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Multiomicsignatures of body massindex
identify heterogeneous health phenotypes
and responses to alifestyle intervention
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W Check for updates

Multiomic profiling can reveal population heterogeneity for both health
and disease states. Obesity drives amyriad of metabolic perturbations
andis arisk factor for multiple chronic diseases. Here we report an atlas of
cross-sectional and longitudinal changesin 1,111 blood analytes associated
with variation in body mass index (BMI), as well as multiomic associations
with host polygenicrisk scores and gut microbiome composition, froma
cohortof1,277 individuals enrolled in a wellness program (Arivale). Machine
learning model predictions of BMI from blood multiomics captured
heterogeneous phenotypic states of host metabolism and gut microbiome
composition better than BMI, which was also validated in an external

cohort (TwinsUK). Moreover, longitudinal analyses identified variable BMI
trajectories for different omics measures in response to a healthy lifestyle
intervention; metabolomics-inferred BMI decreased to a greater extent than
actual BMI, whereas proteomics-inferred BMI exhibited greater resistance to
change. Our analyses further identified blood analyte-analyte associations
that were modified by metabolomics-inferred BMI and partially reversedin
individuals with metabolic obesity during the intervention. Taken together,
our findings provide a blood atlas of the molecular perturbations associated
with changes in obesity status, serving as aresource to quantify metabolic
health for predictive and preventive medicine.

Obesity has beenincreasingin prevalence over the past four decadesin  cancer®®.Inindividuals with obesity, even a5%loss in body weight can
adults, adolescents and children around most of the world”. Manystud-  improve metabolic and cardiovascular health’,and weight loss through
ies have demonstrated that obesity is a major risk factor for multiple lifestyleinterventions (for example, diet and exercise) canreduce the
chronic diseases, such as type 2 diabetes mellitus (T2DM), metabolic  risk for obesity-related chronic diseases®. Nevertheless, obesity and
syndrome (MetS), cardiovascular disease (CVD) and certain types of  its physiological manifestations can vary widely across individuals,
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necessitating additional research to better understand this prevalent
health condition.

Obesity is commonly quantified using the anthropometric body
mass index (BMI), defined as body weight divided by body height
squared (kg m™). Although BMI does not directly measure body com-
position, BMI correlates well at the population level with the body fat
percentage measured by specialized devices, such as dual-energy X-ray
absorptiometry (DXA)’. As an easily calculated and commonly under-
stood measure among researchers, clinicians and the general public,
BMliswidely used for the primary diagnosis of obesity, and changesin
BMl are often used to assess the effectiveness of lifestyle interventions.

There are limitations to BMIas asurrogate measure of health state.
BMI can lead to misclassification of people with a high muscle-to-fat
ratio (for example, athletes) as individuals with obesity and can
undervalue metabolic improvements in health after exercise'®. A
meta-analysis showed that the common obesity diagnoses based on
BMI cutoffs had high specificity but low sensitivity in identifying indi-
viduals with excess body fat". The misclassificationis likely due, in part,
tothe differencesin BMIthresholds for obesity across different ethnic
populations™ as well as the existence of a metabolically unhealthy,
normal-weight (MUNW) group within the normal BMI class™™. Likewise,
there are health-heterogeneous groups amongindividuals with obesity:
metabolically healthy obese (MHO) and metabolically unhealthy obese
(MUO). Although mostindividualsin the MHO group are not necessarily
healthy but simply healthier than individuals in the MUO group®, the
transition from MHO to MUO phenotype may be a preceding step to
the development of obesity-related chronic diseases'®. Moreover, this
transition is potentially preventable through lifestyle interventions”.
Hence, BMlis unequivocally useful at the population level but too crude
to capture avariety of heterogeneous metabolic health states.

Omicsstudies have demonstrated how blood omic profiles contain
information relevant to a wide range of human health conditions; for
example, blood proteomics captured 11 healthindicators, such as the
liver fat measured by ultrasound and the body composition measured
by DXA', whereas blood metabolomics tended to reflect dietary intake,
lifestyle patterns and gut microbiome profiles'>*. Amachine learning
model that was trained to predict BMI using 49 BMI-associated blood
metabolites captured obesity-related clinical measurements (for exam-
ple, visceral fat percentage) better than observed BMI or genetic predis-
position for high BMI*. Moreover, another blood metabolomics-based
model of BMIreflected differences between individuals with or without
acute coronary syndrome®. Thus, although a single targeted metric
(forexample, body composition) or a specificbiomarker (for example,
leptin®®) provides useful information, multiomic blood profiling has the
potential to comprehensively bridge the multifaceted gaps between
BMIand heterogeneous physiological states.

