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CLINICAL HIGHLIGHTS
Mainstream findings suggest the presence of cardiac hypertrophy, decreased ventricular compliance, and ventric-
ular pump function in obese individuals, independent of obesity-related vascular diseases. Is obesity cardiomyopa-
thy a unique entity of cardiomyopathy reminiscent of diabetic cardiomyopathy in diabetes mellitus?

Early changes in obesity hearts involve hypertrophied atrial and ventricular chambers, elevated stroke volume,
and cardiac output, largely due to compensatory remodeling in response to increased ventricular pressure or
volume and circulatory hemodynamics. What triggers the transition from compensation to decompensation in
obese hearts? What constitutes obesity paradox?

Is cardiac dysfunction in obesity solely cardiogenic due to increased lipid accumulation in the heart or rather
a secondary sequelae due to circulatory delivery of cytokines from adipose tissues?

Metabolic derangement contributes to onset of insulin resistance and mitochondrial injury. ER stress and
autophagy defect also prompt abnormality in ER and lysosomes. To what levels do intracellular organelles and
exchange among organelles contribute to the etiology of obesity cardiomyopathy?

Clinical translation is challenging for drug therapy of obesity cardiomyopathy other than weight loss and
symptomatic control in cardiac dysfunction. Is weight loss the only springboard for therapeutic management of
obesity cardiomyopathy?
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Abstract

The prevalence of heart failure is on the rise and imposes a major health threat, in part, due to the rapidly increased
prevalence of overweight and obesity. To this point, epidemiological, clinical, and experimental evidence supports
the existence of a unique disease entity termed “obesity cardiomyopathy,” which develops independent of hyperten-
sion, coronary heart disease, and other heart diseases. Our contemporary review evaluates the evidence for this
pathological condition, examines putative responsible mechanisms, and discusses therapeutic options for this disor-
der. Clinical findings have consolidated the presence of left ventricular dysfunction in obesity. Experimental investiga-
tions have uncovered pathophysiological changes in myocardial structure and function in genetically predisposed
and diet-induced obesity. Indeed, contemporary evidence consolidates a wide array of cellular and molecular mech-
anisms underlying the etiology of obesity cardiomyopathy including adipose tissue dysfunction, systemic inflamma-
tion, metabolic disturbances (insulin resistance, abnormal glucose transport, spillover of free fatty acids, lipotoxicity,
and amino acid derangement), altered intracellular especially mitochondrial Ca21 homeostasis, oxidative stress,
autophagy/mitophagy defect, myocardial fibrosis, dampened coronary flow reserve, coronary microvascular disease
(microangiopathy), and endothelial impairment. Given the important role of obesity in the increased risk of heart fail-
ure, especially that with preserved systolic function and the recent rises in COVID-19-associated cardiovascular mor-
tality, this review should provide compelling evidence for the presence of obesity cardiomyopathy, independent of
various comorbid conditions, underlying mechanisms, and offer new insights into potential therapeutic approaches
(pharmacological and lifestyle modification) for the clinical management of obesity cardiomyopathy.
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1. INTRODUCTION (OVERVIEW OF OBESITY)

1.1. Facts about Prevalence and Health
Consequences of Obesity

1.1.1. Epidemiology of obesity.

The World Health Organization (WHO) defines over-
weight and obesity as a pathological setting with abnor-
mal or excessive fat accumulation. Obesity is generally

rooted in a complex interplay between genetic and envi-
ronmental factors such as culture, socioeconomical sta-
tus, and lifestyle, leading to an alarming health concern in
the 21st century (1–7) (see BOX 1). Body mass index (BMI),
estimated by body weight in kilograms divided by the
square of height in meters, is the simplest index
employed to categorize overweight and obesity in adults.
Current guidelines from the US Centers for Disease
Control and Prevention and the WHO classify a healthy
BMI in the window of 18.5–24.9, whereas a BMI �25 kg/
m2 is classified as overweight, and a BMI �30 kg/m2 is
deemed obese, with severe obesity (morbid obesity)
listed as a BMI �40 kg/m2 (5, 8, 9). Over the past two
decades, the worldwide prevalence of overweight and
obesity has risen dramatically, mainly driven by socioeco-
nomical and lifestyle changes manifested by lower
energy expenditure (physical activity) and increased
usage of energy-rich food sources, especially refined car-
bohydrates (1, 5, 6). Uncorrected obesity unfavorably
impacts all aspects of physiological functions, lowers
quality of life, and increases the risk of illness and health-
care burden worldwide (1, 7, 10). This review will discuss�J. Ren, N. N. Wu, and S. Wang contributed equally to this work.
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current contemporary knowledge of the causes and
underlying mechanisms in adiposity and associated cardi-
ovascular disease (CVD), with an ultimate aim to offer
guidance for more effective and targeted antiobesity
therapy in particular obesity-induced cardiac anomalies.

1.1.1.1. GLOBAL EPIDEMIOLOGY. According to the WHO,
the overall prevalence of obesity has doubled in the
United States and in most of the Westernized countries
since 1980 and nearly tripled worldwide between 1975
and 2016 (4, 11, 12). A total of 1.9 billion individuals were
classified to be overweight and 650 million adults pre-
sented obesity in 2016, representing 39% and 13%,
respectively, of world population (3). Specifically, 39% of
adults, including 39% of men and 40% of women, met the
criteria of overweight and 13% of adults, including 11% of
men and 15% of women, reached the threshold of obesity
in 2016 (FIGURE 1). The age-justified prevalence of over-
weight and obesity rose by almost 50% (26.5% in 1980 to
39.0% in 2015) and 80% (7% in 1980 to 12.5% in 2015),
respectively (3). In another independent report, the preva-
lence of obesity jumped from 3.2% to 10.8% in adult men
and 6.4% to 14.9% in adult women between 1975 and
2014. In 2014, 0.64% of men and 1.6% of women exhibited
morbid obesity (BMI �40) (1). More alarmingly, the preva-
lence of childhood obesity also rose vividly during the
last decades with more obese and overweight children
growing into overweight and obese adolescents and
adults. Based on WHO data, �40 million preschool age
children under 5 yr were overweight or obese in 2018.

More than 340 million children and adolescents between
5 and 19 yr were classified overweight or obese in 2016.
Retrospectively, child and adolescent obesity prevalence
jumped from 0.7% to 5.6% in boys and 0.9% to 7.8% in
girls between 1975 and 2016 (2).

1.1.1.2. REGIONAL EPIDEMIOLOGY. With the rapidly
increased prevalence of obesity worldwide between 1975
and 2016 (2), remarkable regional differences were noted
in obesity epidemiology (FIGURE 1). For example, the prev-
alence of obesity differs dramatically by country, ranging
from 3.7% in Japan to 38.2% in the US (13). More than
50% of the global obese population lives in only 10 coun-
tries, including the United States, Brazil, China, Egypt,
Germany, India, Indonesia, Mexico, Pakistan, and Russia
(4). Moreover, dynamics of obesity prevalence exhibits het-
erogeneity across various countries in the steepness of
rise, deceleration, and acceleration of obesity. Although
China and India possess abundant obese populations, the
prevalence of obesity in these two countries is relatively
low due to the population base (�5.7% and 7.0%, respec-
tively, in 2015) (13). America and Europe still remain the two
regions with the highest prevalence of overweight and
obesity in 2015 (3). In North America, the occurrence of
overweight jumped from 45.3% in 1980 to 64.2% in 2015
and the frequency of obesity rose from 12.9% in 1980 to
28.3% in 2015 (3). The prevalence of obesity was 42.4%,
and severe obesity approached 9.2% in the US in 2017–
2018. In Europe, the prevalence of overweight changed
drastically from 48% in 1980 to 59.6% in 2015 and that of
obesity escalated from 14.5% in 1980 to 22.9% in 2015
(3). Along the same line, the numbers of overweight
rose from 37.9% in 1980 to 49.6% in 2015 and that of
obesity jumped from 11.8% in 1980 to 19.6% in 2015 in
the Eastern Mediterranean region. In Africa, the rate of
overweight and obesity rose from 18.5% to 34.5% and
6.2% to 12.7%, respectively, between 1980 and 2015.
Although with the lowest global ranking, inclinations in
overweight and obesity also hiked in the West Pacific
region (China, Japan, Philippines, Vietnam, and South
Korea) during the past three decades. In particular, the
prevalence of overweight more than tripled from 7.8%
to 29.9% in China. Likewise, the incidence of over-
weight escalated from 10.9% in 1980 to 24.3% in 2015,
and the rate of obesity rose from 1.7% in 1980 to 6.2%
in 2015, in the Southeast Asian region (3). Globally
speaking, regions from south Asia, southeast Asia, the
Caribbean, and southern Latin America seem to experi-
ence the most accelerated increase in BMI value (2).

1.1.2. Disease burden of obesity.

Obesity, when uncorrected, is accompanied with an
increased morbidity and mortality of noncommunicable

CLINICAL HIGHLIGHTS

Mainstream findings suggest the presence of cardiac hypertro-
phy, decreased ventricular compliance, and ventricular pump
function in obese individuals, independent of obesity-related vas-
cular diseases. Is obesity cardiomyopathy a unique entity of car-
diomyopathy reminiscent of diabetic cardiomyopathy in diabetes
mellitus?

Early changes in obesity hearts involve hypertrophied atrial and
ventricular chambers, elevated stroke volume, and cardiac out-
put, largely due to compensatory remodeling in response to
increased ventricular pressure or volume and circulatory hemo-
dynamics. What triggers the transition from compensation to
decompensation in obese hearts? What constitutes obesity
paradox?

Is cardiac dysfunction in obesity solely cardiogenic due to increased
lipid accumulation in the heart or rather a secondary sequelae due
to circulatory delivery of cytokines from adipose tissues?

Metabolic derangement contributes to onset of insulin resistance
and mitochondrial injury. ER stress and autophagy defect also
prompt abnormality in ER and lysosomes. To what levels do intracel-
lular organelles and exchange among organelles contribute to the
etiology of obesity cardiomyopathy?

Clinical translation is challenging for drug therapy of obesity cardio-
myopathy other than weight loss and symptomatic control in cardiac
dysfunction. Is weight loss the only springboard for therapeutic man-
agement of obesity cardiomyopathy?
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diseases, particularly CVD, musculoskeletal disorders,
and certain forms of cancers (breast, ovarian, prostate,
liver, kidney, and colon cancers) (5, 6). Obesity results in
the onset of a cluster of unfavorable chronic disorders,
which commonly trigger profound metabolic pathologies
[e.g., hypertension, hyperinsulinemia, dyslipidemia, glu-
cose intolerance, and type 2 diabetes mellitus (T2D)] (14–
18). Notably, the World Obesity Federation and the
American and Canadian Medical Associations have all
affirmed obesity as a chronic developing illness in addi-
tion to its role as just a risk factor for other comorbidities
(19). In 2015, excess weight underwrote 4.0 million (rang-
ing 2.7–5.3 million) mortalities and 120 million (ranging
84–158 million) disability adjusted life years (DALYs)
globally (20, 21). Nearly 39% of deaths and 36% of
DALYs associated with high BMI were reported in those
with a BMI �30 kg/m2. Various obesity-related chronic
diseases have been noted for the economic burden in
obesity. Among which, CVD accounts for more than two-
thirds of mortalities linked with high BMI and 66.3 million
DALYs (20). Compared with those with normal weight,
individuals who gain substantial weight from young and
middle age display a 22% and 49% greater risk of all-
cause mortality and CVDmortality, respectively (22).

Obesity increases risks of multiple diseases and poor
mental health, all of which might lead to compromised life
quality, lower productivity, unemployment, and social hard-
ships and higher healthcare costs (23). For instance, osteo-
arthritis, a popular aftermath of obesity, is one leading
cause of disability and retirement. In the US, the healthcare
expense for a single obese individual was estimated to be
$1,901 annually in 2014, inferring a total cost of $149.4 bil-
lion on obesity nationally. In Europe, overweight- and obe-
sity-induced direct and indirect cost was equivalent to
0.47–0.61% of the gross domestic product (3). According
to a systematic review, medical costs of obese people
were 32% more compared with lean individuals. Specially,
obesity is believed to account for 31.8% of direct or health-
care costs, and 68.1% of indirect costs associated with defi-
cit of productivity and production value (7).

1.2. Etiology of Obesity

1.2.1. Environment: diet consumption and
sedentary lifestyle.

The etiology of obesity is multifactorial including genetic,
environmental; and behavioral aspects. In general, obesity
is usually a result from a prolonged positive energy
balance, that is, increased consumption of food con-
sumption in excess of energy expenditure (in the form
of heat production) (24). An important dietary determi-
nant of obesity is the increased consumption of sugar

in the form of fructose-containing sugars, sucrose,
and high-fructose corn syrup, mainly refined carbohy-
drates used extensively in the modern food industry
(25). Evidence from epidemiological studies supports
a solid tie between sugar-sweetened beverage usage
and BMI (26). However, the perception of obesity is
recently switching away from the simplistic notion of
energy imbalance, calorie counting, and single iso-
lated nutrients toward overall dietary patterns on the
complex physiological determinants of weight regula-
tion (27). In short-term, total calories are most relevant
to weight gain regardless of the types of diets.
However, in long-term weight control and cardiometa-
bolic health, healthy food-based patterns matter given
the synergistic health outcome produced by the com-
bination of foods habitually consumed (27, 28).

Several other lifestyle factors, such as sedentary
behavior, circadian alignment, and sleep quality, may
interact with diet to influence metabolic risk and disease
propensity. Accumulating evidence supports the notion
that sedentary behavior is a strong predictor of obesity
and detrimental changes in metabolic traits (29, 30).
Among various sedentary behaviors, TV watching, com-
puter games, and other electronic entertainments are
considered as the main culprits as screen media expo-
sure greatly displaces physical activities and significantly
prompts risks of overweight, obesity and T2D in children
and adolescent (31–33). While sedentary behaviors
prompt the onset of overweight and obesity in spite of
“recreational” or “seasonal” physical exercise (34), it is
well conceived that lack of proper and regular physical
exercise is more strongly associated with obesity preva-
lence compared with sedentary behaviors themselves
(33, 35).
Last but not least, a theory of “fetal programming of

adult disease” has evolved linking the increased preva-
lence of adulthood obesity and metabolic complications
with intrauterine and early postnatal environmental stress
(36–38). Both under- and overnutrition during intrauterine
and early postnatal stages may adversely impact adult-
hood phenotypes and organ function especially insulin
sensitivity, adiposity, myocardial morphology, and func-
tion (38–43). Moreover, epigenetic transgenerational in-
heritance of susceptibility to adiposity or obesity in
subsequent generations has been documented with an-
cestral exposure (maternal or paternal) to environmental
toxicants and altered nutrition (44, 45).

1.2.2. Genetics and epigenetics.

Obesity is an anthropometric trait resulting from a com-
plex interplay of genetic and environmental factors. The
gene-environment interactions are generally responsi-
ble for changes in gene expression and epigenetic
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modifications leading to excess body fat and obesity
(46). Although parental obesity is listed as an important
risk factor for childhood and/or adolescent obesity (47),
obesity does not usually follow the Mendelian rule of in-
heritance and genetic factors only explain a small pro-
portion of the development of obesity (1, 48). The
obesity trait may be triggered by both single genes
(monogenic) and multiple genes (common or multifacto-
rial obesity). In addition to genetic factors, epigenetic
contributions (i.e., modifications pre- or posttranslation)
also play an essential role in obesogenesis. Loss-of-
function mutations in genes including LEP, LEPR,
MC4R, PCSK1, ADCY3, hypothalamic proopiomelanocor-
tin (POMC), and SIM1 have all been associated with mon-
ogenic obesity (49). Mutations of the leptin gene, noted
in rare cases of extremely obese children/mice, under-
scores a role for leptin-modulated energy balance
through melanocortin-dependent/independent mech-
anisms (50, 51). Leptin normally sends signals of suffi-
cient fuel storage from adipose tissues to the
hypothalamus which promotes satiety by production
of a-melanocyte-stimulating hormone (a-MSH) and its
binding to the MC4 receptor (MC4R) in response to
leptin stimulation. Mutations (in the forms of frame
shift, missense or deletion) in POMC and MC4R have
been reported in severe obesity (52–55). Indeed,
mutations in MC4R are deemed the most prevalent
mutations in monogenic obesity (52). Up to 5% of indi-
viduals with childhood obesity are carriers of
heterozygous MC4R mutations (56, 57). Enzymes
including prohormone convertase 1 (PCSK1) processes
melanocortin peptides (58). Heterozygous mutations
in PCSK1 were noted to alter POMC processing and pro-
mote obesity associated with glucocorticoid deficiency
and hypogonadotropic hypogonadism (59).

The majority of obese subjects is representatives of
“common obesity.” Recently, genome-wide association
study (GWAS) analysis has paved the way in the elucida-
tion of the complex genetics underlying common obe-
sity. Up-to-date, large-scale GWAS has identified over
800 single nucleotide polymorphisms tightly associated
with BMI (60, 61). These GWAS findings revealed various
loci associated with obesity related genes in energy
and lipid metabolism (FTO, RPTOR, and MAP2K5) (61),
insulin response [TCF7L2 and insulin receptor substrate-
1 (IRS1)] (61), adipogenesis [CEBPA, PPARG, bone mor-
phogenetic protein (BMP)-2, HOXC/miR196, SPRY1,
TBX15, and PEMT] (62), and neurocircuits of appetite
and satiety (BDNF, MC4R, and NEGR) (63–65). Although

many more loci linked to obesity have been unveiled,
merely 5% of the variance of BMI could be explained by
genetic factors (60).
Obesogenesis is also regulated by epigenetic changes.

Among various forms of epigenetic modifications, DNA
cytosine (C) methylation (CpG) may represent the most
stable and well-defined epigenetic machinery involved in
obesogenesis (66, 67). Saturated fat, refined carbohy-
drate, and other dietary factors may all strongly affect
gene-specific DNA methylation in obesity. For instance,
DNA methylation of adipokines leptin and adiponectin is
believed to be connected to BMI and LDL cholesterol lev-
els (68). Furthermore, high methylation of POMC is associ-
ated with weight regain in those individuals who just
achieved weight loss (69). Interestingly, compared with
lean subjects, MSH-positive neurons are much more
abundant in obese individuals, suggesting a regulatory
role for methylation in POMC downstream signaling com-
ponents (69).

1.2.3. Animal models of obesity.

Animal models of obesity are widely employed in experi-
mental obesity research, which encompass monogenic
and polygenic as well as obesogenic diet-induced mod-
els (70, 71). Murine obese models usually exhibit hyper-
phagia and increased energy metabolism and various
comorbidities of obesity, including hyperglycemia, insu-
lin resistance, or diabetes-like syndromes (71–74). It is
noteworthy that levels of energy expenditure could be
mistakenly assessed given that metabolic inactive mass
[for example, the “inert” triacylglycerol (TG)] accounts for
the majority of increased weight in obesity and major dif-
ference in body mass between lean and obese mice
(75). Therefore, energy expenditure in murine obesity
models should be calculated with special caution, for
example, using the animal lean body mass for normaliza-
tion. Manipulations of genes commonly involved in leptin
pathway provoke obesity, including Lepob/Lepob mice or
db/db mice and their rat counterparts, the Zucker or
Zucker Diabetic Fatty (ZDF) rats. These rodent models
present either a loss of leptin (Lepob/Lepob) or a mutation
in leptin receptor (Lepdb/Lepdb), imposing severe leptin
resistance. Spontaneous mutation that yields Lepob/Lepob

mice presents obesity, hyperphagia, hypothermia, and
increased energy expenditure capacity. Lepob/Lepob

mice also develop elevated circulating glucocorticoid lev-
els and severe insulin resistance associated with hyper-
glycemia and hyperinsulinemia (76). The phenotype of

FIGURE 1. Increase in obesity prevalence over the past 20 yr (1996-2016): According to theWorld Health Organization’s (WHO) data, 39% of adults aged 18
yr and over (39% of men and 40% of women) were overweight in 2016 worldwide. Overall, about 13% of the world’s adult population (11% of men and 15% of
women) were obese in 2016. Reproduced fromWHO’s Global Health Observatory (GHO) Data (9) with permission. BMI, bodymass index.
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Lepdb/Lepdb obese mice is reminiscent of that seen in
Lepob/Lepob mice (insulin resistance, diabetes mellitus,
and hyperglycemia), with marked early onset obesity,
albeit with hyperleptinemia in comparison with the Lepob/
Lepob mice (71, 77–80). Likewise, obese Zucker (fa/fa or
“fatty” rat) and Koletsky rats are leptin receptor deficient.
Koletsky rats are characterized by null mutation of leptin
receptor, with essentially undetectable leptin receptor
mRNA levels, whereas Zucker fatty rats are featured by a
genetic processing mistake in leptin receptor (fa/fa muta-
tion), leading to intracellular trapping of the receptor.
These murine models of obesity exhibit hyperphagia,
increased energy expenditure, compromised glucose tol-
erance, and growth deficits courtesy of hypothyroidism
and low circulating levels of growth hormone (70, 80–83).
Despite the fact that monogenic models are practical in
the study of specific mechanistic aspects of obesity, they
usually cannot truly recapitulate human obesity.
Polygenic obesity models are thus more comparable with
the polygenic nature of human obesity. Diet-induced
rodent obesity models are commonly employed with ex-
posure to high-fat or high-energy diets, prompting an
obese phenotype with the extent of weight gain depend-
ing on nature and duration of dietary intake. Diet-induced
obese rodents usually develop leptin resistance, insulin
resistance, and hypertriglyceridemia before the onset of
full-blown obesity (71, 84–91). In addition, lesions in spe-
cific brain regions, including ventromedial hypothalamus
(92) and hypothalamic paraventricular nucleus (93), also
result in overt obese phenotype in rodents.

