspring from obese mothers show diminished proliferation of 
neural progenitor cells(NPCs) [55]. In mice, the amount of cells in 
neurospheres generated by hypothalamic NPCs in the offspring from 
obese mothers is significantly lower than in controls [37]. Markers of 
neurogenesis and synaptic plasticity were also diminished in the 
hypothalamus of the offspring from obese mothers, indicating abnormal 
neuronal differentiation [47].

Leptin, ghrelin and insulin are crucial in neuronal axon growth. 
Moreover, insulin exerts direct effects on fetal neurogenesis as well [11, 
23, 25, 26]. However, the hypothalamus of the offspring from obese 
mothers develop insulin and leptin resistance in uterus [56]. During the 
critical period of nervous system development, the hypothalamic 
neurons of the offspring from obese mothers failed to respond normally 
to insulin and leptin signals, thus inhibiting the axon projections of ARC 
neurons and significantly repressing the proliferation of NPCs [19, 24, 
37]. Maternal HFD has been proven to induce the POMC neuronal 
malprogramming by decreasing their spatial distribution and axonal 
projections in ARC and PVH [57–59]. Decreases in AgRP fiber densities 
were also observed in the adult offspring from obese mothers due to 
failure to respond normally to leptin signals [58]. As a result, the 
plasticity of hypothalamus development is influenced and metabolic 
homeostasis are permanently programmed in offspring, leading to 
metabolic disorders in childhood and adulthood [4]. Unfortunately, 
although ghrelin is vital in ARC neurons projection, the evidence about 
alterations of ghrelin induced by maternal overnutrition influence 
hypothalamic development is still lacking.

Neurotrophic factors are important mediators in the differentiation 
and maturation of hypothalamic neurons. Studies in mice found that in 
the offspring of obese dams, the hypothalamic expressions of 
neurotrophic factors, such as BDNF and its receptor tropomyosin 
receptor kinase B (TrkB), were significantly reduced [47]. BDNF directly 
regulated synaptogenesis and neuronal plasticity in addition to its 
significant anorexigenic effect [60]. In addition, there was a reduction of 
Trk-mediated mitogen activated protein kinase (MAPK) activation in 
the offspring of obese dams [47]. MAPKs were localized at synaptic 

terminals and affected their short- and long-term plasticity by 
phosphorylating synaptic targets such as synaptic proteins [47]. It 
implies that maternal obesity affects hypothalamic neuronal plasticity in 
the offspring by reducing activation of MAPKs, which may be associated 
with a decrease in BDNF expression.

Hypothalamic neuronal differentiation is mainly regulated by the 
Notch pathway [61]. In the hypothalamus of the offspring born to obese 
dams, Notch pathway was activated, indicating by increased expression 
of Notch and Hes5 and decreased expression of Ngn2. The upregulation 
of the Notch pathway partially explained the decrease of hypothalamic 
NPCs proliferation [37]. Researches also pointed out that activated 
Notch signaling by maternal high-fat diet in the offspring’s neural stem 
cells altered the final differentiation and maturation processes of 
neurons [62]. AMPK regulates the Notch pathway by affecting the 
transcription of bHLH genes (such as Hes1/Hes5). In offspring exposed 
to maternal obesity, the levels of AMPK and pAMPK were both reduced, 
with the correspondingly declined regulatory function on Notch 
pathway [9].

4.3. Other findings

4.3.1. Mitochondrial dysfunction
In the offspring of obese dams, hypothalamic mitochondrial 

oxidative phosphorylation (OXPHOS) complexes III and V were 
found reduced, indicating impairment of mitochondrial function. 
Meanwhile, hypothalamic expression levels of mitophagy markers 
PTEN induced putative kinase 1 (PINK1) and parkin (Prk8) were 
upregulated in the offspring of obese dams. It suggests that 
hypothalamic neurons from offspring exposed to maternal obesity 
exhibit mitochondrial damage and dysfunction, therefore being more 
prone to mitochondrial autophagy [41]. Additionally, maternal HFD 
programming promoted mitochondrial fusion mainly by increasing 
the expression of Mitofusin-2 (Mfn2) and decreasing dynamin-related 
protein 1 (Drp1), thereby inducing mitochondrial dysfunction [63]. 
The impairment of mitochondrial function may also interfere with 
energy metabolism and contribute to hypothalamic dysregulation of 
energy homeostasis.

4.3.2. Oxidative stress
After birth, offspring of obese dams experience oxidative stress in 

the hypothalamus, resulting in defects in the function of hypothalamic 
appetite control neurons. Antioxidant stress reaction during the early 
postnatal period was elevated in offspring exposed to maternal obesity, 
and hypothalamic oxidative stress occurred prior to the initiation of 
inflammatory responses [64]. Oxidative stress occurring in the 
hypothalamus predisposed POMC neurons to oxidative damage and 
dysfunction, whereas AgRP/NPY neurons were insensitive to reactive 
oxygen species (ROS), hence relatively enhancing the appetite increasing 
effect of AgRP/NPY neurons [65, 66]. Prolonged activation of glial cells 
also increased the number of ROS and subsequent inflammation in 
hypothalamus [67].