Here we report heterogeneous molecular signatures of obesity by
leveraging a cohort of1,277 individuals with phenotype data, including
human genomes and longitudinal measurements of metabolomics,
proteomics, clinical laboratory tests, gut microbiomes, physical

activity (that is, wearables) and health/lifestyle questionnaires, and
by employing machine learning to predict BMI.

Results

Arivale cohort characteristics

Weselected astudy cohort of 1,277 adults who participated inascien-
tific wellness program (Arivale)**>*° and had coupled measurements
of plasma metabolomics, proteomics and clinical laboratory tests from
thesameblood draw (Fig.1a and Methods). This study design allowed
ustodirectlyinvestigate the similarities and differences between omics
platformsaccording to the physiological health state of eachindividual
across the BMI spectrum. This cohort was characteristically female
(64.3%), middle-aged (mean s.d.: 46.6 +10.8 years) and White (69.7%)
(Extended Data Fig. 1a-c and Supplementary Data 1). Based on the
World Health Organization (WHO) international standards for BMI
cutoffs (underweight: <18.5 kg m™, normal: 18.5-25 kg m, overweight:
25-30 kg m™, obese: 230 kg m™2)"2, the baseline BMI prevalence was
similar among normal, overweight and obese classes, whereas only
0.8% of participants were in the underweight class (underweight: ten
participants (0.8%), normal: 426 participants (33.4%), overweight: 391
participants (30.6%), obese: 450 participants (35.2%)). In the Arivale
program, personalized healthy lifestyle coaching was provided to all
participants (Methods), resulting in clinicalimprovement across mul-
tiple measures of health®.

Blood omics-based BMI models

Leveraging the baseline measurements of plasma molecular analytes
(766 metabolites, 274 proteins and 71 clinical laboratory tests; Sup-
plementary Data 2), we trained machine learning models to predict
baseline BMI for each of the omics platforms (metabolomics, pro-
teomics and clinical labs) or in combination: metabolomics-based
BMI (MetBMI), proteomics-based BMI (ProtBMI), clinical labs
(chemistries)-based BMI (ChemBMI) and combined omics-based
BMI (CombiBMI) models. To address multicollinearity among the
analytes (Extended Data Fig. 2a) and to obtain predictions for all par-
ticipants, we applied a ten-fold iteration scheme of the least absolute
shrinkage and selection operator (LASSO) algorithm with ten-fold
cross-validation (Fig. 1a and Methods). This approach generated ten
fitted sparse models for each omics category (Supplementary Data3)
and one single testing (hold-out) set-derived prediction from each
omics category for each participant (Fig. 1b). The resulting models
retained 62 metabolites, 30 proteins, 20 clinical laboratory tests and
132 analytes across all ten MetBMI, ProtBMI, ChemBMI and CombiBMI
models, respectively, which exhibited low collinearity (Extended Data
Fig. 2b,c) as expected from the LASSO algorithm®. In contrastto a
model including obesity-related standard clinical measures (that is,
ordinary least squares (OLS) linear regression model with sex, age,
triglycerides, high-density lipoprotein (HDL) cholesterol, low-density
lipoprotein (LDL) cholesterol, glucose, insulinand homeostatic model
assessment for insulin resistance (HOMA-IR) as regressors; StandBMI

Fig.1|Plasma multiomics captured 48-78% of the variance in BMI.

a, Overview of study cohorts and the omics-based BMI model generation.

CV, cross-validation. b, Correlation between the measured and predicted BMIs.
Thesolid lineis the OLS linear regression line with 95% confidence interval, and
the dotted line is measured BMI = predicted BMI. Standard measures: OLS linear
regression model with sex, age, triglycerides, HDL cholesterol, LDL cholesterol,
glucose, insulinand HOMA-IR as regressors; P,q;: adjusted Pvalue of two-sided
Pearson’s correlation test with the Benjamini-Hochberg method across

the five categories (n =1,277 participants). ¢,d, Model performance of each
fitted BMI model. Out-of-sample R? was calculated from each corresponding
hold-out testing set (Arivale: c,d) or from the external testing set (TwinsUK: d).
Metabolomics (full): LASSO model trained by all 766 metabolites of the Arivale
dataset; Metabolomics (restricted): LASSO model trained by the common 489
metabolites in the Arivale and TwinsUK datasets (Extended Data Fig. 3 and