1.3. Obesity and Cardiovascular Disease

1.3.1. Obesity and overall CVD prevalence.

Ample evidence from both clinical and experimental set-
tings supports the role for obesity in the pathogenesis of
CVD, including heart failure (HF) (72, 87, 89, 94–106).
Not only is obesity closely intertwined with greater prev-
alence of coexisting risk factors for CVD such as coro-
nary artery disease, hypertension, diabetes mellitus, and
obstructive sleep apnea (2, 3), but obesity alone also
impacts myocardial structure and pump performance
(manifestations of obesity cardiomyopathy) (107). More
recently, a new term “cardiometabolic-based chronic
disease” (CMBCD) was introduced to boost timely and
continued preventive care for cardiometabolic diseases
rooted from genetics, environment, and behavior cues.
Reported endpoints for CMBCD encompass coronary
heart disease, heart failure, and atrial fibrillation (AF), all
of which are commonly present in obesity (108). Early
evidence for obesity-related CVD includes findings from
the Framingham Heart Study that demonstrated an ele-
vated risk of coronary disease, stroke, heart failure, and

CVD death in obesity independent of other common
risk factors, such as age, gender, smoking, choles-
terol, blood pressure, and glucose intolerance (109).
Population-based findings also reveal a tight correla-
tion between increased BMI and earlier CVD morbidity
(110, 111) or cardiometabolic multimorbidity (112).
Moreover, overweight in adolescence is associated
with increased CV abnormalities, especially dilated
cardiomyopathy (113), and higher all-cause mortality in
adulthood (114). Cardiomyopathy, manifested as left
ventricular (LV) enlargement and subclinical cardiac
dysfunction in the absence of coronary artery disease,
is a common cause of HF (107, 115). For instance, ele-
vated BMI in women of childbearing age results in
increased risk of cardiomyopathy, particularly dilated
and hypertrophic cardiomyopathies (116) (FIGURE 2). With
the increasing evidence depicting changes in cardiac
structure and function in mildly to moderately obese
individuals, it is becoming evident that obesity serves
as an independent risk factor for heart failure. This sce-
nario may be expanded to embrace myocardial
anomalies in obese subjects that cannot be credited to
coronary artery disease, hypertension, diabetes melli-
tus, or any other confounding etiologies. However, the
correlation between BMI and cardiac function gets
more complicated with the appearance of “obesity
paradox” (117, 118), whereby high BMI appears to con-
fer neutral or even beneficial effects in subgroups who
fit into “metabolically healthy obese” category. Better
understanding of the mechanisms underlying obesity-
related CVD, especially obesity cardiomyopathy,
should help to guide clinical decisions according to
the comprehensive assessment of obesity. Here we
will summarize characteristics of cardiac remodeling,
emerging mechanisms, and therapeutic approaches
targeting cardiomyopathy in the setting of obesity,
with particular emphasis on advances in cardiac met-
abolic alternations and subcellular abnormalities
involved in the development of obesity cardiomyop-
athy (FIGURE 3).

1.3.2. Impact of obesity on coronavirus disease
2019-associated cardiovascular outcome.

Coronavirus disease 2019 (COVID-19), a pandemic respi-
ratory illness caused by a novel severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) (119), was first
detected in late 2019 in Wuhan, China and then spread
rapidly across the world. Recent evidence has indicated
a close tie between obesity and severity of COVID-19
(120). Clinical data noted an increased risk of COVID-19
severity and mortality in obese patients. In a meta-analy-
sis involving 7,196 patients from 13 independent studies,
obesity was associated with an increased risk of critical
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illness in hospitalized COVID-19 patients (121). In 383
patients with COVID-19, overweight was linked to a
1.84-fold odds, while obesity displayed a 3.40-fold
odds of developing severe COVID-19 in comparison
with patients with normal weight (122). In another in-
dependent study involving 5,279 patients with
COVID-19 in the New York City, BMI >40 kg/m2 was
the second strongest independent predictor of
COVID-19 hospitalization, only after old age (123).
Along the same line, the prevalence of obesity was
1.89 times higher in severe COVID-19 patients than
the general French population (124). Ample clinical
evidence has depicted that CVD and diabetes melli-
tus are the leading causes of a more severe course of
COVID-19 (125). Given the propensity of obesity to
prompt CVD including heart failure, hypertension,
coronary heart disease, stroke, AF, renal disease, and
diabetes mellitus (126–128), being obese itself with
high ectopic fat is deemed a unifying risk factor for
severe SARS-CoV-2 infection, inflammation, poorly
coordinated innate and adaptive responses, inad-
equate antibody response, cytokine storm, and

compromised cardiorespiratory reserve (120, 129).
Even in the absence of comorbidities of obesity, the
presence of hypertension and metabolic disorders in
obesity might result in increased susceptibility to
infection via thrombotic events, atherosclerosis, car-
diac dysfunction, and impaired immunity (130).
Overweight or obese patients exhibit poor endothe-
lial function, cardiorenal and respiratory diseases,
which may all negatively impact COVID-19 outcomes
(131). On the other side of the coin, reduced physical
activity, unhealthy dietary habit, stress, and fear dur-
ing the COVID-19 pandemic may escalate weight gain
and obesity (120). From the molecular biology per-
spective, SARS-CoV-2 binds to the angiotensin-con-
verting enzyme 2 (ACE2) receptors in the lung and
other organs. With overactivated renin-angiotensin-
aldosterone system (RAAS) in obesity, the abundant
presence of ACE2 in obesity should ease the en-
trance of SARS-CoV-2 into adipocytes, making adi-
pose tissues an unexpected viral reservoir before the
spread of virus to other organs (131). In this context,
overweight or obesity should be considered as an

FIGURE 2. Association between body mass index (BMI) in young women and risk for cardiomyopathies: The model is adjusted for age, year, parity,
comorbidities at baseline, smoking, and level of education (n = 1,339,527). Reproduced from Robertson et al. (116) with permission.
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independent risk factor for COVID-19 although more
scrutiny is warranted to evaluate the clinical manage-
ment of COVID-19 and associated cardiovascular
complications in obesity.

2. CARDIAC REMODELING IN OBESITY

The nomenclature “obesity cardiomyopathy” refers to
cardiac morphological, functional, and metabolic abnor-
malities originating from obesity alone (94, 95). In some
cases, the term “metabolic cardiomyopathy” may be
used in reference to the broad setting of metabolic dis-
orders including insulin resistance, diabetes mellitus,
and obesity (132, 133). In general, long-term obesity is
closely associated with cardiac remodeling, character-
ized as LV hypertrophy, cardiac fibrosis, and diastolic
dysfunction that eventually evolves to overt heart failure
(FIGURE 3). Fat accumulation, especially disproportion-
ate deposition of metabolically active visceral adipose
tissue (VAT) and pericardial fat, drives a higher cardiac
output (CO) and workload, and subsequently an
enlargement of the LV to meet increased energy
requirements (134). Obesity is accompanied by alterna-
tions in nutrition, gut microbiota, and neurohumoral ac-
tivity that compromise cardiac energy metabolism,
contractile and relaxation function, and cardiac survival
(135, 136) Meanwhile, changes in nutrition status, gut
microbiota, and physical exercise are also indispensable
for the development of CVD in obesity (137–139). In the
absence of lifestyle intervention and targeted drug treat-
ment, obesity impairs cardiac structure and function. It is
noteworthy that the cardiac pathological phenotype of
obesity varies and can be manifested as either HF with
preserved ejection fraction (HFpEF) or reduced ejection
fraction (140, 141). In addition to morphological changes,
obesity impacts myocardial electrophysiology, resulting
in an increased prevalence of AF (142). Obesity-related
hemodynamic changes, maladaptive myocardial struc-
tural remodeling, and cardiac dysfunction will be briefly
summarized (TABLE 1). Regardless of structural or elec-
trophysiological remodeling abnormalities, obesity
serves as an independent culprit factor for the occur-
rence of cardiac hypertrophy and contractile dysfunction
(17, 158, 159).
Although limited data are available, sex difference

exists for obesity-associated CVD outcome including a

higher mortality risk with increased abdominal fat in
female but not male heart failure patients (160). Despite
that heart failure and various cardiomyopathies are gen-
erally less frequent in women, cardiomyopathies rooted
from metabolic derangement seem to be more popular
in women than men (161, 162).
Furthermore, most obese individuals suffer from at

least one of the comorbidities such as hypertension,
sleep apnea, or diabetes mellitus (163, 164). The concur-
rent presence of coronary heart diseases, hypertension,
and the unique obesity cardiomyopathy seems to inde-
pendently and cooperatively determine anatomic and
functional myocardial pathologies in patients with obe-
sity and other comorbidities such as heart failure. Simply
launching a defined relationship between obesity and
cardiomyopathy is challenging and complicated, since
obesity is often present for years before manifestation
of any cardiac pathological phenotype. Limited longitu-
dinal data have been accumulated for chronological
alterations in cardiac structure and function in obese but
otherwise healthy individuals, making it difficult to deter-
mine the precise onset timing of “obesity cardiomyopa-
thy” (165).

2.1. Hemodynamics

Although a paradoxical benefit exists in overweight and
class I obesity (118, 126, 140, 166–174), it is well docu-
mented that obesity produces hemodynamic alterations
that generally predispose to unfavorable changes in
ventricular structure and function, contributing to the eti-
ology of obesity cardiomyopathy (175) (as summarized in
FIGURE 3).

2.1.1. Increased blood volume.

Obese patients have an increased total and central
blood volume (140, 176, 177). The increase of blood vol-
ume is predominantly the result of elevated renal so-
dium retention and higher metabolic requirements. The
etiology of expanded blood volume and hypertension in
obesity, in particular visceral adiposity, involves several
pathophysiological processes including activation of
sympathetic nervous system and renin-angiotensin-al-
dosterone system (RAAS), hyperinsulinemia, and natri-
uretic peptide downregulation, all of which could impair
renal capacity to excrete Na, leading to Na retention.

FIGURE 3. Overall impact of excessive adipose accumulation on cardiac hemodynamic and ventricular function: Under severe obese condition, alter-
ations in ventricular function and abnormalities in cardiac hemodynamic lead to heart failure. Severe obesity induces left ventricular (LV) hypertrophy,
which may be eccentric (predominant in normotensive severe obesity) or concentric (predominant in severe obesity and obesity with established sys-
temic hypertension). It is uncertain to what extent metabolic alterations including leptin/insulin resistance, lipid toxicity, and altered renin-angiotensin-al-
dosterone system (RAAS) may lead to obesity cardiomyopathy. RV, right ventricular; LV, left ventricular; TNF, tumor necrosis factor; IL-6, interleukin-6;
iNKT cells, invariant natural killer T cells; LA, left atria.
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Table 1. Summary of evidence for cardiomyopathy in obese individuals

Authors (Year) (Ref. No.) Patient Information Presentation of Heart Dysfunction in Obesity

Dhuper et al. (2011) (143) 213 obese (BMI = 36.5360.53) vs. 130
lean subjects

Higher LV mass index, wall thickness, LA index, more aberrant diastolic func-
tion by tissue Doppler E/Ea septal, E/Ea lateral, myocardial performance
index, Doppler mitral EA ratio, and similar systolic function

Shah et al. (2011) (144) 223 obese and 157 obese diabetic
subjects vs. 232 lean subjects

Abnormal cardiac geometry, increased systolic function, and decreased dia-
stolic function

Utz et al. (2011) (145) 65 overweight/obese but otherwise
healthy women

Higher myocardial triglyceride levels, reduced left ventricular diastolic, but
not systolic function, and increased remodeling index in women with insu-
lin resistance compared with insulin-sensitive women

Canepa et al. (2013) (146) 88 obese vs. 154 nonobese patients Increased LV mass index, LV posterior wall thickness but not septal wall with
increased hypertension; higher LV stroke volume; no changes in LV sys-
tolic and diastolic function

Olivotto et al. (2013) (147) 275 adult HCM patients Increased LV mass and higher risks for developing New York Heart
Association (NYHA) functional class III to IV symptoms in obese patients

Dahiya et al. (2015) (148) 35 obese vs. 34 nonobese patients Lower peak myocardial relaxation velocity, greater filling pressures; Higher
LV mass index, left atrial volume index, and LV interventricular septal
thickness

Rider et al. (2015) (149) 59 obese vs. 40 normal weight sub-
jects without identifiable CV risk
factors

No changes in systolic function; Impaired peak radial and longitudinal dia-
stolic myocardial velocity, prolonged time-to-peak longitudinal diastolic ve-
locity; lower peak longitudinal diastolic strain and time-to-peak longitudinal
diastolic strain rate

Yagmur et al. (2017) (150) 40 obese vs. 40 normal weight
subjects

No changes in LV diameters and EF; Impaired LV diastolic function (higher
transmitral deceleration time, isovolumetric relaxation time, and peak late
diastolic tissue Doppler velocity values); Impaired LA reservoir and pump
functions

Finocchiaro et al. (2018) (151) 1,033 sudden cardiac death patients
(�35 yr): 212 obese vs. 821 lean
subjects

Increased prevalence of left ventricular hypertrophy (12% vs. 2%) and coro-
nary artery disease (12% vs. 3%); less sudden arrhythmic death syndrome
(50% vs. 60%)

Blomstrand et al. (2018) (152) 384 patients with T2D, and 184 nondia-
betic subjects

Lower LVEF and global longitudinal strain values and increased E/e’ (the ratio
between early diastolic mitral flow and annular motion velocities) in obese
subjects with or without T2D

El Saiedi et al. (2018) (153) 42 obese vs. 30 healthy children Higher ratio of transmitral early diastolic filling velocity to septal peak early
diastolic myocardial velocity (E/e’) without LVH

Balaji et al. (2019) (154) 504 children with HCM: 140 obese vs.
364 nonobese patients

Increased posterior wall thickness (PWT) but not interventricular septal thick-
ness (IVST)

Fumagalli et al. (2019) (155) 3282 HCM patients: 1,280 preobese
and 1,040 obese vs. 962 normal
weight subjects

Increased likelihood of NYHA class of III/IV [preobesity, 138 (10.8%); obesity,
215 (20.7%); normal weight, 87 (9.0%)], heart failure (preobesity vs normal
weight: HR, 1.192; 95% CI, 0.930–1.1530; obesity vs normal weight: HR,
1.885; 95% CI, 1.485–2.393) and AF

Park et al. (2019) (156) 28,679,891 individuals Increased incidence of clinical HCM after multivariate adjustment, with a haz-
ard ratio per 1 kg/m2 increase in BMI of 1.063 (95% confidence interval
1.051–1.075)

Robertson et al. (2020) (116) 1,388,571 women (18-45 yr) Increased risk for cardiomyopathy, particularly for DCM (HR = 4.71 for BMI
�35 kg/m2 vs. BMI 20-22.5 kg/m2)

Litwin et al. (2020) (157) 11-year follow-up of 254 subjects Increased BMI was related to increases in LV end-diastolic volume, LV mass,
and left atrial volume and decreases in early/late mitral diastolic flow veloc-
ity ratio and E-wave deceleration time

E/Ea, early transmitral flow velocity to early diastolic velocity of the mitral annulus; EA, early to late transmitral flow velocity; HCM, hypertrophic cardiomyopathy; DCM,
dilated cardiomyopathy; LVH, left ventricular hypertrophy; BMI, body mass index; CI, confidence interval; HR, heart rate; AF, atrial fibrillation; T2D, type 2 diabetes.
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Furthermore, overweight/obese individuals generally
exhibit a higher level of salt intake, contributing to ele-
vated blood pressure (BP) and blood volume. Obese
individuals are also prone to increased salt sensitivity
with higher BP hikes with a given amount of salt intake,
while genetic variants in salt sensitivity would also affect
obesity propensity (178–180).

Obesity commonly causes hypoxemia without con-
current cardiopulmonary anomalies through increased
oxygen consumption and decreased lung volumes with
normal breathing (181). Along with increased metabolic
requirements, increased occurrence of the sleep
apnea/hypoventilation syndrome further aggravates
hypoxemia in obesity. Hypoxemia promotes erythro-
poietic activity, as indicated by elevated plasma levels
of erythropoietin, the transferrin receptor, and hemo-
globin, all of which result in further blood volume ele-
vation (182).

2.1.2. Increased CO.

Similar to arteriovenous shunts in severe liver disease,
overweight/obesity, especially abdominal adiposity, is
associated with an increased risk of high-output HF (111,
183–186), possibly due to higher filling pressure and
increased CO (187, 188). With increased blood volume
and stroke volume (SV), CO is generally elevated in
overweight/obese subjects with little change in heart
rate (189). It should be mentioned that although CO
remains relatively high in hypertensive obese patients, it
is still lower than that in normotensive obese individuals
probably due to increased systemic vascular resistance
in hypertension (190).

Abnormal indexes of stroke volume (SV) and CO may
be obscured by obesity. Normalization of SV and CO for
ideal body surface area (BSA) or height to its age-spe-
cific allometric power should provide a more accurate
and better estimate for the impact of obesity on LV sys-
tolic function (190). Interestingly, fat-free body mass
(FFM) is more strongly correlated with SV and CO com-
pared with fat mass and other adiposity variables (191).
Central fat distribution (CFD) is closely correlated with

severe abnormalities in body composition and higher
CO, independently of FFM/fat mass (FM) in overweight
individuals (192). Nonetheless, recent data also suggest
that CO may be lower along with higher systemic vascu-
lar resistance in central obesity compared with those
with peripheral obesity (193, 194).

2.1.3. Increased blood pressure.

Overweight/obesity is a predominant risk factor for the
etiology of hypertension (195, 196), although the precise
mechanisms coupling hypertension to obesity remain

elusive. As aforementioned, Na retention, altered salt
sensitivity, overflow of sympathetic nervous system, and
activation of RAAS and aldosterone/mineralocorticoid
receptor (MR) systems as well as physical compression
of kidneys by visceral fat pad may all play an important
role in the impaired renal-pressure natriuresis (197, 198).
Further evidence has noted impaired tubule-glomerular
feedback and renal retention of Na in obese subjects.
Elevated BP, dyslipidemia, and hyperglycemia, the three
most predominant risk factors for obesity, may be re-
sponsible for at least 45%-50% of CVD incidence, partic-
ularly coronary heart diseases in obese individuals (14).
This is strongly supported by the favorable cardiovascu-
lar outcomes in obesity resulting from reductions in BP
[telmisartan (199)], glucose [sodium/glucose cotrans-
porter 1 (SGLT1) inhibitor (200)], and lipid [orlistat (201)].

2.1.3.1. ARTERIAL STIFFNESS. Arterial stiffness, a devas-
tating pathological process featured by progressively
loss of distensibility of large arteries, emerges as an in-
dependent risk factor exacerbating the development of
CVD in obesity. Excess caloric intake prompts the onset
and development of vascular stiffness to compromise
vascular function via endothelial dysfunction, extracellu-
lar matrix remodeling, calcification, and inflammation
(202–204). Arterial stiffness is usually monitored clini-
cally using pulse wave velocity (205, 206). Weight gain
and metabolic disorders occur before, or concomitant
with, arterial stiffening (189, 207–212). This reduction of
cushioning capacity imposes multiple consequences on
cardiovascular health, including elevated systolic blood
pressure, incident hypertension, increased penetration
of pulsatile energy into microvasculature of target
organs, and a rise in coronary perfusion pressure and
myocardial wall stress, all of which prompt LV remodel-
ing, dysfunction, and heart failure (202, 203, 211, 213,
214). Thus arterial stiffness may be evaluated through
comprehensive assessment of arterial distensibility in
the clinical setting to pinpoint vascular health and pre-
dict future cardiovascular risk. Many, although not all,
studies have found that weight loss reduces arterial stiff-
ness, indicating the reversible nature of obesity-induced
vascular stiffness (212, 215, 216). A better understanding
of arterial stiffness in overweight and obesity should
assist therapeutic strategies to reduce obesity-associ-
ated inordinate CVD risks.

2.1.3.2. PERIPHERAL RESISTANCE. Hypertension is
evoked by increased CO and/or increased peripheral
vascular resistance (PVR) (217). Normotensive obese
patients commonly display low PVRs (175, 218). Total
PVR generally correlates inversely with BMI while it is
positively correlated with waist/hip ratio in stress condi-
tions, indicating a much more determining role for
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central obesity (as opposed to BMI) in the genesis of ele-
vated PVR (219).