4.3.3. Clock genes
Maternal obesity during pregnancy may increase offspring 

susceptibility to obesity by affecting the daily expression pattern of the 
molecular clock genes and appetite genes. Circadian rhythms were 
regulated by CLOCK and BMAL1 transcriptional–translational 
feedback loops in the hypothalamic supraoptic nucleus (SCN). The 
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feedback loop is initiated when dimer of the CLOCK and BMAL1 bond 
with promoter of the clock genes Period (Per) and Cryptochrome (Cry), 
and following the transcripts produced proteins that form dimer to 
repress the transcription by competing with CLOCK/BMAL1 binding 
[68]. The SCN neurons project to and communicate with ARC to 
generate circadian rhythm in feeding behaviors [69]. Maternal high-fat 
diet disrupted Clock inhibitory feedback pathway in offspring, leading 
to disruption of Clock gene expressions, including Per2 and Cry2. As a 
result, the expression pattern of appetitive peptides in the ARC was 
altered, and typical feeding patterns were lost, leading to obesity in 
adulthood [70].

5. Potential therapeutic approaches

Taurine deoxycholic acid (TUDCA) treatment during lactation was 
reported to reverse and alleviate maternal obesity-induced metabolic 
impairments in offspring. TUDCA, which is permeable to the blood–
brain barrier (BBB), prevented the development of leptin resistance in 
offspring caused by maternal obesity and could reverse ERS and 
hyperleptinemia. More surprisingly, TUDCA also restored disrupted 
POMC axonal projections in offspring of obese mothers. However, 
POMC fiber density remained below average in adult offspring [58]. 
Although the detailed mechanisms of TUDCA are not fully elucidated 
at present, the normalization effect of hypothalamic neuronal response 
to metabolic stress should not be neglected [71].

Therapies targeting specific pathways have been reported but further 
investigations are still needed. Activation of the X-box binding protein 
1(XBP1) pathway in POMC neurons reduced the expression of SOCS3 
and PTP1B. It implied the potential role of XBP1 pathway in preventing 
hypothalamic ERS [72]. SOCS3 inhibitors or antagonists were 
hypothesized to have the potential to ameliorate metabolic abnormalities 
in offspring exposed to maternal obesity [73]. However, the effect of 

SOCS3 on glucose metabolism is excessively powerful, hence possible 
side effects must be concerned about. For instance, over-inhibition of 
SOCS3 leads to loss of glucose homeostasis regulation when committing 
physical exercise [74]. Additionally, overexpression of Mfn2 in ARC 
ameliorates metabolic disturbances in diet-induced obese mice and 
reduces the expression of hypothalamus endoplasmic reticulum stress 
markers, suggesting that it could also be investigated as a therapeutic 
target for offspring from obese mothers [75].

6. Discussion

As noted previously, the hypothalamus plays a critical role in the 
regulation of energy homeostasis. It is a key brain region in the 
regulation of energy balance as it controls food intake and energy 
expenditure through integration of humoral, neural, and nutrient-
related signals and cues. Maternal obesity programs the offspring 
hypothalamus mainly through hypothalamic inflammation, neuronal 
proliferation and differentiation, as well as mitochondrial dysfunction, 
oxidative stress and clock genes. Ultimately, offspring exhibit 
hypothalamus dysfunction in the regulation of energy homeostasis, 
which increases the likelihood of metabolic diseases in adulthood 
(Figure 2).

Studies on hypothalamus have been conducted for years, but the 
exact mechanisms of hypothalamic maternal programming are still not 
fully understood. In addition to the aforementioned mechanisms, 
intestinal microbiota could be another potential mechanism of offspring 
hypothalamic programming induced by maternal overnutrition as well. 
Because maternal obesity was reported to shape the microbial 
communities in early life of the offspring, while microbiota links obesity 
and hypothalamus via gut-brain axis [76]. Moreover, the epigenetic 
programming and reprogramming processes that occur during 
embryogenesis may be influenced by the metabolic changes caused by 

FIGURE 2

Hypothalamic programming of offspring from obese mothers mainly involves hypothalamic inflammation, neuronal proliferation and differentiation, as well 
as mitochondrial dysfunction, oxidative stress and clock genes. As a result, the hypothalamus shows dysfunction in the regulation of energy homeostasis 
and increases the likelihood of metabolic diseases later in life.
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maternal overweight or obesity [77]. DNA methylation is both genetically 
and environmentally determined. In animal models, it has been shown 
that the prenatal and postnatal environment affects the methylation of 
the POMC gene, which is associated with adult weight and appetite [78]. 
Offspring hypermethylation in regulatory regions of POMC associated 
with Prenatal HFD persists until adulthood, such as promoter [79, 80]. 
In humans, periconceptional nutrition has been associated with offspring 
methylation at POMC as well [81]. Recently, a new conceptual framework 
of POMC neuronal heterogeneity integrating with appetite regulation, 
metabolic physiology and obesity was proposed [31]. It could be a new 
challenge for exploring hypothalamic maternal programming.

Regarding treatment and prevention, it is necessary to further 
investigate the mechanisms of action, the duration of maximum 
remission, and the long-term effects to establish their applicability in 
humans. The stage of hypothalamic development differs between 
humans and other species. In humans and primates, the development of 
hypothalamus is almost completed at birth, whereas in rodents, the 
process continues until lactation [18, 19]. Therefore, the transition of 
findings from animal experiments into clinical applications is the 
prospect to pursue.

The rate of obesity in women of childbearing age has increased 
steadily for decades. Maternal obesity programming has a long-term 
effect on the metabolism of offspring. The hypothalamus is the target 
brain area of metabolic programming and the regulatory center of 
energy metabolism. Understanding the mechanisms underlying 
hypothalamic regulation in the metabolism of the offspring exposed to 
maternal obesity is crucial for discovering novel preventive and 
therapeutic approaches for development origins of metabolic diseases, 
and is significantly important for better health outcomes in both 
childhood and adulthood.
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