Methods); P,q: adjusted Pvalue of two-sided Welch’s t-test with the Benjamini-
Hochberg method across the four (c) or three (d) comparisons. Data: mean

with 95% confidence interval, n =10 models. Note that Standard measures and
Metabolomics (full) of Arivalein d are the same with corresponding onesin

c. e, Association between omics-inferred BMI and physiological feature. For each
of the 51 numeric physiological features (Supplementary Data 4), -coefficient
was estimated using OLS linear regression model with the measured or omics-
inferred BMI as adependent variable and sex, age and ancestry principal
components as covariates. Presented are the 30 features that were significantly
associated with at least one of the BMI types after multiple testing adjustment
with the Benjamini-Hochberg method across the 255 (51 features x 5 BMI

types) regressions. n, number of assessed participants. Data: estimate with 95%
confidence interval. *Adjusted P < 0.05, **adjusted P < 0.01, **adjusted P < 0.001.
All exact values of test summaries are found in Supplementary Data 4 and 10.
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model), each omics-based model demonstrated significantly higher
performance in BMI prediction, ranging from out-of-sample R? = 0.48
(ChemBMI) to 0.70 (ProtBMI) compared to 0.37 (StandBMI) (Fig. 1c).
The CombiBMImodel exhibited the best performance in BMI prediction

Participants in the Arivale program (n = 6,223)

Select the participants having:
- Metabolomics, proteomics and clinical
labs from the same first blood draw
- Baseline BMI

Split into 10 sets
n=127or 128

(out-of-sample R? = 0.78; Fig. 1c), but the variances explained were not
completely additive, suggesting that, although there is a considerable
overlapinthe signal detected by each omics platform, different omic
measurements still contain non-redundantinformation regarding BMI.

Select a testing set and generate model k for each omics Participants in the TwinsUK Registry (n = 17,630)
1

Select the participants having:

- Genomics

Eliminate the participants having:
- Baseline BMI out of mean + 3 s.d.
- >10% missingness in any omics
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Additionally, these results were consistent in sex-stratified models,
with the exception of the male ChemBMI model that exhibited higher
performance than the StandBMI model without statistical significance
(Extended DataFig. 2d).

To confirm the generalizability of our results, we investigated an
external cohort of 1,834 adults from the TwinsUK registry* whose data-
setsincluded serum metabolomics* and the aforementioned standard
clinical measures (Fig. 1a, Extended Data Fig.1d-fand Supplementary
Datal). We calculated BMI predictions for the TwinsUK cohort using the
StandBMlI and restricted MetBMImodels that were fitted to the Arivale
datasets (Extended Data Fig. 3 and Methods). The restricted MetBMI
model exhibited alower absolute performance on the TwinsUK cohort
compared tothe Arivale cohortbut asignificantly higher performance
than the StandBMImodel (out-of-sample R? = 0.30 (MetBMI) and —0.13
(StandBMI); Fig. 1d), confirming that blood metabolomics generally
captures BMI better than the standard clinical measures.

BMI has been reported to be associated with multiple anthropo-
metric and clinical measures, such as waist circumference, blood pres-
sure, sleep quality and several polygenic risk scores (PRSs)**>33, We
examined the association between the omics-inferred BMland each of
the available numeric physiological measures (Methods and Supple-
mentary Data4). Among the 51assessed features, classically measured
BMlwas significantly associated with 27 features (false discovery rate
(FDR) < 0.05), including daily physical activity measures from wearable
devices, waist-to-height ratio (WHtR), blood pressure and BMI PRS
(Fig. 1e). With minor differences in effect sizes, these BMI-associated
features were concordantly associated with each omics-inferred BMI
(Fig.1e), indicating that the omics-inferred BMIs primarily maintain the
characteristics of classical BMI in terms of anthropometric, genetic,
lifestyle and physiological associations.