2.1.3.3. BLOOD PRESSURE. Overweight/obesity pos-
sesses a close relationship with high BP (195, 220, 221).
Resistant hypertension is more prevalent with obesity
(222). Compared with lean subjects, obese subjects of-
ten exhibit a higher incidence of nondipping hyperten-
sion, based on a 24-h BP obtained using an ambulatory
blood pressure monitor (223, 224). Patients displaying a
nondipping pattern suffer from more hypertension-
induced organ damage such as LV hypertrophy, microal-
buminuria, and stroke, leading to poor overall cardio-
vascular outcomes (224). Interestingly, overweight
and obesity tend to exhibit lower central systolic
blood pressure as compared with lean patients, espe-
cially in women (225).

In hypertensive patients receiving antihypertensive
therapy, a higher BMI value is typically linked with much
smaller BP reduction-associated benefit in LV remodel-
ing and LV systolic function (226), which contributes to
higher CVD mortality in obese hypertensive. Weight loss
using antiobesity medications such as orlistat is associ-
ated with an overt BP drop in overweight/obese subjects
(227). Furthermore, bariatric surgery may also serve as a
useful alternative strategy for BP control in obese hyper-
tensive patients (228).
A sexual dimorphism was noted in the hemodynam-

ics pattern in middle-aged overweight or obese hyper-
tensive individuals, in particular with respect to total
PVR (195). Although the sex-specific intrinsic BP regu-
latory mechanisms are absent in nonobese subjects,
multiple sex differences exist in terms of regulation of
BP and hemodynamics in overweight/obese individu-
als at the molecular, cellular, and tissue levels. In par-
ticular, a number of governing machineries involved in
the development of hypertension and CVD, including the
sympathetic nervous system, the RAAS, and the immune
system, display a sexual dimorphism (229). Moreover,
age also plays a key role as nonobese premenopausal
women exhibit a much higher degree of cardioprotection
than age-matched men (although such benefits dimin-
ished with onset of menopause) (229). Furthermore, both
sex chromosome complements and sex hormones such
as estrogen and testosterone likely participate in gender-
related differences in BP and CVD. The advantage in
female longevity may limit cell senescence signaling and
hypertensive organ damage in nonobese women. Last
but not least, certain sex-related difference in lifestyle,
such as smoking, drinking, and dietary intake, may also
influence BP and CVD between men and women (230).
Importantly, female advantage in cardioprotection disap-
pears with obesity, reminiscent to that seen in diabetes
mellitus (231–235).

2.1.4. Increased LV wall stress.

One of the main obesity-associated changes in hemody-
namics is the rising LV wall stress and tension. In normo-
tensive obesity, elevated central blood volume, stroke
volume, and CO are the main driving forces for LV wall
stress, which predisposes LV dilatation, and eccentric
hypertrophy (FIGURE 3). Eccentric LV hypertrophy (dis-
cussed in much more detail in sect. 2.2) is likely a com-
pensatory machinery for elevated LV wall stress and
contributes to diastolic dysfunction in obesity. Systolic
dysfunction may occur latter as a result of excessive wall
stress if LV wall thickening fails to keep pace with cham-
ber dilatation (236). In response to elevated tension de-
velopment during systole, myocardial fibers thicken (LV
hypertrophy) to maintain systolic stress at a normal
range. To the contrary, elevation in resting or diastolic
wall stress or tension gradually lengthens myocardial
fiber, which should improve the work efficiency of ven-
tricular chambers although it may not normalize or com-
pensate diastolic wall stress in obese individuals (237).

2.1.5. Pulmonary hemodynamics.

Uncorrected obesity is a common comorbidity for pul-
monary hypertension (PH) and influences the severity of
pulmonary arterial hypertension (PAH), commonly
acknowledged as primary pulmonary hypertension. A
close relationship between obesity and PH is has been
shown by echocardiography-based and invasive hemo-
dynamic measurements (127). Apart from epidemiologi-
cal evidence, several groups have revealed a link
between obesity-related metabolic defects and pulmo-
nary vascular remodeling utilizing various genetic and
diet-induced models (238, 239). The precise pathogenic
cue for obesity-induced PH is complex and undefined.
Obesity exerts pathologic impact on systemic circulation
through external environment of pulmonary vascular
cells. With the increasingly recognized role for perivas-
cular adipose tissue (PVAT) in CVD, adipocyte defect in
obesity leads to abrupted release of endocrine and
paracrine adipokines (240). Leptin and adiponectin
denote two most prevalent adipokines in the pathoge-
nesis of PH in overweight/obese subjects involving en-
dothelial dysfunction (241, 242). Leptin-deficient (ob/ob)
mice spontaneously develop PAH and pulmonary vascu-
lar remodeling (238). In addition, estrogen and its metab-
olites are deemed risk factors for the etiology of PAH as
the effects of leptin deletion are attenuated by inhibition
of endogenous estrogen production (238). It is per-
ceived that obesity-evoked systemic and local inflam-
matory responses, such as inflammation, oxidative
stress, PVAT expansion, and insulin resistance, all
contribute to irreversible maladaptive pulmonary
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vasculature remodeling, thus fostering the onset and
progression of PH (243).

A number of secondary factors may also contribute to
the etiology of PH in obese individuals including
increased LV filling pressure and pulmonary capillary
wedge pressure (PCWP) associated with LV failure
(244). In fact, elevated pulmonary BP due to left heart
disease is perhaps the most common type of PH.
Increased LV filling pressure greatly jacks up pulmonary
venous pressure and PCWP, resulting in elevated pul-
monary artery pressure and right ventricular (RV) end-di-
astolic and right atrial pressures, the process of which is
aggravated by pathological stress such as sleep apnea
and obesity hypoventilation (238). Furthermore, hypoxic
vasoconstriction and subsequent pulmonary arteriolar
remodeling as a result of repetitive nocturnal hypoxemia
may prompt right-ventricular hypertrophy and PH (245,
246). Moreover, obesity-associated chronic hyperurice-
mia, an independent risk factor for PH, reduces local
flow within pulmonary vessels, possibly related to low-
ered nitric oxide production and elevated endothelin,
resulting in endothelial dysfunction and ultimately rises
in pulmonary artery pressures (247, 248).

2.2. Structural Changes in Obesity

2.2.1. Measurements.

2.2.1.1. ECHOCARDIOGRAPHY. Obesity leads to unfavor-
able changes in cardiac structure and function. With the
use of echocardiography, magnetic resonance imaging
(MRI), and radionucleotide, derangement in LV structure
and function is noted in obesity, such as concentric
remodeling and compromised diastolic and systolic
function (249, 250). Moreover, left atrial (LA) enlarge-
ment is frequently noted in obesity as well (251). Two-
dimensional echocardiography and tissue doppler imag-
ing are employed to assess LV structure, myocardial sys-
tolic and diastolic function. This approach revealed
much higher LV structure such as posterior and septal
wall thickness, LV mass (LVM), the LVM/height and the
relative wall thickness (RWT), in obese (including young,
otherwise-healthy women) than nonobese individuals
(252). However, LVM index (g/m2) remained essentially
unchanged in obesity.

2.2.1.2. MAGNETIC RESONANCE IMAGING. With the use
of cardiac MRI, a modality, which offers significant
advantages over two-dimensional (2-D) echocardiogra-
phy in estimating LV mass and volume, LV mass and
end-diastolic volume are shown to be positively associ-
ated with obesity severity in men and women (253).
Although MRI seems to offer a more accurate and reli-
able measurement of LVM (254), echocardiography is

still more frequently employed in the clinics due to its
noninvasive nature and moderate cost

2.2.1.3. POSITRON EMISSION TOMOGRAPHY. Cardiac ru-
bidium 82 (Rb-82) positron emission tomography (PET)
has been employed for evaluation of myocardial perfu-
sion imaging in the clinical setting courtesy of its diag-
nostic accuracy and low risk of radiation exposure. In
obese individuals who are usually prone to soft tissue
attenuation artifact with poor acoustic echocardiogram
ranges, cardiac PET perfusion imaging offers a high
prognostic value irrespective of BMI (255).

2.2.2. LV remodeling.

LV remodeling refers to changes in the size, shape, or
structure of LV chamber and occurs more frequently in
obesity (256). The Bogalusa heart study revealed an
underlying role for obesity in LV hypertrophy and
remodeling (257, 258). Indeed, ample evidence has sug-
gested a positive correlation between BMI and LV mass
(259) (TABLE 1). Obese subjects usually possess a high
risk of LV hypertrophy (LVH) defined by increased ven-
tricular mass. The prevalence of LV hypertrophy in
obese normotensive subjects was �14%, much higher
than lean counterparts (5%) (260). The occurrence rate
of LV hypertrophy can be up to 78% in morbid obese
individuals (261), including adverse changes in LV mass,
volume, geometry, and composition, ultimately resulting
in impaired LV function and cardiomyopathy (256).
Severe obesity and hypertension frequently coexist and
impose an additive impact on LV hypertrophy (94, 262).

2.2.2.1. CHANGES IN LV MASS AND VOLUME. LV remod-
eling is characterized by overt changes in cardiac cham-
ber diameter, wall thickness, volume, mass, and LV
ejection fraction (EF) using imaging techniques (263).
Multiple factors may promote rises in LV mass in obese
individuals, with a clear positive relationship between LV
mass (LVM) and seriousness of obesity. LV diastolic
chamber size (diameter or volume) is also used to evalu-
ate cardiac remodeling in obese subjects (256). LV end-
diastolic volume (LVEDV) indexed to BSA is commonly
employed to measure LV volume. LVEDV has been
related to BSA to a power of 1.5 (264).

Physiological LV remodeling, such as exercise-induced
elevation in LV end diastolic dimension (LVEDD) and LV
mass, normally reverses with the cessation of physiologi-
cal stimuli (e.g., exercise training). However, obesity-
induced pathological remodeling seems to progress con-
tinuously and irreversibly, denoting an adverse clinical
prognosis. In routine practice and clinical studies, LVM
was calculated from LVEDD and interventricular septum
and posterior wall thickness using echocardiography and
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cardiac magnetic resonance, according to the Devereux’s
formula.
Although ventricular weight is typically normalized to

body weight in experimental research, overweight sub-
jects have lower ventricular mass/body weight ratio, yield-
ing an artificial difference as a result of the increased
denominator in obesity (265). Recent observations
showed that patients with obesity displayed a higher LV
mass when appropriately indexed to height2.7(266). LV
mass indexed to height2.7 is more appropriately employed
to avoid misleading predictions of CVD risk in obesity.
Classical assessment or indexation of LV mass may
underestimate or overestimate the degree of hypertrophy
in obese adults. Bioelectric impedance analysis (BIA) is
used to yield more precise measurements of overweight
and obesity than BMI. The Strong Heart Study (SHS) has
demonstrated that fat-free body mass (FFM), calculated
using BIA, is the main variable determining levels of LV
mass in obesity, instead of adipose mass, the waist/hip ra-
tio, height, or height2.7 (267). Changes in LVM display a
much tighter association with FFM, suggesting the utility
of FFM as a more refined parameter for normalization of
LVmass (268).

2.2.2.2. FOUR-TIERED CLASSIFICATION OF LV GEOMETRY.
LV hypertrophy (LVH) in obesity is typically catego-
rized into concentric or eccentric based on RWT
measured by echocardiography. However, in the tra-
ditional classification, eccentric LVH was considered a
lower risk profile compared with concentric LVH,
mostly as a result of indeterminate hypertrophy (269,
270). Tantiore, based on whether or not LV concen-
tricity (measured by LV mass/LVEDV0.67) and LVEDV
are increased, cardiac magnetic resonance is used to
refine the classification of LVH into a four geometric
patterns as 1) “thick hypertrophy” (increased concen-
tricity without increased EDV); 2) “dilated hypertro-
phy” (increased EDV without increased concentricity);
3) “thick and dilated hypertrophy” (increased concen-
tricity with increased EDV); and 4) “indeterminate hy-
pertrophy” (increased LVM with neither increased
concentricity nor EDV) (271).

Previous research has shown the presence of concen-
tric LV remodeling associated with decreased systolic
and diastolic function in young otherwise-healthy obese
women (249). A recent follow-up study included 1,699
cases of obesity cardiomyopathy with an incidence of 5.9
per 100,000 observation years. Among these, 481 were
classified dilated cardiomyopathy, 246 cases were hyper-
trophic cardiomyopathy, 61 individuals met the criteria of
alcohol/drug-induced cardiomyopathy, and 509 exhibited
other forms of cardiomyopathies. Increased BMI signifi-
cantly escalated the risk of these types of cardiomyopa-
thies especially dilated cardiomyopathy, with a fivefold

increase in the risk of cardiomyopathy in those with
severe obesity (116) (FIGURE 2).

2.2.2.3. OTHER FACTORS. Obstructive sleep apnea
(OSA) also serves as an independent factor of high LV
mass index and abnormal LV geometry in obesity, likely
due to increased blood pressure, heart rate, intermittent
hypoxia, sympathetic tone, and negative intrathoracic
pressure during airway obstruction (272). It seems that
degree of sustained hypoxemia, rather than the number
of apneic and hypopneic episodes, contributes to the
development of LV hypertrophy (261, 273). Obese indi-
viduals with OSA displayed increased left atrial volume
index, which predisposes them to atrial fibrillation and
HF (274). Additionally, the increased presence of hyper-
tension, especially resistant hypertension, in patients
with OSA is also tied with LV hypertrophy or increased
wall thickness (261).

Insulin resistance, a hallmark of obesity, also partici-
pates in the pathogenesis of LV hypertrophy and dia-
stolic dysfunction in obesity. Furthermore, the impact of
insulin resistance on LV remodeling and function may
be influenced by sex and BMI. In one study, insulin re-
sistance was associated with increased LV mass and LV
wall thickness in obese women but not men (275).
Indeed, obese women exhibit both eccentric and con-
centric hypertrophy, whereas obese male counterparts
predominantly display concentric hypertrophy. It is well
known that concentric hypertrophy serves as a much
stronger predictive of CVD mortality compared with
eccentric hypertrophy (276). Impaired insulin metabolic
signaling plays a predominant role in insulin resistance-
elicited LV dysfunction (277). The existence of impaired
fasting glucose (IFG) and impaired glucose tolerance
(IGT) predisposes the development of LV hypertrophy in
normotensive individuals (278).

2.2.3. LA remodeling.

Obesity is often joined with atrial electrostructural
remodeling, including alterations in atrial size, conduc-
tion, histology (lipodosis), and levels of profibrotic and
proinflammatory mediators (279). The accepted meth-
ods to evaluate LA size include uniaxial anterior-poste-
rior dimension and LA volume indexed to body surface
area or height (280). LA volume is progressively
enlarged and corelates well with LV mass (weakly with
blood pressure) in obesity (281). However, the reported
prevalence of LA enlargement in obese individuals is
somewhat variable. This is probably related to the pres-
ence of obesity paradox, duration of obesity, the pres-
ence of comorbidities, and different methods utilized for
body size normalization. For example, the relationship of
obesity to LA enlargement is confounded by the
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existence of hypertension. Both BMI and BP are risk fac-
tors for LA enlargement although BP displays a weaker
correlation (282). According to a 10-yr longitudinal study,
obesity imposes a stronger clinical relevance than
hypertension with respect to LA enlargement (283). Of
note, atrial remodeling secondary to obesity is charac-
terized by progressive impairment of atrial structure,
electrophysiological function and electro-anatomical in-
tegrity, leading to a proarrhythmic status (284).

2.2.4. RV hypertrophy.

Obesity serves as an independent risk factor for RV hy-
pertrophy. Obese individuals display a higher RV mass
and larger RV end-diastolic volumes (RVEDV) compared
with lean counterparts (76). Indeed, RV mass was 6%
and 14% greater, respectively, in overweight and obese
groups. These authors noted that every 5 kg/m2 rise in
BMI was associated with a 1.3 g higher RV mass and
8.65 mL higher RVEDV. A significant correlation was
identified between BMI and RV mass or RVEDV (285).
Assessment of RV wall thickness using echocardiogra-
phy in normal, overweight, and obese participants has
revealed much higher RV free wall thickness in over-
weight (37 6 6 mm) and obese (38 6 5 mm for BMI of
30–34.9; 49 6 9 mm for BMI �35) participants com-
pared with lean (336 6 mm) participants (286).

Factors indicating in RV hypertrophy include OSA and
chronic PAH. One study revealed that high-respiratory
disturbance index (RDI) is correlated with higher BMI than
low-RDI (190). Simultaneously, a significant difference was
noted in RV wall thickness between high RDI and low-RDI
groups, the effect of which was independent of hyperten-
sion and pulmonary function. These findings convincingly
support the notion that obstructive sleep apnea might be
a link between obesity and RV hypertrophy (287).
Chronic PAH may serve as another independent fac-

tor for RV hypertrophy. RV diastolic stiffness is elevated
by PAH and is associated with RV disease severity.
Histological analyses revealed elevated cardiomyocyte
number and RV fibrosis in PAH patients. In addition, RV
diastolic stiffness and passive tension at different sarco-
mere lengths were overtly increased in PAH patients. At
the molecular level, phosphorylation of sarcomeric pro-
tein titin, an essential governor of sarcomeric stiffening,
was overtly lower in RV tissues from PAH group. In this
context, increased RV fibrosis may serve as a compen-
satory mechanism to combat the elevated RV afterload
in obesity (288).

2.2.5. Aortic valve stenosis.

Earlier studies have shown conflicting results with
regards to the relationship between BMI and aortic valve

stenosis (AVS) (289–291). However, recent large cohort
observational studies have depicted an association
between increased adiposity and AVS risk (292, 293). A
Swedish study including 71,817 individuals found a posi-
tive relationship between obesity and risk of AVS.
Obesity with a BMI �30 had an 80% higher risk of AVS.
Abdominal obesity (waist circumference �102 cm for
men and �88 cm for women) was tightly correlated with
a 30% higher occurrence rate of AVS (292). Later the
Denmark group including 108,304 individuals revealed
similar results with risk of AVS and aortic valve
replacement much greater those with both high BMI
and high waist-hip ratio or waist circumference (293).
At this point, the precise mechanism behind AVS risk
in obesity is unclear although structural or metabolic
changes in the heart may play a role. Obesity leads to
higher blood pressure that may impose geometric
changes on LV and aortic valve (294) as well as dam-
age to endothelial cells (295). Metabolically, elevated
plasma lipids lead to lipid deposits on aortic valve leaf-
lets and provoke valvular interstitial damage (295,
296). At the same time, lipid deposition activates
inflammatory responses, resulting in differentiation of
valvular interstitial cells into osteoblasts and thus cal-
cification of valve leaflets (297).

2.3. Cardiac Dysfunction in Obesity

2.3.1. LV systolic dysfunction in obesity.

Conventional 2-D or M-mode echocardiography is clas-
sified as the most common technique for measurement
of systolic function by examining stroke volume, ejection
fraction, transmitral velocity and fractional shortening.
LV EF is reported to be normal (253) or even supranor-
mal in obesity-induced cardiac remodeling (TABLE 1),
which also underpins the high prevalence of HF with
preserved ejection fraction (HFpEF) in obese patients
(115). However, increased stroke volume (SV) has been
observed in overweight and obese patients, in parallel
with increasing levels of fat free body mass (FFM) (191)
and CFD (192, 298), indicating elevated systolic load in
preclinical obesity cardiomyopathy. Fractional shorten-
ing (FS) evaluates circumferential LV myocardial contrac-
tility by measuring the percentage change in LV
diameter during systole. LV midwall fractional shortening
is believed to be more suitable than LV endocardial frac-
tional shortening for the assessment of regional systolic
function in LV hypertrophy, particularly concentric geom-
etry. Most studies have demonstrated a slight (261) to
moderate (299) decrease of LV midwall factional short-
ening accompanied by LV hypertrophy in obesity, indi-
cating reduced systolic contraction. To this point, gastric
bypass surgery was shown to effectively reverse LV
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remodeling along with improved midwall shortening
(300).

Notably, ample observations have substantiated
subclinical depressed LV systolic function in obesity
cardiomyopathy. Although EF can be normal even in
severe obesity, longstanding obesity for more than
20 yr is associated with overtly impaired LV systolic
and diastolic function (301). Accurate measurements
using more sensitive modalities have revealed sub-
clinical systolic dysfunction associated with obesity,
as evidenced by proportionally decreased myocar-
dial tissue velocity and strain index with escalating
severities of obesity. Myocardial strain typically
refers to load-dependent deformation (shortening,
lengthening, or thickening) of the myocardium, which
is estimated as the ratio of the distances between
two points during expansion and contraction (302).
Myocardial strain has shown prognostic significance
courtesy of the ability to identify subclinical abnor-
malities in LV and RV function before onset of overt
cardiomyopathy and HF (286, 303). This is evidenced
by the biventricular strain abnormities that are al-
ready present in obese children (302, 304, 305).
Tissue Doppler imaging (TDI), a new echocardio-

graphic modality that detects low-velocity, high-am-
plitude myocardial motion, has emerged as one of the
most widely applied noninvasive tools for the quanti-
tative assessment of myocardial systolic and diastolic
function. The TDI-derived parameters of myocardial
velocities, including myocardial systolic velocity (Sm,
Sa), early diastolic velocity (Em, Ea), late diastolic
myocardial velocity (Am), and LV diastolic pressure
(E/Em, E/Ea) are already reduced at the preclinical or
early stage of cardiomyopathy in obesity (249, 250)
and drop further with increased adiposity (249).
Tissue Doppler myocardial strain and strain rate imag-
ing are also employed to decipher subclinical cardiac
outcomes of isolated obesity. Subclinical cardiac
manifestations shown by decreased LV global longi-
tudinal peak strain rate are correlated with BMI, dura-
tion of obesity, and increasing age (303). Patients
with increasing degree of obesity show diminished
myocardial velocity, and strain index, in light of nor-
mal ranges of ejection fraction from conventional 2-D
echo measurement. These observations indicate
diminished LV systolic function even in patients with
mild obesity (250).
However, strain measurements based on TDI are

angle dependent with the use of the Doppler device
which produces simultaneous opposite deformations in
the long and short axes. Whereas speckle tracking
echocardiography offers more precise and angle-inde-
pendent readouts of LV dimensions and strains. Speckle
tracking relies solely on tracking of characteristic

speckle patterns generated by interference of ultra-
sound beams with myocardial tissues (306). There is
evidence suggesting that subclinical LV systolic dys-
function assessed by speckle-tracking global longitu-
dinal strain is associated with abdominal adiposity but
not BMI (307).
Another LV derangement found in obesity using

speckle tracking echocardiography or MRI is increased
LV torsion and untwisting rate. Whether altered LV rota-
tional function is a compensatory machinery for compro-
mised LV contractility or an outcome of insufficient
diastolic filling requires further investigation. Systolic tor-
sion and diastolic untwisting are found elevated in the
early phases of diastolic dysfunction and are then nor-
malized or reduced in the advanced stage (308). These
emerging techniques should help to define earlier car-
diac abnormalities associated with overweight and
obesity.

2.3.2. LV diastolic dysfunction in obesity.

Diastolic dysfunction develops either alone or in concert
with systolic dysfunction and typically precedes the
onset of systolic failure (as shown in multiple clinical
studies listed in TABLE 1). The classic diastolic dysfunc-
tion, which denotes abnormalities in relaxation or damp-
ened myocardial compliance, or both, is featured by a
higher impedance to LV filling, resulting in an inappropri-
ately elevated diastolic pressure (309). A cross-sectional
survey of 1,275 individuals aged 60 to 86 yr found that
LV diastolic dysfunction is a common situation among
the elderly, although EF is preserved in this setting
(270). As it is the case with systolic dysfunction, compre-
hensive studies using TDI and other techniques have
been performed to examine diastolic function in obesity.
Current consensus recommends the application of early
(E) to late (A) diastolic transmitral flow velocity (E/A) as a
surrogate for diastolic function and E to early diastolic
mitral annular tissue velocity (E/e’) as a more sensitive in-
dicator for LV filling pressures (309). In fact, multivariate
analyses demonstrated that BMI is independently asso-
ciated with higher E, A, and E/e’ and even overweight is
linked to diastolic dysfunction, as evidenced by reduced
E’ and higher E/e’ in the overweight subjects (310).
Obesity in young otherwise-healthy women was found
to contribute to concentric LV remodeling and impaired
LV relaxation as evidenced by decreased early diastolic
myocardial velocity (Em) (249). In addition, hemody-
namic data obtained from invasive studies showed that
obesity is associated increased LV end-diastolic pres-
sure (298). LV diastolic anomalies appear to be frequent
in obese individuals without any clinically evident heart
diseases triggered by diabetes mellitus, hypertension,
or coronary artery disease.
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2.3.3. RV dysfunction in obesity.

Obesity not only leads to RV hypertrophy but also RV
dysfunction. Larger RV stroke volume (RVSV) and lower
RV ejection fraction (RVEF) are noted in overweight and
obese individuals after adjusting for demographics,
height, education, and CVD risk factors. Even after
adjustment of LV parameters, differences still prevailed.
RVSV was increased in overweight and obese individu-
als. RVEF was mildly but notably lower in overweight
and obese individuals (285).

Finally, overtly decreased diastolic and systolic veloc-
ities of RV free wall motion were noted in overweight
and obese individuals in comparison with lean subjects.
Meanwhile, RV systolic and diastolic velocities as well as
strain indexes were significantly depressed in over-
weight and obese individuals in comparison with con-
trols. Alongside with increased BMI, the degree of
decline of RV function and strain rate were progressively
worsened (286).

2.3.4. Atrial fibrillation.

AF is yet another severe malady commonly seen in obe-
sity. Although the precise etiological nature of obesity-
induced atrial arrhythmias remains elusive, LA remodel-
ing manifested by an increased LA dimension may be a
key decisive factor. Obesity predisposes to the onset of
AF mainly through LA structural and electrophysiological
changes, elevated BP, LV hypertrophy, and LV diastolic
dysfunction (142, 284). Large ambispective cohort and
longitudinal obese ovine findings have revealed that
obesity early on in life and progressive weight gain are
closely associated with more episodes, prolongation,
and greater cumulative duration of AF (311, 312). In a 21-
yr cohort study involving 3,248 patients with paroxysmal
AF, greater BMI paralleled larger LA volume and pre-
dicted incremental progression to permanent AF (313).
Based on the electrophysiological findings in LA and
pulmonary vein from obese individuals, decreased pos-
terior LA voltage and shortened or unchanged effective
refractory period in LA and PVs were found to coincide
with elevated LA pressure, LA volume and lower LA
strain (314). Infiltration of LA epicardial fat may also serve
as a unique substrate for AF in obesity (312).
Epidemiological evidence indicates that weight loss
greatly lowers AF burden and recurrence incidence fol-
lowing pharmacological treatment in obese patients
(163). The Atrial Fibrillation Follow-up Investigation of
Rhythm Management (AFFIRM) study denoted one of
the largest multicenter clinical trials for AF, involving
4,060 patients. Although earlier reports noted an associ-
ation between obesity and higher risk of AF, multivariate
analysis from AFFIRM study found an interesting

“obesity paradox” for AF outcomes, where overweight
and obesity were in fact related to a decreased all-cause
mortality (315).

2.3.5. Clinical HF and obesity.

Uncorrected obesity is a major culprit factor for heart fail-
ure (HF), independent of other CVD risk factors, including
diabetes mellitus, ischemic heart diseases, dyslipidemia
and hypertension. In the international cohort study of
international Sarcomeric Human Cardiomyopathy Registry
(SHARE) with a median follow-up of 6.8 yr, BMI >30 was
independently correlated with HF and arrhythmias irre-
spective of genotype, age and sex (155). Clinical manifes-
tation and pathophysiology are often redundant between
obesity and HF, including decreased LV function, cardiac
remodeling, neurohormonal activation (sympathetic nerv-
ous system and RAAS). Obese patients are commonly
characterized by reduced exercise capacity, increased
cardiac filling pressure, Na retention, plasma volume
expansion, and a normal LV ejection fraction. These indi-
viduals exhibit one of the three following phenotypes.
First, HF in obesity occurs in association with hypervo-
lemia, including Na retention, plasma volume expan-
sion, and cardiac enlargement, although cardiac index
and circulating levels of natriuretic peptides are not sig-
nificantly elevated. It is believed that RAAS activation
and increased aldosterone levels may underscore
hypervolemia in obesity (175, 185). In addition,
increased leptin levels directly activate both RAAS and
sympathetic nervous system (179, 185). Second, ele-
vated natriuretic peptides in obesity lower systemic
vascular resistance, leading to LV dilatation, increased
RV and LV filling pressures, resulting in high-output HF
and glomerular hyperfiltration (188). This is consistent
with increased LV end-diastolic pressure in obesity, in-
dicative of diastolic dysfunction (95). LV and possibly
RV dilation are likely a result of increased CO in obe-
sity. In subpopulations of obese patients, elevation of
natriuretic peptides may contribute to decreased sys-
temic vascular resistance and elevated CO (175, 316).
Endogenous natriuretic peptides are normally con-
strained by neprilysin produced by adipocytes (317).
However, the release of natriuretic peptides greatly
exceeds the degradative capacity of adipocyte-related
neprilysin with continuous stretch of ventricles, result-
ing in systemic vasodilatation and high output HF (188).
In addition, increased natriuretic peptides may result in
glomerular hyperfiltration due to low afferent arteriolar
resistance in obesity-related high output HF (318).
Third, it has been noted that older female obese
patients often exhibit HFpEF with modestly elevated
ventricular dimensions, frequent AF, increased natri-
uretic peptides and glomerular malfunction and plasma
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volume expansion reminiscent of high output HF (183).
As the LV dilates wall stress rises thereby prompting
secondary eccentric hypertrophy. With proportionated
LV hypertrophy in response to ventricular dilation, sys-
tolic function remains preserved (due to normalized
wall stress), resulting in the onset of HFpEF. If LV hyper-
trophy is unable to keep pace with dilation (inadequate
hypertrophy), LV wall stress overtly rises to promote
systolic dysfunction (319, 320). In this context, obesity
is deemed a primary factor for the etiology of HFpEF
(321, 322). To distinguish among these three pheno-
types and optimize therapeutic interventions in obese
individuals, several key parameters may be used
including exercise intolerance, rises in ventricular filling
pressures, and LV ejection fraction. In particular, recog-
nition of HF in obesity is urgently needed to initiate
large-scale clinical trials enrolling obese patients with
various forms of HF.

2.4. Obesity Paradox

Emerging evidence suggests that overweight or obesity
is associated with an improved survival in patients
afflicted with CVD (175, 323, 324). In general, HF patients
who are underweight display the highest cardiovascular
mortality and hospitalization prevalence, as opposed to
those who are overweight or obese (324, 325). This is
profoundly noted in epidemiological findings with a bet-
ter prognosis in obese patients with HF, a phenomenon
termed “obesity paradox” (167). Not only does obesity
paradox exists in HF, intervention cardiac procedure
such as percutaneous coronary intervention (PCI) also
exhibits a much lower mortality rate in overweight and
obese patients in comparison with lean subjects (166).

2.4.1. Potential rationales underlying obesity
paradox.

Several scenarios may be considered for obesity para-
dox. First, the severity of HF may be overestimated in
obese patients because of the concurrent comorbidities
such as dyspnea (171). Second, nearly all available data
concerning “obesity paradox” at this point use BMI as
the gold standard to categorize obesity. In this regard,
60,335 participants were followed up for 10yr compar-
ing BMI with body composition indices as predictors of
CVD death. The results yielded a stronger association
between BMI and CVD mortality (326). However, com-
pared with other adiposity measures, BMI does not
accurately reflect various cardiometabolic risks in obe-
sity since it cannot distinguish fat mass from fat-free
mass (327, 328). Lower FFM is pertinent to increased
risk of death in the lower BMI range (329, 330).
Measurement for abdominal obesity using waist-to-

height ratio (WHR) and waist circumference (WC) should
better pinpoint fat mass and decipher cardiometabolic
risks associated with obesity (331). Independent of BMI,
abdominal obesity is associated with impaired LV con-
tractile and diastolic function and associated with higher
mortality risk in adults (251, 307, 332). Furthermore,
increased pericardial fat is related to the pathogenesis
of obesity-related CVDs and displays a stronger correla-
tion with heart structure and function than the more gen-
eral obesity indicators (333).

2.4.2. Other risk factors of CVD outcomes in
obesity.

Obesity is often a product of intertwined nutritional
and lifestyle risk factors including smoking (334). A
population-based study noted escalating prevalence
and mortality of CVD with increasing BMI in diabetic
patients following exclusion of smoking, poor meta-
bolic control, and short duration of follow-up (126).
The relationship between BMI and CVD incidence is
more linear in subgroups without any comorbidities or
smoking (335), whereas the increased risk of death in
underweight (J-shape association) is apparent in ever
smokers in a subgroup analysis of smoking status
(336). Sex differences also impact the correlation
between obesity and CVD outcome. For instance,
increased abdominal fat, assessed by WHR, seems to
be tied with a higher mortality risk in female but not
male HF patients (160). Cardiorespiratory fitness (CRF)
is a measure of how well the lungs and CV system per-
form during physical activity (168). High CRF has long
been considered a predictor of lower CVD risks and
better prognosis (168, 337), while low CRF results in
greater impairment in LV strain (338) and chronic dis-
ability due to CVD (339). The obesity paradox was
less pronounced among diabetes patients with high
CRF, although mortality risk decreased with increasing
BMI in patients with low CRF (173).

Furthermore, emerging evidence has started to shed
light on the existence of the heterogeneity in obesity as
defined by BMI. The metabolically healthy obese (MHO)
refers to an obesity trait in the absence of dyslipidemia,
insulin resistance, hypertension, diabetes mellitus, and
any of the classical cardiometabolic factors, conferring
less prevalence for CVD (340). However, previous stud-
ies have provided inconsistent results about the associa-
tion of MHO and CVD. In fact, a large proportion of MHO
may be converted to an unhealthy phenotype over time
with an associated higher CVD incidence compared
with a normal-weight group (341). Therefore, MHO
should not be considered as healthy, as existing clinical
approaches can hardly identify a “stably” benign obese
subgroup (342).
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3. BASIC MECHANISM OF OBESITY
CARDIOMYOPATHY

3.1. Adipose Tissue Dysfunction and Inflammation

Obesity is characterized by chronic activation of inflam-
mation, commonly associated with and a contributing
factor for insulin resistance and T2D (104, 343, 344).
Ample recent evidence has depicted an important role
for dysfunctional adipose tissues in inflammation, insulin
resistance and cardiac abnormalities. Obesity is a pro-
gressive pathological process whereby adipocytes and
resident immune cells are activated and subsequently
release vast secretory factors. In addition, various

immune cells are recruited to adipose tissues, where
they are converted into an active inflammatory pheno-
type to produce and release proinflammatory cytokines
(343). Ample evidence has revealed an essential role for
alterations in these adipose tissue-released factors,
termed adipocytokines, including adiponectin, leptin,
resistin, nitric oxide, interleukins, tumor necrosis factor-a
(TNF-a), and other inflammatory mediators in the devel-
opment of CVD via an autocrine, paracrine or endocrine
fashion (FIGURE 4). Other local and systemic influences,
such as insulin resistance (IR), renin-angiotensin-aldoste-
rone system (RAAS) activation, lipotoxicity, and intersti-
tial fibrosis, may act in synergy with adipocytokines in
the onset and development of CVD.

Insulin resistance
Systemic inflammation

Gene expression in liver,
immune cells and other tissues

Obese stateLean state/ Healthy expansion

miR-99b, miR-155
Exosomal miRNAs

Insulin sensitivity
Anti-inflammation

IL-10, IL-13, IL-4
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FIGURE 4. Adipose tissue dysfunction and inflammation in obesity that directly and indirectly aggravates cardiomyopathy: In lean state, adipocytes
secrete various endocrine factors that maintain metabolic homeostasis. In response to chronic energy excess, infiltration of proinflammatory immune
cells and hypertrophic adipose expansion along with a lack of adipogenesis can be observed in adipose tissues, which is accompanied by altered
secretion of adipose tissue hormones, cytokines, metabolites, and exosomal miRNAs. Overall, the changes in hypertrophic adipose tissue contribute to
insulin resistance, impaired glucose, and lipid metabolism and low-grade systemic inflammation and exert local effects that exacerbate cardiomyopathy
in obesity. IL-10, -13, -4, interleukin 10, 13, 4; SFRP5, secreted frizzled-related protein 5; TNFa, tumor necrosis factor-a; IL-6, -1b, interleukin 6, 1b; IFN-c,
interferon c; MCP1, monocyte chemoattractant protein 1; CXCL5, C-X-C motif chemokine ligand 5; FFAs, free fatty acids; SCFAs, short-chain fatty acids;
FAHFAs, fatty acid esters of hydroxy fatty acids; 12,13-DHOME, 12,13-dihydroxy-(9Z)-octadecenoic acid; BCAAs, branched-chain amino acids. Created
with BioRender.com.
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3.1.1. Ectopic adipose tissue in obesity
cardiomyopathy.

There exist two main kinds of adipose tissues, white adi-
pose tissue (WAT) and brown adipose tissue (BAT),
among which WAT is predominant in mammals while
BAT resides in several regions such as interscapular
and supraclavicular areas (345). Adipose tissues can
also be divided into different anatomical depots, VAT,
and subcutaneous adipose tissue (SAT) (346). Adipose
tissue dysfunction, especially WAT dysfunction, plays an
imperative role in the pathogenesis of various metabolic
diseases and CVDs (133).

3.1.1.1. PATHOLOGICAL FEATURES OF ADIPOSE TISSUE
IN OBESITY. The expansion of adipose tissue includes
hyperplasia/adipogenesis (new adipocytes differenti-
ated from precursor cells) and hypertrophy (the increase
in adipocyte size) (347).

Interestingly, pathological expansion of adipose tis-
sue in obesity is accompanied with a decline of hyper-
plasia and adipogenesis (347, 348). Subcutaneous
adipose tissue (SAT) serves as the largest reservoir for
lipid storage that prevent excess lipids accumulating in
peripheral organs such as liver, heart, and muscles in
physiological conditions. The limited expansion and dys-
function of SAT due to impaired adipogenesis lead to a
hypertrophic expansion of adipose cells and increased fi-
brosis in adipose tissue (348–350). Hypertrophic adipose
depots present different biochemical properties, includ-
ing elevated lipolysis, increased secretion of inflammatory
cytokines, and reduced secretion of anti-inflammatory
adipokines (351, 352). Lipotoxicity caused by excessive
hypertrophic fat accumulation leads to insulin resistance
and functional deficits in both adipose tissue and other
organs including liver, heart, muscle, and pancreas (164,
344, 353, 354).
Insulin resistance is regarded as a springboard linking

adipose tissue accumulation in obesity to CVD. Although
inflammation of adipose tissues is required for physiologi-
cal expansion of adipose tissues in healthy individuals,
evidence from both clinical and experimental studies
strongly suggests an important relationship between sys-
temic inflammation caused by maladaptive adipose tis-
sues and insulin resistance in obesity (355).

3.1.1.2. ECTOPIC FAT DEPOSITION. As SAT fails to store
excess fat, lipids accumulate in visceral adipose tissues
and other tissues, which would normally contain only
small fractions of fat, including liver, skeletal muscle,
heart, and pancreas (356). Certain ectopic fat depots,
such as vascular adipose tissue (357), intrahepatic fat,
and intramuscular fat, predominantly generate systemic
effects (358), while adipose tissue surrounding heart

[epicardial adipose tissue (EAT) and paracardial adipose
tissue (PAT)] and most of the blood vessels (PVAT) are
pertinent to adverse local CV effects (357, 359).

Adipose tissues surrounding the heart are classified
into two layers: epicardial adipose tissue (EAT) and para-
cardial adipose tissue (PAT) based on anatomic location.
EAT is the fat depot between myocardium and pericardial
visceral layer and is anatomically and functionally contigu-
ous with myocardium (360). Paracardial fat is located out-
side of the visceral pericardium. Perivascular adipose
tissue (PVAT) refers to adipose tissue surrounding blood
vessels, which plays a key role in the maintenance of vas-
cular function. PVAT normally possesses antiatherogenic
functions by secreting biologically active factors (361,
362). However, PVAT becomes dysfunctional in obesity
with an increased level of proinflammatory adipokine
secretion, which induces oxidative stress in vessels and
leads to endothelial dysfunction, impaired vasodilation,
and stiffening of vessels. All of these events may lead to
vascular dysfunction and CVD (361, 363).

3.1.2. Local effects of EAT.

EAT is a marker of visceral adiposity and cardiac lipotox-
icity and sets the stage for cardiac dysfunction in adipos-
ity by promoting inflammation and metabolic disorders
in the heart (364, 365). Epicardial fat directly exerts local
effects on cardiac structure and function, including ele-
vated LV mass, deranged RV geometry, and impaired
relaxation (366, 367). Of note, therapeutic interventions
targeting adipokines greatly reduce the risk of heart
failure, while drugs promoting accumulation of epicar-
dial adipocytes or inflammation may exacerbate CVD,
including AF, coronary artery disease, and HF (365,
368).

Both mechanical and biomolecular factors may
underlie the impact of EAT on heart structure and func-
tion (367). First, increased EAT puts additional mechani-
cal stress on both ventricles and increases cardiac
workload, leading to LV hypertrophy. In addition,
increased EAT also exaggerates atrial enlargement and
ventricular diastolic dysfunction owing to physical
obstruction of cardiac filling. Second, infiltration of adi-
pocytes from EAT to the myocardium facilitates aberrant
cardiac metabolism by promoting excessive myocardial
FFA usage and development of lipotoxicity. Third, in
obesity, EAT is enriched with a transcriptome associated
with genes governing inflammation, and endothelial dys-
function (364, 369). EAT serves as a local transducer of
systemic inflammation to the myocardium and a source of
local secretion of proinflammatory adipocytokines that
promotes myocardial disarray, cardiac fibrosis, and stiff-
ness in uncorrected obesity. As themetabolic profile shifts
in obesity and EAT abnormally expands, both resident
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and infiltrated immune cells generate a proinflammatory
microenvironment with cardiomyocytes, which influents
cardiac metabolism and contractility (344, 360). In addi-
tion, increases in EAT was shown to elicit local electrome-
chanical responses in atrial tissues though released
cytokines, such as TNF and IL-6, as well as FFAs.