Predictive features in omics-based BMI models

Because our LASSO linear regression model showed similar perfor-
manceto elasticnetandridge linear regression models and anon-linear
random forestregression model (Extended DataFig. 4a,b), and because
the LASSO model’s S-coefficients are generally easier to interpret, we
chose to focus on the LASSO models. However, the LASSO algorithm
randomly retains variables from highly collinear groups and sets
S-coefficients of the other variables to 0. To confirm the robustness
of the variable selection process, we iterated the LASSO modeling while
removingthe strongest analyte (thatis, the analyte that had the highest
absolute value for the mean of the ten -coefficients) from the input
omicdataset attheend of eachiteration. Ifavariableisindispensable for
amodel, the performance should largely decrease after removingit.In
allomics categories, asteep decay in the out-of-sample R> was observed
inthe first 5-9 iterations (Extended Data Fig. 2e-h), suggesting that,
at least, the 5-9 analytes that had the highest absolute B-coefficients
in the original LASSO models were indispensable for predicting BMI.
Compared to ProtBMIl and ChemBMImodels, the overall slope of R*in
the MetBMImodel decayed more gradually (Extended DataFig.2e-g),
and the proportion of the variables that were robustly retained across
allten LASSO models (Extended Data Fig. 5) to the variables that were
retained in atleast one of the ten LASSO models was lower in the MetBMI
model (MetBMI: 62/209 metabolites =30%; ProtBMI: 30/74 proteins
=41%; ChemBMI: 20/41 clinical laboratory tests =49%), implying that

metabolomics data contain more redundant information about BMI
than the other omics data. Nevertheless, metabolites still constituted
58% of the 132 analytes that were retained across all ten CombiBMI
models (77 metabolites, 51 proteins and four clinical laboratory tests;
Fig.2a), suggesting that each of the omics categories possesses unique
information about BMI. The strongest predictors in the CombiBMI
model were primarily proteins; analytes having the mean absolute
[S-coefficient >0.02 were leptin (LEP), adrenomedullin (ADM) and fatty
acid-binding protein 4 (FABP4) as the positive predictors and insulin-like
growth factor-binding protein1(IGFBP1) and advanced glycosylation
end-product-specific receptor (AGER; also called RAGE) as the negative
predictors. These strongest proteins were consistent in the elastic net
models (Extended DataFig. 4c-f) and had highimportanceintheridge
and random forest models (Extended Data Fig. 4g,h).

These consistently retained predictors in the omics-based BMI
modelsimplied that a single analyte might be a suitable biomarker to
predict BMI. To address this possibility, we assessed the association
between eachsingle analyte and BMIfor the analytes that were retained
in at least one of the ten LASSO models (MetBMI: 209 metabolites,
ProtBMI: 74 proteins and ChemBMI: 41 clinical laboratory tests; Supple-
mentary Data 5). Among the analytes that were significantly associated
with BMI (180 metabolites, 63 proteins and 30 clinical laboratory tests),
only LEP, FABP4 and interleukin1receptor antagonist (ILIRN) exhibited
over 30% of the explained variance in BMI by themselves (Fig. 2b-d),
withamaximum of 37.9% variance explained (LEP). In contrast, MetBMI,
ProtBMI and ChemBMI models explained 68.9%, 70.6% and 48.8% of
the variance, respectively. Moreover, even upon eliminating several
strong analytes (for example, LEP and FABP4) from the omic datasets,
the models still explained more variance in BMI than any single analyte
(Extended Data Fig. 2e-h). These results indicate that the multiomic
BMl prediction models explainalarger portion of the variation in BMI
than any single analyte and highlight the multivariable perturbation
of blood analytes across all platforms with increasing BMI.

Metabolic heterogeneity within the standard BMI classes
Although the omics-inferred BMIs showed the similar phenotypic asso-
ciationsas classical BMI (Fig. 1e), we observed that the difference of the
predicted BMI from the measured BMI (ABMI) was highly correlated
among the omics categories, ranging from Pearson’s r = 0.64 (Chem-
BMI versus CombiBMI) to 0.83 (ProtBMI versus CombiBMI) (Fig. 3a),
implying that this deviation stemmed from a true biological signal of
a perturbed physiological state rather than from noise or modeling
artifacts. Whenindividualsin the normal and obese BMI classes (defined
by the WHO international standards) were subdivided by a clinical defi-
nition of metabolic health (that is, defining metabolically unhealthy if
having two or more MetS risks; Methods)***, ABMI was significantly
higherin MUNW and MUO groups compared to metabolically healthy,
normal-weight (MHNW) and MHO groups, respectively, for all omics
categories (Fig. 3b), suggesting that the deviations of model predic-
tions are related to metabolic health.