3.1.3. Systemic effects of adipose tissue.

Adipose tissue is considered an endocrine organ and
an “ancestral immune organ” (110, 370, 371). Generally
speaking, adipokines are hormones, metabolites, exo-
somal microRNAs, cytokines and chemokines
secreted by adipose tissue and sent to the targets in
other organs, such as adiponectin, leptin, resistin,
FFA, transforming growth factor-b (TGF-b), interleu-
kins, fibroblast growth factor 21 (FGF21), bone morpho-
genetic protein (BMP)-4, BMP-7, and many others
(370, 372). Obesity is characterized by a decrease in
anti-inflammatory adipokines and an increase in proin-
flammatory ones. This shift impacts on multiple func-
tions such as appetite, energy balance, endothelial
function, and immunity, promoting the development of
chronic, systemic inflammation, and insulin resistance,
processes that are thought central to the obesity-
associated CVD (344, 373).

3.1.3.1. DYSREGULATION OF ADIPOKINES. 3.1.3.1.1.
Decreased anti-inflammatory adipokines. Adi-
ponectin is one of the principal adipokines with insulin-
sensitizing and anti-inflammatory properties. Plasma lev-
els of adiponectin are declined in obesity (374–377). In a
study of 933 middle-aged subjects, low plasma adipo-
nectin levels were independently correlated with
increased LV hypertrophy (378). Adiponectin evokes
cardioprotection against pathological cardiac remodel-
ing and ischemia injuries partially through reducing myo-
cardial oxidative stress, suppressing inflammation, and
improving energy supply (379). Although clinical studies
are limited, these cardioprotective effects are potentially
translational.

Secretion of cardiac FGF21 is increased in response
to obesity to evoke cardioprotection (380), while FGF21
deficiency predisposes the susceptibility of obesity-
related cardiomyopathy in mice (381). Interleukin 10 (IL-
10) is generally considered as an anti-inflammatory cyto-
kine. As IL-10 levels are declined in obesity, systemic IL-
10 administration was found to markedly ameliorate LA
remodeling and vulnerability to AF in diet-induced obe-
sity (382). Interleukin 33 (IL-33), another anti-inflamma-
tory adipokine from the IL-1 family, participates in type 2-
like immune responses (383, 384). Levels of IL-33 were
suppressed in obesity and were correlated with natri-
uretic peptides in hearts (385). Secreted frizzled-related

protein 5 (SFRP5) is another anti-inflammatory adipokine
secreted from WAT and suppresses inflammation in
WAT (386, 387). FAM19A5, a novel adipokine, inhibits
neointimal formation through sphingosine-1-phosphate
receptor 2-G12/13-RhoA signaling (388, 389).

3.1.3.1.2. Increased proinflammatory adipo-
kines. Dysfunctional adipose tissue in obesity releases
an abundance of proinflammation factors, including lep-
tin, resistin, chemokine, and cytokines such as transform-
ing growth factor-a (TNF-a), interleukin-6 (IL-6), IL-1, and
monocyte chemoattractant protein-1 (MCP-1) (390).
Leptin, a 16-kDa peptide hormone product of the ob

gene, is one of the proinflammatory adipokines secreted
by adipocytes (391). The level of leptin is elevated in obe-
sity to coincide with cardiac hypertrophy through binding
of leptin to the short form leptin receptor in rat hearts
(392). The adiponectin/leptin ratio is a marker for adipose
tissue status, exhibiting an inverse correlation with low-
grade chronic inflammation (393). Leptin deficiency miti-
gates diet-induced and preestablished obesity through
polarizing macrophages to anti-inflammatory phenotypes,
while hyperleptinemia is frequently accompanied by insu-
lin resistance, T2D, and increased prevalence of CVD
(394).
Resistin is an adipokine secreted by macrophages

within adipose tissues in obesity. Increased levels of
resistin in obesity mediate LV hypertrophy (252) and
systolic dysfunction (395) possibly through fostering
contractile dysfunction (396), inflammation, and endo-
thelial activation (397). However, the precise role of
resistin remains unclear in obesity as experimental evi-
dence either failed to confirm the association between
resistin and obesity (398) or favored dissociation
between insulin resistance and elevated resistin levels
in obesity (334).
Levels of TGF-b1 were overtly increased in LV from

obese compared with lean rabbits, possibly contributing
to cardiac collagen deposition (399). IL-6 deficiency pro-
motes insulin resistance and cardiac lipid accumulation,
interstitial fibrosis, and inflammation in high-fat diet-
induced obesity (400). C-X-C motif chemokine ligand-14
(CXCL14) is an adipokine secreted in BAT, which medi-
ates the communication between brown fat and macro-
phage in response to thermogenic activation (401).
Osteopontin (OPN) is another proinflammatory cytokine
abruptly elevated in adipose tissue from obese indi-
viduals. OPN functions as a key mediator in promoting
macrophage proliferation for local adipose tissue in
obesity (402, 403). Endocannabinoids, another proin-
flammatory adipokine, have an important role in regu-
lating energy intake, storage, and consumption (404).
Leukotriene B4 (LTB4) facilitates the development of
insulin resistance in a macrophage-dependent man-
ner in obesity (405).
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3.1.4. Activation of immune cells.

As discussed above, adipocytes can become inflamed
and secrete a variety of inflammatory adipokines.
However, with the identification of macrophages in adi-
pose tissue (AT), activation of immune cells is known to
promote the release of the majority of inflammatory mol-
ecules in obese animals and humans (FIGURE 4).
Adipose tissue macrophages (ATMs) possess a vital role
in this process and can be divided into two main pheno-
types, including M1, the classically activated macro-
phages, and M2, the alternatively activated macrophages
(406).

3.1.4.1. M1/M2 PARADIGM IN OBESITY. Generally speak-
ing, M2 macrophages produce anti-inflammatory adipo-
kines and help maintain AT homeostasis in the lean
state by playing an important role in phagocytosing ne-
crotic or apoptotic myocytes, tissue remodeling, and car-
diac fibrosis after injury (407, 408). On the other hand,
the number of AT M1 macrophages rises in obesity and
correlates with AT inflammation and insulin resistance
as mediated by increasing proinflammatory cytokines
(350, 406, 409). Macrophages ranges from under 10% in
AT in lean mice and humans, the levels of which may
exceed 40%–50% through local proliferation (410) and
infiltration in obese humans and leptin-deficient obese
rodents (411).

EAT can be a major source of cardiac M1 macro-
phages, thereby contributing to cardiac anomaly- asso-
ciated obesity. In addition, resident macrophages exist
in the healthy heart in low numbers, where they typically
assume an M2 phenotype but can be inflamed during
obesity (412). Cardiac macrophages expand in humans
and mice with diastolic dysfunction owing to monocyte
recruitment and hematopoiesis in bone marrow and
spleen (413). The systemic and cardiac inflammation
associated with obesity and pathological cardiac remod-
eling is largely mediated by M1 macrophages (412).
Although accumulation and activation of immune

cells has been extensively reported in obesity, the sig-
nals that trigger and magnify these inflammatory
changes remain to be deciphered. A number of sce-
narios are speculated for obesity-linked inflammation
including hypoxia, adipocyte and cardiomyocyte
death, gut microbiota, and alternation of circulating
metabolic substrates, which help to program meta-
bolic, inflammatory, and functional traits of AT immune
cells (344, 414–422).

3.1.4.2. ROLE OF MACROPHAGES IN OBESITY-INDUCED
CARDIOMYOCYTE HYPERTROPHY AND DYSFUNCTION.
Macrophages mediate LV inflammation and remodel-
ing through several perceived mechanisms. First,

macrophages promote pathological hypertrophy and
impair systolic and diastolic function in the heart
through proinflammatory cytokines (TNF-a, IL-1b, IL-6,
IL-12, and IL-23), which in turn stimulate mitogen-acti-
vated protein kinase (MAPK) and NF-κB signaling and
inhibit the Akt-mechanistic target of rapamycin kinase
(mTOR) cascade in neighboring cardiomyocytes (412,
423). Second, macrophages secrete matrix metallo-
proteinases (MMPs) to degrade extracellular matrix
(ECM) and phagocytose necrotic cardiomyocytes.
Macrophages promote myocardial stiffness and indi-
rectly compromise myocardial relaxation through acti-
vating fibroblasts and promoting collagen deposition
as well as secreting ECM proteins (412, 413). Third, M1
macrophages also exacerbate systemic complications
of cardiometabolic syndrome, including insulin resist-
ance and hypertension through a cascade of cyto-
kines (412, 414, 424, 425). Last but not least, the lipid-
buffering capacity and lipolysis become defective in
obese adipose tissue macrophages (ATMs), leading to
excessive lipid release into the bloodstream and sub-
sequently development of cardiac lipotoxicity (409,
426).

Taken together from the aforementioned findings,
macrophage is a promising target to prevent and miti-
gate obesity-induced cardiomyopathy. Ezetimibe, a
potent cholesterol absorption inhibitor, mitigated in-
terstitial fibrosis and coronary arterial thickening in the
heart through ameliorating cardiac macrophage infil-
tration in db/db mice (427). Mineralocorticoid receptor
(MR) inhibition using a low-dose spironolactone (LSp)
specifically increased M2 macrophage and attenuated
inflammation in the heart, leading to restored diastolic
function and lessened fibrosis in the heart (428).

3.1.4.3. OTHER IMMUNE CELLS IN OBESITY. The pheno-
typic switch of AT macrophages may be more complex
than the classical M1–M2 paradigm. Multiple phenotypes
along the M1/M2 spectrum exist, each with potentially dis-
tinct functions, phenotypes, and markers (429, 430). Fatty
acids (FAs) are believed to function as a main drive for
metabolic activation of ATMs in obese adipose tissue.
Alterations in lipid metabolism may be predominantly re-
sponsible for inflammatory activation in metabolically acti-
vated macrophages (431). Evidence from human sub-
cutaneous adipose tissue (SAT) revealed that fat mass
enlargement is associated with accumulation of CD2061/
CD16- macrophages, which exert a pronounced proangio-
genic response on AT-derived endothelial and progenitor
cells, and various cardiovascular pathologies (432).

In addition to macrophage, several other Immune
cells are highlighted as important factors in inflammatory
responses that may impact global energy metabolism.
For instance, natural killer (NK) cells, mast cells, and
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innate lymphoid cells (ILCs) as well as the cytokines
derived from them are necessary to foster polarization
of proinflammatory macrophages and obesity-associ-
ated insulin resistance and metabolic complications
(433–435), whereas, invariant NK T cells, conventional
dendritic cells, and the associated Cd40 signaling path-
way are poised to counteract obesity-induced inflamma-
tion and promote the immunometabolic status in heart
(436–438).

3.1.5. Insulin resistance and inflammation cross
talk in obesity.

While insulin resistance seems to precede and contrib-
ute to AT inflammation (439), most studies support that
inflammation, in addition to caloric imbalance, may
impose a culprit role in the pathogenesis of insulin resist-
ance (344, 418, 424, 440).

3.1.5.1. THE IKK/NF-κB PATHWAY. It has been suggested
that activation of IKKb/NF-κB signaling cascade fosters
insulin resistance through IKK-mediated serine phos-
phorylation of insulin receptor substrate 1 (IRS-1) or insu-
lin receptor (IR) (441), which results in compromised
tyrosine phosphorylation of IR1-1 and postreceptor sig-
naling molecules such as glucose transporter type 4
(GLUT4), resulting in insulin resistance (440, 442).

Surprisingly, although adipose-specific TANK binding
kinase 1 (TBK1) deficiency attenuates high-fat diet-
induced obesity, it promotes activation of nuclear factor-
κB (NF-κB), with upregulation of MCP-1 production from
adipocytes and macrophage infiltration into adipose tis-
sue, associated with worsened insulin resistance in
high-fat diet-fed mice (441). To this point, Amlexanox, an
inhibitor of noncanonical IκB kinases IKKɛ and TBK1,
overtly lowered Hemoglobin A1c and improves insulin
sensitivity in a subgroup of obese patients (443).

3.1.5.2. THE NLRP3 CASCADE. The canonical NF-κB
pathway is initiated by the activation of the pattern rec-
ognition receptors (PRRs). The Nod-like receptor (NLR)
family of PRRs represented by NLRP3 inflammasome
serves as innate immune sensors and participates in the
recognition of “danger signals,” resulting in caspase-1
activation and release of interleukin-1b (IL-1b)/IL-18. A rise
in body weight in patients, sheep, and mice has been
shown to be accompanied with NLRP3-inflammasome
activation in the heart and other organs (444, 445).
Antiobesity measures such as caloric restriction and
exercise were shown to lower levels of adipose NLRP3,
suppress inflammation, and improve insulin sensitivity in
obesity. In response to lipotoxicity mainly manifested as
intracellular ceramide rise, NLRP3 inflammasome pro-
motes caspase-1 cleavage in macrophages and adipose

tissue. This is supported by ablation of obesity-associ-
ated inflammasome activation in liver and fat depots
along with improved insulin signaling with NLRP3 knock-
out (446). In the heart, NLRP3 ablation resisted pacing-
induced AF in the face of high-fat intake, denoting a key
role for NLRP3 inflammasome in obesity-induced atrial
arrhythmogenesis (444). In another independent study,
although deficiency of NLRP3 and the adaptor protein
apoptosis-associated speck-like protein containing
CARD domain (ASC or Pycard) retarded obesity-induced
systemic inflammation, LV concentric remodeling and di-
astolic dysfunction without affecting cardiac hyper-
trophic response to high-fat diet-induced obesity. In
addition, deficiency in NLRP3 and ASC was found to pro-
tect against obesity-induced metabolic derangement
including compromised insulin signaling and steatosis in
hearts and livers (445).

3.1.5.3. TOLL-LIKE RECEPTORS: TLR2 AND TLR4. Toll-
like receptors (TLRs), another major family of PRRs,
plays a critical role in early innate immunity by recog-
nizing the pathogen-associated molecular patterns
as well as endogenous damage-associated molecu-
lar patterns (DAMPs). Intake of high-energy Western
diet (high refined carbohydrates and saturated fat)
has been shown to elicit adaptive pancreatic b-cell
proliferation to offset peripheral insulin resistance.
Interestingly, both TLR2 and TLR4 may suppress
high-fat diet-induced replication of b-cells. When
both receptors are removed, replication of b-cells but
not a-cells is activated resulting in expanded b-islets
and hyperinsulinemia in diet-induced obesity (447).

3.1.5.4. C-JUN-NH2-TERMINAL KINASE AND MAPK. C-Jun
NH2-terminal kinase (JNK) and other mitogen-activated
protein kinases (MAPKs), such as p38 MAPK, are acti-
vated in response to stress stimuli including saturated
FAs, IL-1b, TNFa, and endoplasmic reticulum (ER) stress,
to promote insulin resistance through serine and threo-
nine phosphorylation of IRS, as well as dampened down-
stream postreceptor signaling (344, 440). In particular,
immunophenotyping examination indicated a vital role
for JNK activation in proinflammatory macrophage polar-
ization (448).

3.2. Metabolic Disturbances

3.2.1. Insulin resistance.

The term “insulin resistance” (IR) commonly makes refer-
ence to a decline in metabolic response to insulin in tar-
get cells, or at the whole-organism level, demand of
higher insulin levels to reduce blood glucose (449).
Insulin sensitivity denotes the capacity of insulin to bind
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insulin receptor and evokes intrinsic tyrosine kinase ac-
tivity of the receptor, leading to phosphorylation of IRS1/
2 and activation of phosphatidylinositol-3 kinase (PI3K)
and MAPK (450). IRS-1/IRS-2-mediated activation of PI3K
mediates metabolic actions of insulin (i.e., increasing glu-
cose uptake), whereas MAPK pathway (Grb2/Sos/Ras/
ERK) mainly governs growth and remodeling responses
in the heart. In addition, insulin also participates in the
regulation of fat metabolism such as suppression of fatty
acid oxidation (FAO) (449, 450). A number of postrecep-
tor components, including serine/threonine protein ki-
nase Akt, protein tyrosine phosphatase 1B (PTP1B), and
mammalian target of rapamycin (mTOR), have been
reported to mediate insulin-induced glucose metabolism
(451–453).

Loss of insulin sensitivity or IR represents a cardinal
trait of obesity and T2D and contributes to onset and de-
velopment of heart diseases. The heart is an important in-
sulin responsive organ and can become insulin resistant
in obesity (454, 455). Given the key role of insulin as the
predominant anabolic hormone in growth, development,
glucose, protein, and lipid metabolism, insulin resistance
is known to directly provoke adverse cardiovascular
sequelae in obesity. Of note, metabolic milieu in the set-
ting of insulin resistance is featured by elevated circulat-
ing levels of glucose, free fatty acids, and triglycerides, as
well as dysregulated substrate supply from the periphery
to the heart, along with elevated fatty acid oxidation,
decreased glucose uptake and oxidation, and altered
gene expression in cardiomyocytes (456). Compromised
insulin-stimulated glucose uptake and dampened postin-
sulin receptor signaling have been considered a hallmark
in the hearts from obese individuals, to various degrees
pending on severity and duration of adiposity.

3.2.1.1. EVIDENCE FOR INSULIN RESISTANCE IN OBESITY.
Ample evidence has depicted the presence of insulin re-
sistance preceding the onset of LV remodeling and con-
tractile dysfunction in obesity, favoring a vital role for
insulin resistance in the pathogenesis of obesity car-
diomyopathy. Not surprisingly, insulin resistance car-
diomyopathy shares many commonalities with obesity
cardiomyopathy.

Mounting findings have denoted a cardinal role for sys-
temic insulin resistance in the etiology of cardiac dysfunc-
tion in patients with obesity. This theory is convincingly
supported by the presence of insulin resistance in obesity
whereas all adiposity measures (e.g., BMI, waist circum-
ference, skinfold thicknesses, and bioimpedance) are
positively correlated with the insulin sensitivity marker
homeostatic model assessment for insulin resistance
(HOMA-IR) (275, 457). In CARDIA (Coronary Artery Risk
Development in Young Adults) study involving 3,179
patients, changes in HOMA-IR were monitored in

nondiabetic populations based on severity of insulin re-
sistance (low IR, moderate IR, and high IR). It was noted
that severe form of IR in early adulthood was closely
associated with accentuated LV wall thickness and worse
longitudinal systolic strain, as well as early diastolic strain
rate at middle age, depending on the severity of obesity
(458). In addition to insulin resistance, glucose intolerance
represents another key denominator for LV dysfunction.
Examination of LV parameters and glucose tolerance in
2,623 Framingham Study individuals (in the absence of
myocardial infarction and heart failure) revealed a tight
correlation between glucose intolerance and LV mass/
wall thickness, with a more pronounced effect in women
than men. Adjustment for BMI considerably weakened
the correlation between LV/LA parameters and HOMA-IR,
with nonsignificant finding in the normal glucose toler-
ance group (275). Indeed, patients with both impaired IFG
and IGT displayed greater LV mass, LV mass index, and
lower Doppler early peak rapid filling velocity to peak
atrial filling velocity ratio compared with those individuals
with IFG alone, exhibiting a 10-fold higher susceptibility of
preclinical LV hypertrophy. LVmass index was associated
with WC, C-reactive protein, and 2-h oral glucose toler-
ance test (278).
Cardiac insulin resistance, on the other hand, damp-

ens cardiac metabolism and function in obesity. A
decline in insulin-stimulated cardiac glucose metabolism
was observed much sooner in response to obesity in
comparison with that in skeletal muscles, adipose tis-
sues, and liver (roughly 1.5wk vs. 3wk after the initiation
of high-fat feeding) (454). This suggests that obesity-
induced cardiac dysfunction may be attributable to local
insulin resistance and changes in cardiac metabolism
rather than the global systemic insulin resistance (454).
The same study also reported reduction in Akt-mediated
insulin signaling and GLUT4 levels in cardiac insulin re-
sistance (454). However, a later study offered contrary
finding where increased cardiac glucose uptake;
enhanced mitochondrial oxidation of palmitoyl carnitine,
glutamate, and succinate; and greater basal insulin sig-
naling were present in high-fat diet-fed mice compared
with those of chow-fed mice, despite the presence of
systemic insulin resistance (459). Given the high meta-
bolic dynamics in the heart, different pathways may be
involved in the response to hyperinsulinemia in the
heart. In fact, it was shown that IGF-1 receptor-mediated
Akt activation promoted cardiac hypertrophy in ob/ob
mice and mTOR was responsible for the suppression of
autophagy flux through alternative upstream pathways
such as ERK signaling but not Akt (451, 460).

3.2.1.2. METABOLIC MEDIATORS OF INSULIN RESISTANCE.
A number of scenarios have been speculated for insulin
resistance in obesity, with positive energy balance as a
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result of high caloric intake and low physical activity
being the most important factor. However, caloric imbal-
ance cannot fully address the multifaceted metabolic
traits in insulin resistance. Accumulating evidence has
suggested a rather important role for altered inter-organ
communication using various metabolites as messen-
gers in insulin resistance. Of note, targeted and untar-
geted metabolomics have significantly enriched our
knowledge of the role of lipids, amino acids and glucose
in promoting insulin resistance (461).

3.2.1.2.1. Lipids. Hypertrophic adipocytes become
resilient to the antilipolytic action of insulin and impose a
reduced ability to lipid storage, leading to accumulation
of fat in, inter alia, muscle and liver cells, (461). More than
five decades ago, Randle and colleagues (462) reported
that lipids can provoke insulin resistance in diaphragm
and hearts. Later studies confirmed that ectopic deposi-
tion of fatty acids and lipid metabolites, such as long-
chain acyl-CoA esters, diacylglycerol (DAG), triacylglyc-
erol (TG), and ceramide in muscles is closely related to
the onset and development of insulin resistance (463–
465). Schulman and colleagues (466) also revealed simi-
lar mechanism for diacylglycerol-induced insulin resist-
ance in the liver through PKC-ɛ activation and decreased
IRS-2 tyrosine phosphorylation. More recently, beneficial
properties of certain lipid categories on insulin signaling
have emerged, such as gut microbiota-generated short-
chain fatty acids (acetate, propionate, and butyrate) (467),
dietary unsaturated fatty acids (468), fatty acid esters of
hydroxyl fatty acids (469), and phospholipids.

3.2.1.2.2. Amino acids. The circulating levels of
amino acids (AAs) are tightly correlated with insulin re-
sistance in obese humans (461). In particular, branched-
chain AAs (BCAAs), representing �20% of protein
intake, aromatic AAs, and certain AA metabolites have
garnered attention as to their role in insulin resistance.
BCAAs offer various physiological and metabolic bene-
fits including stimulation of pancreatic insulin secretion,
adipogenesis, milk production, and immune function.
Elevated serum BCAA levels were reported in obesity
and insulin resistance decades ago (470). Following its
initial perceived pathophysiological role as a reliable
marker for obesity and T2D (471, 472), more studies
have surfaced implicating a vital role for dysregulated
BCAAs in the etiology of other chronic diseases such as
cancers (473) and CVD (474), possibly mediated by the
development of T2D. BCAAs are believed to evoke
hyperactivation of mTOR in muscles, leading to impaired
insulin signaling (471). Furthermore, high levels of circu-
lating BCAAs may exacerbate cardiac insulin resistance
and myocardial contractile dysfunction through fostering
mitochondria dysfunction and mTOR upregulation (474,
475).

3.2.1.2.3. Glucose. Current nutrition regimen con-
sists of excessive carbohydrates from digestible polysac-
charides to refined sugars which impose unfavorable
health effects in human, a phenomenon commonly being
referred to as “carbotoxicity” (476). Among various con-
tributing factors for carbotoxicity, alteration in GLUT4, the
insulin-responsive glucose transporter, serves as the
major contributor for dampened glucose uptake in mus-
cle and adipose tissues in obesity. Although loss of
GLUT4 does not necessarily induce obesity, it drastically
elevated serum glucose and insulin, decreased tissue
glucose uptake, and imposed hypertension, reminiscent
of noninsulin-dependent diabetes mellitus in human
(477).

Other than GLUT4, sodium/glucose cotransporter 1
(SGLT1) functions as the main Na-dependent glucose
cotransporter in heart (478). Cardiac SGLT1 (the main
cardiac isoform) was shown to evoke an important role
in acute IRI likely by way of facilitated glucose uptake,
particularly in insulin resistance where GLUT4 regulation
is compromised, although SGLT1 inhibition reduces obe-
sity, incident diabetes, HF, and death (479, 480). In addi-
tion, SGLT6 [sodium-myoinositol cotransporter-1 (STIM1)]
senses hyperglycemia and triggers the production of re-
active oxygen species (ROS) in heart (481). SGLT2 is an
emerging therapeutic target in the treatment of type 2
diabetes. However, SGLT2 is not expressed in the heart
(478). Recent evidence suggested that SGLT2 inhibitors
promoted energy expenditure, attenuated inflammation
(polarizing M2 macrophages in WAT and liver) and insu-
lin resistance in obesity, which may offer indirect cardio-
vascular protection (482).
In addition, mitsugumin 53 (MG53) is myokine/cardio-

kine secreted from hearts and skeletal muscle following
high glucose or high insulin challenge to bind with the
extracellular domain of the insulin receptor, thus allos-
terically inhibiting insulin signaling. Hyperglycemia is
believed to be associated with elevated circulating
MG53 in humans and rodents with diabetes mellitus
(483).

3.2.2. Alternations of cardiac metabolism.

Alteration in fuel metabolism plays vital roles in both
ATP-producing and non-ATP-producing energy homeo-
stasis and pathogenesis of heart dysfunction in obesity.
Cardiomyocytes switch main energy supply from carbo-
hydrates to fatty acids during perinatal period, in concert
with elevated mitochondrial oxidative phosphorylation
and FAO (423). The heart maintains profound metabolic
flexibility under stress such as nutrient excess, leading
to changes in cardiac energetics and contractile function
(135). For example, elevated LV wall stress in obesity
evokes rises in myocardial oxygen consumption. The
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rise in substrate supply in obese hearts triggers an
increase in FAO in conjunction with suppressed glu-
cose oxidation. Obesity promotes a switch in gene
expression favoring FAO over glucose oxidation,
which is initially adaptive although further dampens in-
sulin sensitivity and metabolic flexibility over time,
resulting in impaired cardiac efficiency and cardiac
contractile anomalies (FIGURE 5). Regardless of pre-
cipitating factors, sustained metabolic derangements
in obesity promote oxidative stress, inflammation,

insulin resistance, lipotoxicity, and energy deprivation,
all of which promote progression of HF (135).

3.2.2.1. LIPIDS. The fine interplay of uptake, metabolism
and oxidation of fatty acids (FAs) is necessary to main-
tain ATP and lipid homeostasis and membrane biosyn-
thesis in the heart. At the energy level, obesity cardiac
dysfunction is characterized by elevated myocardial ox-
ygen consumption, dampened cardiac efficiency, and
overwhelmed oxidative stress, denoting a likely role for
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FIGURE 5. Metabolic stress and organelle dysfunction in obesity cardiomyopathy: Obesity leads to decreased myocardial glucose uptake and oxida-
tion, increased fatty acid oxidation (FAO), and altered cardiomyocyte gene expression. Increased triglyceride accumulation and their products, such as
ceramides and DAG, cause majority of lipotoxicity in hearts. Different metabolic pathways such as hexosamine and advanced glycation end-product
(AGE) pathways have been identified as pro-oxidative processes and are usually elevated in uncorrected obesity. Autophagy activity in the heart
declines with obesity, and its insufficiency is involved in the accumulation of reactive oxygen species (ROS) and the development of endoplasmic retic-
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acetylglucosamine; AGEs; advanced glycation end-products; FA, fatty acid; ROS, reactive oxygen species. Created with BioRender.com.
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increased FAO in cardiac dysfunction. A multivariate,
stepwise regression evaluation concluded that high BMI
value was the sole independent determinant of higher
myocardial oxygen consumption and lower LV efficiency
(484). It is perceived that insulin resistance, evaluated
using glucose area under the curve, functions as the in-
dependent predictor of elevated myocardial fatty acid
uptake, utilization, and oxidation (484).

High FAO seems to be responsible for reduced oxy-
gen efficiency and accumulation of fatty acid, derivatives
that further compromises cardiac efficiency by uncou-
pling mitochondria (485). However, later studies sug-
gested that the heart exhibits impaired capacity of FAO
in the face of excess lipid supply in obesity, a notion that
is supported by the beneficial effect of FAO stimulation
on cardiac pathology. Given that malonyl CoA genera-
tion via acetyl CoA carboxylase 2 (ACC2) suppresses
the entrance of long chain fatty acids into mitochondria,
cardiac-specific knockout of ACC2 maintained FAO and,
to our surprise, attenuated obesity-induced cardiac dys-
function (486). Shao and associates (487) suggested
that elevated cardiac FAO protected against cardiomy-
opathy in chronically obese mice, in part, by preserva-
tion of mitochondrial function through parkin-mediated
mitophagy. In addition, reduced cardiac efficiency noted
in obesity should be attributed to mechanisms other
than increased FAO, for instance, mitochondrial uncou-
pling and ROS (488).
An important hallmark of altered cardiac metabolism in

obesity and other metabolic anomalies is the excess of
substrate supply compared with demand for ATP synthe-
sis. Even with elevated FAO, obese hearts are still filled
with excess lipid accumulation prompting lipotoxic cardio-
myopathy. Cardiac lipotoxicity denotes accumulation of
excess fatty acids and associated triglyceride in paren-
chymal cardiomyocytes resulting cell death and cardiac
anomalies (106, 353, 489, 490). Ultrastructural examina-
tion using electron microscopy has unveiled that obesity
is associated with enlarged sarcoplasmic reticulum, disor-
dered alignment of myofilaments, abnormal morphology
of mitochondria, and numerous lipid droplets between
myofibrils in cardiac tissues (491). Long-chain nonesteri-
fied fatty acids and their products, such as ceramides and
diacylglycerols (DAGs), are mainly responsible for lipo-
toxic sequalae (492–494). Intramyocardial lipid overload
was found to corelate with contractile dysfunction and
alterations in gene expression in obese Zucker Diabetic
Fatty (ZDF) rats, reminiscent of human failing hearts with
lipid overload (495). It is conceived that presence of obe-
sity-induced DAG accumulation in the heart signified the
development of cardiac insulin resistance through PKCa-
dependent inhibition of Akt, p70s6k activation, and IRS-1
Ser332/336 phosphorylation (496). Not surprisingly, phar-
macological and genetic strategies targeting lipotoxicity

yield salutary actions on the heart and overall metabolic
health (381, 497, 498). For example, troglitazone therapy
lowers obesity-induced myocardial TG and ceramide and
prevents apoptosis and loss of cardiac function in obese
ZDF rats (499).
Intramyocardial lipid deposition is often accompanied

with upregulated nuclear receptors, peroxisome prolifer-
ator-activated receptor-a (PPARa)-regulated genes, my-
osin heavy chain-b, and proinflammatory cytokines
including TNF-a. PPARa has long been known to govern
fatty acid metabolism in the heart and mediate the de-
velopment of lipotoxicity (490). PPARb and PPARd, on
the other hand, participate in the homeostasis of both
fatty acid and glucose metabolism. Given that PPARa
generally governs genes involved in fatty acid metabo-
lism, including uptake, storage and oxidation in the
heart, emerging studies have tried to clarify how PPARa
provokes the imbalance of lipid metabolism. It was
recently demonstrated that fatty acids (FAs) upregulate
glycogen synthase kinase-3a (GSK-3a) and thus phos-
phorylate PPARa at Ser280 in its ligand-binding domain,
resulting in elevated transcription of a subset of PPARa
targets and its biased activation, that is, only activation
of its transcriptional activity of FA uptake and storage
but not oxidation (500). The activator protein 1 members
JunD and miR-494-3p may also play a role in lipid accu-
mulation as levels of JunD and miR-494-3p were found
dysregulated to correlate with myocardial TG content
and echocardiographic indexes of LV dysfunction in
obese human hearts (501).

3.2.2.2. GLUCOSE. In the setting of obesity, glucose
uptake and oxidation are suppressed (135). Obesity-
induced change in insulin signaling directly impedes insu-
lin-stimulated GLUT4 translocation and glucose uptake.
Restoring glucose oxidation is believed to improve obe-
sity-induced cardiac injury. PPARa activation could
increase glucose oxidation in the heart and alleviate con-
tractile dysfunction in obesity (502). However, profound
rises in intracellular glucose and sustained stimulation of
glucose uptake and oxidation remodeled the cardiac
metabolic network and dampened metabolic flexibility. In
this context of high-glucose stimulus, high-fat diet-
induced FAO is obtuse, leading to overwhelmed oxida-
tive stress and cardiac dysfunction (503).

As a result of insulin resistance and elevated FAO,
obesity is associated with dampened glucose uptake and
utilization for ATP synthesis, albeit with possibly elevated
accessary glucose metabolism flux (135). For example,
nutrient excess in obesity may promote hexosamine
biosynthetic pathway resulting in protein posttranslational
modification by O-GlcNAc transferase (OGT)-mediated
O-linked b-N-acetylglucosamine (O-GlcNAc) moieties.
Overexpression of adipose OGT suppresses lipolysis and
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exacerbates diet-induced obesity (504). AMPK, on the
other hand, inhibits O-GlcNAcylation through regulation
of glutamine:fructose-6-phosphate aminotransferase
(GFAT) phosphorylation to alleviate O-GlcNAcylation of
target proteins such as troponin T. Blockade of O-
GlcNAcylation using inhibitors of the GFAT mitigates car-
diomyocyte hypertrophy (505).

3.2.2.3. OTHER SUBSTRATES. In pathological cardiac hy-
pertrophy and HF, the ATP-generating modality is altered
to promote energy production from glycolysis, anaplero-
sis, lactate, BCAAs, and ketone bodies (506). However,
glycolysis and utilization of lactate, BCAAs, and ketone
bodies cannot adequately compensate for loss of glu-
cose oxidation in obesity, thus prompting energy deficit
and onset of HF (423). Chronic loss of insulin sensitivity
imposes blunted BCAA oxidation in the liver and adipose
tissues, resulting in increased workload of BCAA oxida-
tion in muscles (507). In addition, BCAA oxidation is vital
for cardiac function. Suppression of the essential step for
BCAA oxidation namely branched-chain a-keto acid de-
hydrogenase (BCKDH) (with BCATm being the rate-limit-
ing enzyme for BCAA oxidation) reduces cardiac systolic
function in mice whereas 3,6-dichlorobenzo[b]thiophene-
2-carboxylic acid, a pharmacological inhibitor of BCKDH
kinase, to lower plasma BCAAs, enhances cardiac BCAA
degradation and thus preserves heart contractility (474).

3.2.3. Mitochondrial dysfunction.

Mitochondrial dysfunction, including the inability to gen-
erate ATP, disturbed mitochondrial dynamics, insuffi-
cient mitophagy, and accumulation of reactive oxygen
species (ROS), plays a rather unique role in the onset of
cardiomyopathy in obesity (105, 508–511). First, evi-
dence was obtained that the inability of the mitochon-
dria in obese heart to appropriately utilize glucose and
the consequent switch from glucose to FAO results in
metabolic inflexibility (485) (FIGURE 5). As the reliance
on FAO requires a greater oxygen consumption and
free fat acids (FFAs) instinctively causes mitochondrial
uncoupling, these changes pose a significant threat to
cardiovascular health through reduced ATP generation,
decreased cardiac efficiency, and as a consequence,
defects in contractile function (512, 513).

Over the past decades, many advances have been
achieved toward understanding mitochondrial biogenesis,
dynamics, quality control and their involvement in the pro-
gression of obesity-related cardiomyocyte dysfunction.
Mitochondrial proliferation was increased in db/db hearts
(514). Morphological transition from mitochondria network
to fragmented mitochondria was noted in obese cardio-
myocytes (515). Palmitate challenge in neonatal rat cardio-
myocytes initially turned on mitochondrial respiration,

along with increased mitochondrial polarization and ATP
production, while sustained incubation of palmitate (>8 h)
evoked ROS production and mitochondrial fission (516).
Lipid overload-induced cardiomyocyte apoptosis and car-
diac dysfunction were likely due to altered posttransla-
tional modifications of the mitochondrial fission and fusion
proteins, including increased ubiquitination of A-kinase
anchor protein 121 (AKAP121), dynamin-related protein 1
(Drp-1), and proteolytic processing of optic atrophy 1
(OPA1) (515, 516).
Dysfunctional mitochondria are removed by a special-

ized form of autophagy, referred to as mitophagy.
Imbalanced mitochondrial biogenesis and mitophagy
also occurs in the development of metabolic cardiomy-
opathy. Mitophagy is induced by high-fat-diet consump-
tion, while deficiency in mitophagy aggravates high-fat
intake-induced cardiomyopathy (517, 518). Mitochondria
and endoplasmic reticulum (ER) are interconnected or-
ganelles, numerous proteins were proposed to tether
the two organelles together at specific sites, referred to
as mitochondria-associated ER membranes (MAMs)
(519). Interestingly, despite that disruption of MAMs insti-
gates aberrant Ca21 signaling and cardiac anomalies, a
recent study suggested that high-glucose-induced
FUNDC1-mediated MAMs formation and mitochondrial
calcium overload in the cardiomyocytes, leading to func-
tional cardiac abnormalities (519, 520).

3.3. Endoplasmic Reticulum Stress

The endoplasmic reticulum (ER) is most essential for
Ca21 storage, lipid biosynthesis, and protein sorting and
processing. A wide variety of gene products pass
through the ER lumen, governing both physiological and
pathophysiological processes (521, 522). Cellular pertur-
bations in obesity interrupt ER homeostasis, resulting in
the buildup of unfolded/misfolded proteins and pro-
nounced ER stress (523, 524). To sustain ER homeosta-
sis, cells utilize protein quality-control systems through
unfolded protein response (UPR), endoplasmic reticulum
associated degradation (ERAD), and autophagy (525)
(FIGURE 6). The ER-resident proteins are predominantly
removed by ERAD for proteasomal degradation inside
ER, while protein aggregates within the ER lumen may
be destroyed through autophagy degradation (524,
525). When misfolded proteins accumulate in ER, UPR
can be triggered by activation of three main UPR sen-
sors, inositol-requiring enzyme 1a, protein kinase R-like
endoplasmic reticulum kinase (PERK), and activating
transcription factor 6, on ER membrane, to cope with
unfolded and misfolded proteins (521). When the UPR is
unable to handle unfolded and/or misfolded proteins in
the ER, the ER-initiated apoptotic signaling is turned on
(523).
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SR/ER and ER stress in obesity are also closely related
to obesity in the heart (524). Levels of PERK were sup-
pressed in the liver and heart, following 16 and 8 wk,
respectively, following high-fat diet intake (526). High-fat
diet intake upregulated levels of GRP94 and CHOP in
left ventricles (LV) from 5-mo-old Lee-Sung pigs (527).
Palmitate increased ER stress in H9C2 cells, manifested
as levels of p-PERK, p-eIF2a, and transmission electron
microscopy examination (528). Furthermore, palmitate-
triggered ER stress induced adiponectin resistance
through AMPK phosphorylation and reduced APPL1 lev-
els (528). Chronic ER chaperone tauroursodeoxycholic
acid treatment rescued against increased systolic blood
pressure, glucose intolerance, cardiac hypertrophy, and
cardiac contractile dysfunction in obese mice through
reconciliation of obesity-associated drop in sarco(endo)
plasmic reticulum Ca21-ATPase (SERCA) function, rises
in serine phosphorylation of IRS, total and phosphoryl-
ated cJun, as well as ER stress markers Bip, peIF2a, and
pPERK (77).

3.4. Calcium Handling

Ample vital mitochondrial function including ATP produc-
tion and mitochondrial metabolism are heavily controlled
by Ca21 signal, an essential intracellular second messen-
ger that reaches the mitochondrial intermembrane space
and then mitochondrial matrix, to participate in the regula-
tion of proteins, enzymes and transporters (e.g., AMPK,
pyruvate dehydrogenase kinase 4, pyruvate dehydrogen-
ase phosphorylation, and GLUT4) required for ATP syn-
thesis and mitochondrial metabolism (529). Intracellular
and mitochondrial Ca21 is tightly regulated in a narrow
range to preserve the overall cellular Ca21 homeostasis
and cardiomyocyte contractility and defective Ca21 han-
dling (both intracellular and mitochondrial) is supposed to
play a major role in obesity-related cardiac dysfunctions
noted as prolonged diastolic relaxation, decreased frac-
tional shortening, and compromised ejection fraction
(530–533). Besides, extracardiac findings have sug-
gested other potential mechanisms underlying calcium
overload and energy metabolism. For instance, elevated
intracellular Ca21 in hepatocytes during obesity inhibits
insulin-stimulated Akt phosphorylation and its key down-
stream signaling molecules by inhibiting membrane local-
ization of pleckstrin homology domains (534). Obesity-
induced increase in PDK4 activity augments MAM forma-
tion to promote Ca21 transfer from SR/ER to mitochondria
and suppresses insulin signaling in skeletal muscle (535).