Nevertheless, there has been no universally accepted definition of
metabolic health'****, Given the high interpretability and intuitive-
ness of the omics-inferred BMI, we explored a potential application:
using the omics-inferred BMI (instead of actual BMI) for improved
classification of both obesity and metabolic health with the WHO

Fig.2|Omics-based BMI estimates captured the variance in BMI better than
any single analyte. a, The variables that were retained across all ten CombiBMI
models (132 analytes: 77 metabolites, 51 proteins and four clinical laboratory
tests). B-coefficient was obtained from the fitted CombiBMI model with LASSO
linear regression (Supplementary Data 3). Each background color corresponds
to the analyte category. Data: the standard box plot (Methods), n =10 models.
b-d, Univariate explained variance in BMI by each metabolite (b), protein (c)

or clinical laboratory test (d). BMI was independently regressed on each of

the analytes that were retained in at least one of the ten LASSO models (209

metabolites, 74 proteins and 41 clinical laboratory tests; Supplementary Data 5),
using OLS linear regression with sex, age and ancestry principal components as
covariates. Multiple testing was adjusted with the Benjamini-Hochberg method
across the 210 (b), 75 (c) or 42 (d) regressions, including each omics-based BMI
model as reference. Among the analytes that were significantly associated with
BMI (180 metabolites, 63 proteins and 30 clinical laboratory tests), only the top
30 significant analytes are presented with their univariate variances. All exact
values of test summaries are found in Supplementary Data 5.
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international standards. Each participant was classified using each  group when the measured BMI class was matched or mismatched to
of the measured and omics-inferred BMIs based on the standard each omics-inferred BMI class, respectively. The misclassification
BMI cutoffs and categorized into either a matched or a mismatched rate against the omics-inferred BMI class was ~30% across all omics
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categories and BMI classes (Fig. 3¢), consistent with the previously
reported misclassification rates about the cardiometabolic health
classification®**. We then examined relationships between this

omics-based misclassification withinnormal or obese BMI class and the
obesity-related clinical blood markers (Supplementary Data 6), includ-
ing triglycerides, HDL cholesterol, LDL cholesterol, high-sensitivity
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Fig.3|Metabolic heterogeneity was responsible for the high rate of
misclassification within the standard BMI classes. a, Difference of the
omics-inferred BMI from the measured BMI (ABMI). P,4: adjusted Pvalue of
two-sided Pearson’s correlation test with the Benjamini-Hochberg method
across the six combinations (n, number of participants in each BMI class; total
n=1,277 participants). The line in the histogram panel indicates the kernel
density estimate. b, Difference in ABMI between clinically defined metabolic
health conditions within the normal or obese BMI class. Each comparison value
indicates adjusted Pvalue, calculated from OLS linear regression with BMI, sex,
age and ancestry principal components as covariates while adjusting multiple
testing with the Benjamini-Hochberg method across the eight (2 BMI classes

x 4 omics categories) regressions. ¢, Misclassification rate of overall cohort

or each BMI class against the omics-inferred BMI class. Reference range: the
previously reported misclassification rate’*””. The underweight BMI class is
not presented owing to small sample size, but its misclassification rate was

80% against CombiBMI class and 100% against the others. d,e, Difference in the
obesity-related clinical blood marker (d) or BMI-associated physiological feature
(e) between the matched and mismatched groups within the normal or obese
BMiIl class. Each comparison value indicates adjusted Pvalue, calculated from
OLSlinear regression with BMI, sex, age and ancestry principal components

as covariates while adjusting multiple testing with the Benjamini-Hochberg
method across the 40 (d, 2 BMlI classes x 2 omics categories x 10 markers) or 216
(e, 2BMi classes x 4 omics categories x 27 features) regressions. Four of the 27
features that were significantly associated with BMI (Fig. 1c) are representatively
presented in e, and the other results are found in Supplementary Data 6. 25(OH)D,
25-hydroxyvitamin D; a.u., arbitrary units. b,d,e, Data: the standard box

plot (Methods); n =373 (b, Healthy in Normal), 49 (b, Unhealthy in Normal),

208 (b, Healthy in Obese) or 241 (b, Unhealthy in Obese) participants (see
Supplementary Data 6 for each sample size ind and e). All exact values of test
summaries are found in Supplementary Data 6 and 10.