3.4.1. Calcium handling in sarcoplasmic reticulum.

During the process of excitation-contraction coupling in
cardiomyocytes, activation of voltage-gated L-type Ca21

channels evokes Ca21 releases from sarcoplasmic reticu-
lum (SR) via ryanodine receptors (RyRs), a process com-
monly known as Ca21-induced Ca21 release. Cardiac
relaxation is driven by Ca21 reuptakes via SR Ca21-
ATPase (SERCA) and Ca21 extrusion from sarcolemma
Na1 and Ca21 exchanger. Dephosphorylated phospho-
lamban at Thr17 and Ser16 inhibits SERCA2a and sup-
presses Ca21 uptake (536). Animal studies have reported
prolonged Ca21 clearance including reduced intracellular
Ca21 amplitude and decay in obese hearts, coinciding
with prolonged relaxation (537–540). Increased SR Ca21

leak via RyR2 plays a critical role in the progression of HF
and cardiac arrhythmia. Suppressed SERCA2a activity is
known to contribute to impaired relaxation and Ca21 han-
dling in ob/ob mice and sucrose-fed rats (538). However,
reduced SERCA2a activity may result from SERCA oxida-
tion in ob/ob mice, while SERCA2a dysfunction was asso-
ciated with inhibited phosphorylation of phospholamban
at Ser16 and Thr17 in sucrose-fed rats. More evidence has
indicated unaltered expression of SERCA2a and phos-
pholamban (or phosphorylation) in obese hearts, indicat-
ing possible involvement of posttranslational modification
of SERCA2a (539). Results from studies in animal models
with HF suggested that inhibition of SERCA2a activity is
associated with the sulfonylation at Cys674 and nitration
at Tyr294/295 (541). Downregulation of SIRT1, a class III
histone deacetylase, increased SERCA2a acetylation at
Lysine 492, leading to reduced SERCA2a activity and car-
diac defects (542, 543). Moreover, myocardial dysfunc-
tion was correlated with impaired L-type Ca21 channel
activity in the absence of altered SERCA2a function and
L-type Ca21 channel protein levels in high-fat-fed rats
(544). Among various mechanisms proposed for altered
Ca21 regulation in obesity, stromal interaction molecule 1
(STIM1) is believed to regulate cardiac Ca21 signaling by
sensing reduced SR Ca21 level and interact with plasma
membrane Orai channels to induce Ca21 influx, leading
to prolonged action potential duration and cardiac hyper-
trophy (545). SMIT1 overexpression exacerbated gluco-
toxicity and sensitized cardiomyocytes to hyperglycemia
(481). Nonetheless, further study is needed to discern if
this mechanism prevails in obesity cardiomyopathy.

Cardiac systolic dysfunction in various obese animals
is mainly characterized by slightly decreases in the am-
plitude and decay rate of cardiomyocyte shortening,
which may attribute to the decreased amplitude of Ca21

transients (104, 537, 538, 546, 547). It was observed that
diminished cardiac function in the fat-fed dogs was asso-
ciated with the reduced RyR2 activity, which is not due
to changes of protein expression but the increased
phosphorylation of RyR2 (548). However, the results
from the obese Zucker rats exhibited cardiomyocyte
dysfunction, which was related to the decreased expres-
sion of L-type Ca21 channel and eventually contributed
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to the prolonged duration of AP (549). Additionally, it
has been suggested that the posttranslational modifica-
tions, including S-glutathionylation, S-nitrosylation, and
disulfide oxidation could regulate the activity and func-
tion of RyR2 in HF (550). Further research needs to es-
tablish whether these PTM of RyR2 participate in the
cardiac dysfunction of obesity.

3.4.2. Ca21 overload and mitochondria.

Mitochondrial Ca21 homeostasis is regulated by various
organelles. The ER can release Ca21 into the mitochon-
dria quickly through Ca21 channels in the MAM area to
maintain Ca21 homeostasis of mitochondria in physio-
logical settings (551). There are a variety of Ca21-regu-
lated transporters in the MAM region, including inositol
1,4,5-trisphosphate receptor (IP3R) and ryanodine recep-
tors (RyRs) located on the ER and voltage-dependent
anion channel 1 (VDAC1) and mitochondrial Ca21 uni-
porter (MCU) located on the mitochondrial membrane
(551). One of the most important Ca21 transport com-
plexes between ER and mitochondria is formed by
VDAC1 and IP3R, which are bridged together by Grp75
(551). Both increased MAM formation or the MAM Ca21

channel hyperactivation would result in mitochondria
uptake of excessive Ca21 in stress condition, prompting
mitochondrial Ca21 overload, mitochondrial permeabil-
ity transition pore (mPTP) opening, mitochondrial dys-
function, and ultimately cell death (551).

Appropriate Ca21 handling is essential to mitochon-
dria, where Ca21 uptake supports oxidative phosphoryl-
ation (OXPHOS) and ATP production to limit excessive
ROS production during cardiac contraction. ROS pro-
duction is significantly increased in cardiomyocytes from
obese animals (552, 553), and these rises correlate with
prolonged relaxation in the heart (546, 554). Data from
our group revealed that loss of mitochondrial autophagy
receptor FUNDC1 accentuated high-fat diet-induced car-
diac remodeling, functional and mitochondrial anomalies
likely through rises in type 3 IP3R and mitochondrial
Ca21 overload (555). Recent evidence revealed a role
for diastolic SR Ca21 leak via RyR2 and type 2 IP3R
(IP3R2) in mitochondrial Ca21 overload, ROS production

and cardiac dysfunction (537, 556). Furthermore, electri-
cally evoked Ca21 transients were smaller and slower,
associated with the increased IP3 level in ob/ob cardio-
myocytes (557). In addition, it was suggested that ROS
production was associated with increased carbonyl oxi-
dation of SERCA2a and abnormal relaxation in ob/ob
mice (538). Moreover, overexpression of mitochondrial
Na1/Ca21 exchanger (NCLX), the primary mitochondrial
Ca21 extrusion machinery in cardiomyocytes, plays a pro-
tective effect in the clearance of mitochondrial Ca21 over-
load, alleviating cardiomyocyte necrosis and HF (558),
although its role in obesity cardiomyopathy remains
unclear.
Ca21/calmodulin-dependent protein kinase II (CaMKII)

is a multifunctional serine/threonine kinase to mediate
various physiological responses upon b-adrenergic acti-
vation (559). CaMKII is upregulated and mediates Ca21

handling in various cardiac diseases including obesity-
related cardiomyopathy through phosphorylating and
regulating RyR, IP3R2, and phospholamban (559).
Activation of CaMKII is suspected to provoke mito-
chondrial dysfunction, oxidative stress, ER stress,
inflammation, and cell apoptosis in palmitate-induced
cell hypertrophy and fibrosis in H9C2 cells (560).
Sustained CaMKII activation interrupts intracellular
Ca21 homeostasis. For instance, CaMKII phosphoryl-
ates RyR to affect its open probability and promotes
arrhythmogenic spontaneous SR Ca21 release in
heart diseases (559). In addition, CaMKII may facilitate
mitochondrial Ca21 entry through upregulation of
MCU conductance, resulting in mitochondrial Ca21

overload, mPTP opening and dissipation of mitochon-
drial inner membrane potential (561). In this context,
CaMKII links ER stress and mitochondrial dysfunction
through Ca21 transfer between ER and mitochondria.

3.5. Autophagy

Autophagy is an evolutionarily conserved process to
engulf cytoplasmic cargos and organelles through auto-
phagosomes, fusion with lysosomes to form autophago-
lysosomes for production of ATP and macromolecules.
Autophagy serves as a double-edged sword with

FIGURE 6. Obesity-mediated endoplasmic reticulum (ER) stress underlies cardiometabolic disorders: Obesity induces certain conditions such as
hyperglyceridemia, glycemia, insulin resistance, and macrophage activation, all of which, in turn switches on several pathways culminating in ER stress,
inflammation, and ultimately cardiometabolic disorders. Insulin resistance induces ER stress, which activates three branches of unfolded protein
response (UPR) including ATF6, PERK, and IRE-1a. IRE-1a/TRAF2/JNK1/c-Jun pathway induces inflammation via TNF-a and IL-6, while PERK/eIF2a/IκBa
pathway and ATF6 trigger NF-κB complex-mediated inflammation. Macrophage also produces IL-1b, which activates IKK and NF-κB complexes leading
to inflammation. Hyperglyceridemia and glycemia induce carbotoxicity and lipotoxicity, which instigates metabolic alterations resulting in ER stress and
inflammation. IRE-1a, inositol-requiring protein-1; PERK, protein kinase RNA-like ER kinase; ATF6, activating transcription factor-6; IKK, I-κb-kinase; NF-
κB, nuclear factorκB; IκBa, I-κb-a; Ub, ubiquitin; eIF2a, eukaryotic initiation factor 2a; Nrf-2, nuclear factor-E2-related factor; XBP1s, X-box-binding-pro-
tein-1 spliced; TRAF2, TNF receptor-associated factor 2; JNK1, C-Jun NH2-terminal kinase 1; ATF4, activating transcription factor-4; FOXO, forkhead box
O; c-Jun, a transcription factor; CHOP, C/EBP homologous protein; FA, fatty acid; Glu, glucose; GLUT4, glucose transporter type 4; DAG, diacylglycerol;
O-GlcNAc, b-linked N-acetylglucosamine; AGEs, advanced glycation end-products.
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physiological levels of autophagy being cytoprotective
whereas unchecked or excessive autophagy being self-
destructive for cannibalistic cell death - a form of nona-
poptotic cell death or “type II programmed cell death.”
Three types of autophagy are identified modality of
autophagosome delivery into lysosomes: microautoph-
agy, macroautophagy and chaperone-mediated autoph-
agy (133, 562, 563).

Autophagy levels alter in response to variations in nu-
trient status such as fat/caloric intake and may unfavor-
ably affect local (such as in a metabolically active organ)
or global metabolism to promote metabolic derange-
ment. Both elevated and suppressed autophagy have
been noted in metabolic disorders including obesity
(547, 564–567), due to an interplay among genetic fac-
tors, environment and energy imbalance. Three major
risks factors in obesity, dyslipidemia, hypertension and
insulin resistance/hyperglycemia are believed to be re-
sponsible for disturbed autophagy response in obesity.
Meanwhile, deranged autophagy, in particular loss of
autophagy, fosters metabolic derangement, insulin re-
sistance and obesogenesis (133). In addition, considering
the essential role for autophagy in the regulation of cardiac
homeostasis, one should not neglect the direct contribu-
tion of autophagy derangement in cardiac proteotoxic pa-
thology (aka, cardiac proteinopathy), and development of
cardiomyopathies (568–575). Ample evidence has
depicted that activation of autophagy through autophagy
inducers or themaster regulator of lysosomal function tran-
scription factor EB (TFEB) effectively rescues cardiac pro-
tein quality control, cardiac remodeling and contractile
function under various pathological settings (568, 570, 571,
576).

3.5.1. Cardiac autophagy in obesity.

Autophagy defects are closely associated with adipos-
ity. For example, mice with global or tissue-specific (e.g.,
liver and pancreas) ablation of autophagy associated
proteins including Atg7, Becn2, Bif, LAMP2, and Tfeb
present obesogenic phenotypes or are predisposed to
diet-induced or genetic adiposity (133). Autophagy also
governs pathological sequalae of obesity, mainly
through buildup of autophagy substrates including pro-
tein aggregates, lipid droplets, and damaged mitochon-
dria (563, 577).

While the molecular mechanisms of autophagy
have been extensively examined in obesity, how obe-
sity-related autophagy changes in cardiomyocytes
remains unclarified. Although research has shown that
autophagosomes are normally formed in obesity,
autophagy flux is disrupted because of defects in lyso-
some and impaired fusion of autophagosomes and
lysosomes to preclude autophagic degradation (578,

579). Lack of an additional accumulation of LC3-II and
p62 in chloroquine-treated high-fat-fed hearts favored
the notion that elevated autophagosomes may be
secondary to compromised autophagosome turnover
(565). Impaired autophagy flux contributes to the de-
velopment of cardiac dysfunction caused by obesity
(580, 581), while the underlying mechanisms remain
unclear. For instance, both genetic and diet-induced
models of obesity noted a drastic loss in cardiac
autophagy in concordant with downregulated unc-51
like kinase-1 (ULK1) (582). Of note, cardiomyocyte-spe-
cific knockout of Ulk1 disrupts autophagy and mimics
the increase in cardiac lipoprotein lipase (LPL) levels
occurred in obesity models. In the heart, LPL prompts
myocardial fatty acid buildup via intravascular triglyc-
eride (TG) hydrolysis. Concurrent ablation of LPL and
ULK1 mitigated high-fat intake-evoked aberration in
triglyceride (TG), diacylglycerol, and cardiac function,
indicating a protective role of ULK1-mediated autoph-
agy in obesity-induced cardiomyopathy through the
regulation of lipid metabolism (582).
It was noted that although autophagic flux is transi-

ently activated by high-fat diet consumption, peaking at
6 wk, it is ultimately attenuated (518, 580, 581).
However, mitophagy, evaluated with Mito-Keima, contin-
ues to increase even after 2-mo high-fat-diet feeding
(518). Deletion of Parkin partially impaired mitophagy,
increased lipid accumulation, and exacerbated cardiac
dysfunction during high-fat-diet feeding (518). These
findings denote an essential role of mitophagy in cardiac
protection against high-fat uptake.

3.5.2. Lipophagy in the heart during obesity.

Lipid storage can be evaluated using lipophagy, a
specific subset of selective autophagy that targets
lipid droplets and catabolizes their components into
FFAs and glycerol (583). Altered cardiac lipophagy
has been solidified in murine obese models, denoting
a role for lipophagy in high myocardial lipid accumula-
tion (584). Transmission electron microscopy can be
employed to monitor the size and quantity of lipid
droplets, along with lipid droplet-associated double-
membrane structures, corresponding to autophago-
somes (583). Consistent with the changes of macroau-
tophagy in the heart during obesity, data from both
immunoblotting and electron microscopy revealed
more lipid droplets and autophagosomes with fewer
autolysosomes in the hearts of high-fat diet-fed mice,
denoting inhibition of autophagosome degradation
(584). Among various possible scenarios, compro-
mised ability of FGF21 to promote autophagy/lipoph-
agy was shown to exacerbate lipid accumulation and
structural derangements in obese murine hearts (381).
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3.5.3. Autophagy stimulation and cardioprotective
effects.

Obesity-related cardiac anomalies are associated with
the disruptions of signaling pathways involved in cardio-
myocyte autophagy, while activation of autophagy/
mitophagy retards cardiac dysfunction in obesity (487,
547, 580). Injection of Tat-Beclin1 effectively inhibits lipid
accumulation and protects against cardiac dysfunction
by restoring autophagy or mitophagy (518, 582). SGLT2
inhibitors induce a transcriptional paradigm that mimics
nutrient, and oxygen deprivation and activates autoph-
agy, thereby mitigating cardiomyocyte dysfunction
(585). Overexpression of ALDH2 increased Beclin-1,
Atg7, and AMPK as well as decreased mTOR have been
shown to lead to autophagy induction and alleviated pal-
mitic acid-induced cardiac dysfunction via autophagy
regulation in a SUV39H-Sirt1-PGC-1a deacetylation-de-
pendent manner (586).

4. THERAPEUTIC IMPLICATIONS OF OBESITY
CARDIOMYOPATHY

4.1. Management of Obesity

Long-term pharmacotherapy of obesity is structured on
reduction of energy intake, facilitation of satiety, lowering
sensation of hunger, and caloric absorption, along with
lifestyle modification intervention (587). In severe or mor-
bid obesity, intragastric balloon insertion, shock thera-
pies, and bariatric surgery can be applied (587–589).
Nonetheless, effective antiobesity therapy has been
greatly hindered by the lack of a better understanding of
the precise interplay between genetic and nongenetic
factors (e.g., nutrition and environmental cues) in the etiol-
ogy of obesity and obesity complications.

4.1.1. Cornerstone: weight loss.

Despite the debatable benefits of obesity paradox
(590), constellation of findings suggested weight loss, in
particular by way of cardiorespiratory fitness and regular
exercise, plays an indispensable role in the prevention
and management of CVD in obese individuals (591).
Obesity-related cardiac remodeling and dysfunction is
prevented or even be reversed with purposeful weight
loss (591, 592). For example, a switch from high-fat to
low-fat diet in obese mice with heart failure drastically
lowered the body weight gain, retarded cardiac remod-
eling, as well as improved cardiac insulin sensitivity and
diastolic function (593), denoting a beneficial effect of
weight loss. This is echoed by the ample beneficial
responses on cardiac geometry and function in

overweight and obese individuals with bariatric surgery
or lesser levels of weight loss using caloric restriction
(CR) (TABLE 2). Furthermore, a retrospective study
found that weigh loss between annual physical examina-
tions displayed beneficial effects in general populations
(616). Nonetheless, coexisting chronic diseases and the
duration and severity of overweight and physical limita-
tions should be considered to assess the health risks
and benefits of treatment options. Efficient strategies
with evidence-based support to improve health and
quality of life mainly include lifestyle intervention, phar-
macotherapy, and bariatric surgery (591).

4.1.2. Lifestyle intervention.

Lifestyle interventions are geared to modify dietary hab-
its and physical activity. Given their low cost, great con-
venience, improvement in the quality of life and the
minimal risk of complications, lifestyle interventions are
often recommended as the first option for obesity man-
agement. Of 130 severely obese participants random-
ized, one-year intensive lifestyle intervention resulted in
a reduction of �10 kg in weight and favorable changes
in CVD risk factors (617). Weight regain is a common sit-
uation whenever a lifestyle intervention program is fail-
ing to produce additional weight loss and patients tend
to be reluctant to maintain the long-term behavioral
modification. Interestingly, a 20-yr follow-up study found
that a better adherence to healthy dietary patterns
weakens the genetic association with weight gain (618).
Individuals at high genetic risk for obesity were pro-
posed to receive greater benefits from improved diet
quality (618). Physical inactivity is closely associated with
chronic subclinical myocardial damage, while physical
activity is suggested to attenuate obesity-associated
cardiac remodeling (619). The salutatory impact of habit-
ual physical activity is partially obtained from its effects
on traditional cardiovascular risk factors. At the cellular
level, regular physical activity contributes to maintain
vascular homeostasis and to reduce systemic and car-
diac inflammation (620, 621).

Although excessive CR has generated some debata-
ble or even detrimental outcomes on cardiac geometry
and contractile function (622–624), emerging studies
have highlighted the potential benefits of CR on obesity-
associated heart diseases (622). Thirty-four obese
although otherwise healthy subjects consumed a very
low-calorie diet for 6 wk. Consumption of very low-calo-
rie diet decreased weight, myocardial fatty acid uptake,
triglyceride content, mass and cardiac work. Although
global insulin sensitivity was improved one-third, with in-
sulin-stimulated myocardial glucose uptake remained
unchanged (598). The INFINITE study involving 180
older (65–79 yr) obese men and women examined the
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Table 2. Effects of weight loss on cardiac function and morphology in human subjects

Authors (Year)
(Ref. No.)

Sample Size
Intervention and

Follow-Ip
Baseline BMI

BMI after Weight
Loss

Cardiac Function after
Weight Loss

Cardiac Structure
after Weight Loss

Naylor et al.
(2008) (594)

23 Resistance training,
8 wk

32.56 1.9 30.262.6 Improved early diastolic
myocardial velocities

No change in LV
geometry

Amaro-Gahete et
al. (2021) (595)

12 Physical exercise
training, 12 wk

32.163.6 31.462.7 Increased LV end dia-
stolic diameter

Not assessed

Serrano-Ferrer et
al. (2014) (596)

39 Lifestyle intervention
(diet and exercise),
3mo

31.963.5 28.863.2 Improved RV global lon-
gitudinal strain and
early diastolic strain
rate; No change in
TDI indices

Not assessed

Haufe et al. (2012)
(597)

170 Hypocaloric diets,
6mo

32.964.4 30.464.3 (reduced
carbohydrate),
30.663.9
(reduced fat)

No change in LV
function

Lower LV mass

Viljanen et al.
(2009) (598)

34 Hypocaloric diet, 6
wk

33.760.7 29.960.7 Improved cardiac out-
put, decreased blood
pressure

Lower LV mass

Karimian et al.
(2017) (599)

32 Hypocaloric diet, 6
wk

40.366.6 33.266.1 Reduced blood pres-
sure and partially nor-
malized diastolic
dysfunction

Not assessed

Varli et al. (2010)
(600)

13 Hypocaloric diet plus
orlistat, 6mo

39.964.3 36.164.6 Improved LV diastolic
function

Lower LV mass

Gulsin et al.
(2020) (601)

87 Hypocaloric diet or
aerobic training, 12
wk

36.665.5 34.5 (routine care),
33.0 (exercise),
30.3 (low-energy
diet)

No change in LV dia-
stolic function

Less concentric LV
remodeling and
aortic stiffness

Andersson et al.
(2016) (602)

68 Dietary intervention,
2 yr

32.660.6 31.0 (Nordic nutrition
recommend diet),
29.4 (Paleolithic-
type diet)

Improved cardiac
function

Lower LV mass

de las Fuentes et
al. (2009) (603)

60 Dietary intervention,
2 yr

3763 4.168.8 kg loss in
weight

No change in LV dia-
stolic and systolic
function

Lower LV mass

Leung et al. (2016)
(604)

8 Bariatric surgery,
9mo

4469 3566 Improved LV global lon-
gitudinal strain and LV
EF

Not assessed

Giudici et al.
(2020) (215)

26 Bariatric surgery,
8mo

47.96 7.1 33.466.9 Reduced carotid arterial
stiffness and
improved LV diastolic
function

No change in LV
geometry or
mass

Kaier et al. (2014)
(605)

52 Bariatric surgery,
6mo

42.464.6 31.562.6 Improved RV and LV
global strain, EF

Lower LV mass

Garza et al. (2010)
(606)

57 Bariatric surgery,
3.6 yr

4969 3568 No change in LV func-
tion, RV function or EF

Reduced cardiac
remodeling

Ikonomidis et al.
(2007) (607)

60 Bariatric surgery, 3 yr 48.76 7.8 236 1 Improved LV diastolic
and aortic function

Reduced LV
hypertrophy

Continued
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effects of combined aerobic exercise with CR. The
investigators noted that combination of aerobic exercise
with even moderate CR (�250 kcal/day) seems to be
more efficacious for cardiorespiratory fitness, fatigue
and disability, and glucose control compared with exer-
cise alone (suggested to be as effective as higher-dose
CR �250 kcal/day) (625). Therefore, implementing CR
with an aerobic exercise program would greatly potenti-
ate the benefits on the heart.

4.1.3. Pharmacotherapy.

4.1.3.1. FOOD AND DRUG ADMINISTRATION-APPROVED
MEDICATIONS FOR WEIGHT LOSS. Drug therapy in com-
bination with lifestyle modification, produce beneficial
effects on weight control and various obesity complica-
tions, particularly CVDs (589, 626). Development and
approval of antiobesity drugs, however, have been chal-
lenging due to the adverse effects (cardiac arrhythmia,

cataracts and neurotoxicity) of earlier weight loss medi-
cations such as 2,4,-dinitrophernol and fenfluramine.
The food and drug administration (FDA) criteria for ap-
proval of antiobesity drugs have been stringent ever
since the release of standard guideline in mid-1990s. A
drug must elicit a significant placebo-adjusted weight
loss of >5% in 1 yr or over 35% patients should reach
>5% weight loss, in addition to overt improvement of
metabolic biomarkers including blood pressure, blood
lipid and glucose levels (627). Up-to-date, five drugs
have been approved by FDA (three monotherapies: orli-
stat, lorcaserin, liraglutide and two combined therapies:
phentermine/topiramate, naltrexone/bupropion) for obe-
sity. The European Medicines Agency (EMA) has
approved only three drug therapies (orlistat, bupropion/
naltrexone, and liraglutide). All these medications yield a
placebo-adjusted weight loss of >5% over a year.
Among which, phentermine-topiramate and liraglutide
display the highest efficacy of >5% weight loss whereas

Table 2.—Continued

Authors (Year)
(Ref. No.)

Sample Size
Intervention and

Follow-Ip
Baseline BMI

BMI after Weight
Loss

Cardiac Function after
Weight Loss

Cardiac Structure
after Weight Loss

Hsuan et al.
(2010) (608)

66 Bariatric surgery,
3mo

43.366.3 34.165.6 Improved peak systolic
mitral annular velocity
and diastolic indices

Lower LV size, rel-
ative wall thick-
ness, LV mass
index; no
change in cham-
ber size

Algahim et al.
(2010) (609)

15 Bariatric surgery, 2 yr 46.76 1.7 32.4 Not assessed Decreased LV
mass

Owen et al. (2011)
(300)

423 Bariatric surgery, 2 yr 47.96 7.0 32.26 7.8 Improved LV and RV
function

Decreased cardiac
remodeling

Jhaveri et al.
(2009) (610)

17 Bariatric surgery,
17mo

44.164.2 29.964.7 No change in LVEDV,
RVEDV, or EF

Decreased LV and
RV mass

Lin et al. (2011)
(611)

30 Bariatric surgery,
16mo; Diet, 8mo

3966 366 7 (diet), 2965
(bariatric surgery)

Improved LV diastolic
function

Lower LV mass

Valezi and
Machado (2011)
(612)

43 Bariatric surgery, 1 yr 41.864.4 28.463.8 Increased EF, improved
diastolic function

Lower LV mass,
interventricular
septum, poste-
rior wall
thickness

Luaces et al.
(2012) (613)

41 Bariatric surgery, 1 yr 47.41 30.43 Decreased early mitral
velocity, increased mi-
tral inflow E/A ratio

Decreased cardiac
remodeling

Rider et al. (2009)
(614)

30 Bariatric surgery or
diet, 1 yr

39.76 7.6 32.265.3 Improved LV diastolic
function

Decreased LV and
RV mass

Alpert et al. (2015)
(615)

67 After bariatric surgery 46.365.2 34.565.7 Reduced QT interval Decreased LV
mass normal-
ized to height

E/a ratio, early-to-atrial wave ratio; EF, ejection fraction; LV, left ventricle; LVEDV/RVEDV, left/right ventricular end-diastolic volume; RV, right ventricle;
TDI, Tissue doppler imaging.
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liraglutide and naltrexone-bupropion exhibit the lowest
rate of discontinuation of medication due to appearance
of adverse events (628–631).

Orlistat, a selective pancreatic lipase inhibitor to alle-
viate intestinal digestion and absorption of fat, is
approved by both FDA and EMA to induce weight loss
in conjunction with caloric restriction. Orlistat is also indi-
cated to reduce the risk of T2D and dyslipidemia, inde-
pendent of its weight loss efficacy (627). Orlistat needs
to be taken with meals and is indicated for patients with
a BMI >30 or >28 when other risk factors (e.g., hyper-
tension, diabetes, and hyperlipidemia) are present.
Pooled data from randomized clinical trials suggested
beneficial effects of orlistat in glucose tolerance and
T2D development in obese individuals with impaired
fasting glucose.
Lorcaserin, a hypothalamic 5-HT2C receptor agonist

that acts on anorexigenic POMC neurons in the hypo-
thalamus, is an appetite suppressant approved by the
FDA in 2012 as an adjunct to caloric restriction and phys-
ical exercise for weight management in patients with
BMI >30 or >27 with comorbidities (e.g., hypertension,
diabetes, dyslipidemia). Lorcaserin is selective for
5-HT2C and may reduce risks associated with earlier
medications of this group (such as hallucination, PAH
and cardiac valvular insufficiency), Lorcaserin generates
an annual weight loss of �3.2–3.6kg in addition to
improved metabolic indices including blood pressure
and blood lipids.
Liraglutide is a glucagon-like peptide-1 (GLP-1) agonist

of an incretin-derived hormone which helps to control
glucose homeostasis, and food intake, Liraglutide was
initially developed for treatment of T2D given its incretin
property. Liraglutide not only reduces glucose levels
and promotes satiety but also retards gastric emptying
and lowers bodyweight in a dose-dependent manner
(628). It is the only injectable antiobesity medication that
promotes weight loss by fostering satiety via hypothala-
mic stimulation and retarding gastric emptying. It is
approved by FDA and EMA for patients with BMI >30 or
>27 with obesity-related comorbidities.
Phentermine/topiramate is classified as a sympatho-

mimetic that stimulates noradrenaline release and inhib-
its appetite, while topiramate is an anticonvulsant that
maximizes body weight loss associated with phenter-
mine use although the mechanism behind appetite sup-
pression remains at large. It is considered an effective
weight loss agent with reported 6.6–8.6 kg weight loss
over a period of 12 mo.
Naltrexone/bupropion is an opiate antagonist, whereas

bupropion is a weak dopamine and noradrenaline reup-
take inhibitor. Monotherapy of these medications has
been used for management of addiction to nicotine
and alcohol. Not surprisingly, combination therapy was

approved for the FDA and EMA to elicit central nervous
system reward effects on food intake and satiety though
antagonistic feedback inhibition. for obesity treatment.
Naltrexone/bupropion promotes satiety via stimulation of
POMC-mediated release of melanocyte-stimulating hor-
mone (MSH) to lower food intake and facilitate energy ex-
penditure. Naltrexone/bupropion is indicated for BMI
>30 or >27 in association with at least one of the obe-
sity-related comorbidities.

4.1.3.2. INSULIN SECRETAGOGUES. In addition to the
FDA-approved antiobesity medications, a number of
drugs commonly used in metabolic diseases such as
T2D may also offer benefit in clinical obesity manage-
ment. Dipeptidyl peptidase 4 (DPP-4) inhibitors are used
through suppression of degradation of incretin hor-
mones to maintain plasma glucagon-like peptide (GLP-1)
and gastric inhibitory polypeptide (GIP) levels, resulting
in facilitation of insulin secretion in pancreatic b cells
and inhibition of glucagon release in pancreatic a cells
as well as diverse GLP-1 biological response through
GLP-1 receptor ubiquitously expressed in various tissues
(632). More evidence has suggested that inhibition of
DPP-4 using linagliptin improved obesity-associated in-
sulin resistance and inflammation via intervening the M1/
M2 macrophage phenotypical switch (633–636). Earlier
evidence noted little adverse effects in body weight, is-
chemic incidence, heart rate and blood pressure in
patients using DPP-4 inhibitors. Recent findings favor
beneficial clinical outcomes of DPP-4 (637, 638). For
example, risk of all-cause mortality may be drastically
lowered when insulin is administered with DPP-4 inhibi-
tors compared with insulin plus non-DPP-4 inhibitors
(639).

4.1.3.3. POTENTIAL THERAPEUTIC TARGETS. 4.1.3.3.1.
Autophagy. Both clinical and experimental findings
support an essential role for autophagy in maintaining
metabolic homeostasis in obesity (640). To this end,
autophagy-targeting compounds have been applied in
clinical or preclinical settings. It has been well docu-
mented that induction of autophagy is mainly derived
from nutrient sensing signaling of mTOR, AMPK, and the
insulin-IGF1 cascade (87, 133, 453). Hyperactivation of
mTOR provokes metabolic derangement by suppressed
autophagy (641). Therefore, nutrient sensing through
mTOR is cardinal for metabolic regulation and serves as a
likely target for intervention of autophagy in metabolic
derangement and lysosomal dysfunction (642). For exam-
ple, the transcriptional factor TFEB mediates mTOR phos-
phorylation to govern autophagy flux and sustained
transcriptional regulation of autophagy (643). Many drugs
with proven benefits in the therapeutics of obesity and
T2D involve autophagy regulatory mechanism, including
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metformin, thiazolidinedione pioglitazone, and DPP-4
inhibitors, as summarized in our recent review (133).
Nonetheless, it is noteworthy that these metabolic regula-
tory medications may produce off-target effects thus it is
premature to credit autophagy as their only and main
mechanism for metabolic regulation in obesity.

4.1.3.3.2. Adiponectin. As an anti-inflammatory
cytokine, chronic overexpression of adiponectin pro-
vokes abrupt rises in subcutaneous fat, and retards diet-
induced insulin resistance (644). It was revealed that
classical antidiabetic agents including PPARc agonists
(e.g., thiazolidinediones) are capable of stimulating circu-
lating levels of adiponectin. More evidence has revealed
beneficial effect of adiponectin in hepatomegaly, liver
steatosis, and liver injury in obesity. Although the precise
mechanism of action behind adiponectin-elicited meta-
bolic benefit remains elusive, the ability of adiponectin
to promote carnitine palmitoyltransferase I and hepatic
FAO may play a role, with both enzymes or processes
heavily involved in fatty acid synthesis (645).

4.1.3.3.3. Antiinflammatory agents. Obesity is
commonly associated with a chronic low-grade inflam-
mation. Not surprisingly, anti-inflammatory drugs are
potentially effective in obesity, with low risks of adverse
effects. Salsalate, a prodrug of salicylate to inhibit IKKb/
NF-κB, improves glycemic control in patients with T2D
(646). Along the same line, inhibition of proinflammatory
cytokines also shows promises in metabolic regulation.
For example, IL-1 receptor antagonists (anakinra) have
been shown to benefit glycemia and b-cell function
(647). TNF-a blockade with etanercept, on the other
hand, failed to display major response in insulin sensitiv-
ity although improvement on circulating inflammatory
cytokines and glucose were noted (648).

4.1.3.3.4. Aldosterone antagonists: eplere-
none. As mentioned earlier, Na retention is a central
component of obesity-related HFpEF, where diuretics
serve as a logical therapeutic regimen (322). Obese
patients are usually responsive to diuretics albeit with
worsened renal function following natriuresis. Given the
overproduction of aldosterone in obesity due to hyper-
activation of RAAS and adipokine leptin, Na retention in
obesity may be better addressed using aldosterone
antagonists. Moreover, adipocytes also synthesize aldo-
sterone directly, and elevated neprilysin in obesity
diminishes natriuretic peptide-induced suppression on
aldosterone secretion. In addition to Na retention, hyper-
aldosteronism also promotes epicardial adipose tissue
inflammation and therefore onset of microvascular rare-
faction and fibrosis in myocardium. In this case, perivisc-
eral fat transforms into a proinflammatory phenotype in
a mineralocorticoid receptor-dependent manner (649).
Recent work also implicates increased aldosterone and

coronary artery MR activation in promotion of Western
diet-induced cardiomyocyte stiffness and diastolic dys-
function (650).

4.1.3.3.5. PPARc agonists thiazolidinedio-
nes. Drugs targeting on insulin secretion (secreta-
gogues such as sulfonylureas and meglitinides) or insulin
sensitivity [insulin sensitizers such as thiazolidinediones
(TZDs) and metformin] are the mainstream therapeutic
options for T2D. In particular, TZDs remain a first-line ther-
apeutic option for T2D, courtesy of the antihyperglycemic
properties elicited by PPARc, which regulate essential
genes involved in glucose and lipid metabolism.

Given that obesity is the single most independent risk
factor for T2D, many pharmacotherapies employed in
the management of T2D received some favorable indi-
cations in obesity including the FDA-approved antidia-
betic drugs metformin, insulin therapy, PPARc agonists
sodium–glucose cotransporter 2 (SGLT2) inhibitors, sul-
fonylureas, meglitinides, dipeptidyl peptidase 4 (DPP-4),
and inhibitors (589, 629, 651–653). Moreover, novel
targets recognized in the therapy of T2D such as free
fatty acid receptor 1 (also known as G protein-coupled
receptor 40), glucokinase, and protein tyrosine phos-
phatase 1B have not been fully validated in the clinical
management of obesity and obesity complications.
Given the complexity and the multifactorial nature of
obesity, a multitarget approach is worth of exploration
(654).

4.1.3.3.6. Epigenetically based pharmaco-
therapy. Epigenetics has seen a drastic development
over the last years although it remains challenging to
apply effective epigenetically based pharmacotherapy
for obesity probably due to incomplete picture of epige-
nome regulation by metabolic stress (655). This is
particular helpful for early life deleterious epigenetic pro-
gramming (656). Epigenetic therapies inhibiting DNA
Methyltransferase DNA methyltransferases (DNMTs) or
histone deacetylases (HDACs) have shown some prom-
ises. Three HDAC inhibitors, as well as two DNMT inhibi-
tors are FDA-approved for cancer therapy (657). Several
HDAC and DNMT inhibitors as well as candidates target-
ing ncRNAs are currently under preclinical studies.
Despite the benefit for Na restriction and nutrient supple-
ment to control DNA methylation, employment of such
measures to control lipid and glucose levels in obesity is
still debatable. One obvious disadvantage is the likely
unspecific and profound epigenetic deregulation nature
of these drugs. Generally speaking, epigenetic-based
therapy offers a potential way to prevent and mitigate
chronic diseases through altering or correcting epige-
netic abnormalities (658). Higher levels of LDL particles
and lower levels of HDL particles were noted in coronary
heart disease in morbid obese postmenopausal women
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(659). Circulating proinflammatory biomarkers offer
potential utility in predicting the risk of coronary artery dis-
ease through its positive correlation with pericoronary fat
(660). However, a number of drawbacks still hinder the
clinical applications of these traditional biomarkers. Given
the lack of efficient biomarkers for early diagnosis of car-
diac anomalies and the emerging role of epigenetic traits
in obesity, “BMI”-associated epigenetic biomarkers have
gained some popularities in the early diagnosis and man-
agement of obesity-induced CVD. Genomic imprinting is
a process of epigenetic modification which allows the
gene to be expressed in a parent-of-origin specific man-
ner. In this vein, investigators identified a nonclassical
imprinted gene dysregulation in the Trim28 haploinsuffi-
ciency-induced obesity (661). This notion of alternate epi-
genetic trajectories in obesity points to a new direction for
pharmacological drug development targeting the potential
“on-and-off” switch for obesity phenotype manifestation.

4.1.4. Bariatric surgery.

In comparison to lifestyle interventions and pharmaco-
logical agents, bariatric surgery has long been estab-
lished as a more effective and durable intervention for
weight-loss and remission of cardiovascular risks (662,
663). Three major types of bariatric surgery are widely
conceived (664). Laparoscopic adjustable gastric band-
ing involves placing an inflatable silicone band around
the upper stomach, without anatomical gut changes, to
reversibly restrict the transit of ingested food. Roux-en-Y
gastric bypass restricts food intake by reconstructing
the alimentary canal, such that food bypasses majority
of the gastrointestinal tract. The lately developed verti-
cal-sleeve gastrectomy involves excision of more than
half of the stomach to accelerate the gastric emptying.
The use of the latter two procedures has escalated due
to larger weight-loss (�25% and 30%, respectively) and
less reoperation rates than gastric banding (662, 665).

With the well-perceived cardiovascular risks in obe-
sity, proven clinical benefits are solidified for bariatric
surgery, especially after Roux-en-Y gastric bypass and
vertical-sleeve gastrectomy (666). At a 2-yr follow up,
gastric bypass surgery reversed LV remodeling and pre-
served LV and RV function, along with weight-loss (300).
Compared with gastric banding, Roux-en-Y gastric
bypass restricts reduced more abdominal visceral fat and
ameliorated LV remodeling and aortic stiffness caused by
obesity (667). Furthermore, bariatric surgery leads to
remission of obesity-related insulin resistance, hyperten-
sion, and other metabolic complications (665, 668).
TABLE 2 summarizes proven benefits of bariatric surgery
on overweight- and obesity-induced cardiac remodeling
and contractile dysfunction including reduced LV mass,
wall thickness, as well as systolic and diastolic functional

indices. Nonetheless, it is noteworthy that a cadre of clini-
cal observations failed to note discernable changes in
certain aspects (such as systolic or diastolic function) in
obese individuals despite clear weight loss, indicating
possible disparate response of weight loss on reversibility
of cardiac remodeling and contractile dysfunction in
obese individuals. Among the pleiotropic effects of bariat-
ric surgery, complicated mechanisms that contribute to
the prolonged cardiometabolic improvements following
bariatric surgery include stable weight-loss, sustained sa-
tiety, subsequent changes in eating habits and gastroin-
testinal hormone activity, whereas further investigation is
required (669).
As with all procedures, potential risks must be weighed

against its benefits before proceeding with bariatric sur-
gery. Limitations remain, including the high cost initially,
potential risks for weight regain, surgical revisions, short-
and long-term complications, and the lifelong requirement
for nutritional supplementation (665). Furthermore, phar-
macological intervention is still a viable approach to most
cardiovascular anomalies. Collectively, Roux-en-Y gastric
bypass and vertical-sleeve gastrectomy are feasible alter-
natives to the treatment of severe and/or refractory obe-
sity, taking into account the potential risks and high cost.

5. SUMMARY AND CONCLUSION

Here we provided a contemporary review that iterates
the evidence for the existence of an entity termed obe-
sity cardiomyopathy and putative mechanisms from the
perspectives of genetics and epigenetics for its patho-
genesis, as well as therapeutic options/implications for
this disorder. Clinical findings have underscored the
presence of ventricular dysfunction in obesity independ-
ent of hypertension, coronary heart disease and other
conventional causes of CVD. Experimental evidence
has also confirmed pathophysiological changes in myo-
cardial structure and function in genetically predisposed
and diet-induced obesity. Contemporary understanding
of the mechanisms underlying obesity cardiomyopathy
include metabolic disturbances (insulin resistance,
abnormal glucose transport, increased FAs, lipotoxicity,
and amino acid derangement), changes in intracellular
Ca21 homeostasis, oxidative stress, autophagy dysregu-
lation, myocardial fibrosis, cardiac autonomic neuropa-
thy (denervation or adrenergic and renin-angiotensin
aldosterone overflow), inflammation, small coronary ves-
sel disease (microangiopathy), impaired coronary flow
reserve, and coronary artery endothelial dysfunction. In
addition, epigenetic modifications also participate in the
etiology of obesity cardiomyopathy. Ample evidence
has been engaged toward the management of obesity
cardiomyopathy, although effective and targetedmedications
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and procedures are still lacking. Nonpharmacological
approaches such as lifestyle modification (e.g., exercise and
diet control) may also benefit heart health in obesity (670).
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