C-reactive protein (hs-CRP), glucose, insulin, HOMA-IR, glycated
hemoglobin Alc (HbAlc), adiponectin and vitamin D*'>***%* Because
ChemBMIand CombiBMImodels were notindependent of these mark-
ers, only the misclassification against MetBMI or ProtBMI class was
examined in this analysis. The mismatched group of normal BMI class
exhibited significantly higher values of the markers that are positively
associated with BMI (+g,,), including triglycerides, hs-CRP, glucose
and HOMA-IR, and significantly lower values of the markers that are
negatively associated with BMI (), including HDL cholesterol and
adiponectin, compared to the matched group of normal BMI class
(FDR < 0.05; Fig. 3d). These patterns suggest that the participant mis-
classified into the normal BMI class possesses less healthy molecular
profiles comparable to an individual with overweight or obesity, cor-
responding to the individual with MUNW phenotype. Conversely, the
mismatched group of obese BMI class exhibited significantly lower
and higher values of the positively and negatively BMI-associated
markers, respectively, compared to the matched group of obese BMI
class (FDR < 0.05; Fig. 3d), suggesting that the participant misclassi-
fied as obese BMI class has healthier blood signatures comparable to
anindividual with overweight or normal weight, correspondingto the
individual with MHO phenotype.

Were-examined the 27 BMI-associated numeric physiological fea-
tures (Fig. le and Supplementary Data 6) as well and found the concord-
ant pattern of significant phenotypic differences between the matched
and mismatched groupsin WHtR (+g,,), heartrate (+g,,), blood pressure
(+w) and daily physical activity (—,,) measures (FDR < 0.05; Fig. 3e).
There was no difference in BMI PRS (+,,) between the matched and
mismatched groups (Fig. 3e), implying thatlifestyle or environmental
factors, rather than geneticrisk, are likely associated with the discord-
ance between the measured and omics-inferred BMIs. Furthermore,
we validated these findings using the TwinsUK cohort (Extended Data
Fig. 6). Taken together, these results suggest that the omics-inferred
BMIs are associated with heterogeneous metabolic health states that
are not captured by classical BMI with the standard BMI cutoffs.

Abdominal obesity and omics-based BMI models
Fatdistributioninthebodyis animportantfeature for understanding
the heterogeneous nature of obesity. In particular,abdominal obesity,

which is characterized by excessive visceral fat (rather than subcuta-
neous fat) around the abdominal region, is associated with chronic
diseases such as MetS*’. Thus, we analyzed WHtR, an anthropometric
measure of abdominal obesity**, in the Arivale cohort using the same
scheme with the omics-based BMI models (Extended Data Fig. 7a and
Methods). The omics-based WHtR models exhibited consistent find-
ings (Extended Data Fig. 7) and characteristics (Extended Data Fig. 8)
to the omics-based BMImodels. Moreover, in the TwinsUK cohort, DXA
measurements of fat in the android region (+3,,) were significantly
higher in the mismatched group compared to the matched group
within the normal BMI class (FDR < 0.05; Extended Data Fig. 6¢). Col-
lectively, although classical BMI requires complementary informa-
tion of the fat distribution for the diagnosis of abdominal obesity, the
omics-based BMI model likely captures the obesity characteristics,
including abdominal obesity.

Gut microbiome and omics-inferred BMIs
Given our previous finding that the association between blood metab-
olites and bacterial diversity is dependent on BMI*° and the current
finding that the omics-based BMI models capture heterogeneous
metabolic health states (Fig. 3), we hypothesized that MetBMlI repre-
sents gut microbiome a-diversity better than actual BMI. For the 702
Arivale participants who had both stool-derived gut microbiome and
blood omic datasets (Fig. 4a and Methods), we examined relationships
between gut microbiome a-diversity (the number of observed species,
Shannon’s index and Chaol index) and the omics-based BMI misclas-
sification. The matched and mismatched groups against MetBMI class
showed significant differences in all a-diversity metrics within both
normal and obese BMI classes (Fig. 4b), with the concordant pattern
tothe phenotypes that are negatively associated with BMI (Fig. 3d,e),
implying that the MetBMI class reflects bacterial diversity better than
the standard BMI class. The misclassification against the other omics
categories did not show these significant differences for all a-diversity
metrics and both BMI classes (Fig. 4b), consistent with our previous
observation that plasma metabolomics showed stronger association
with gut microbiome structure than either proteomics or clinical labs®.
We further examined the predictive power of gut microbiome
profiles for MetBMI. For each of the measured BMIl and MetBMI classes,

Fig. 4| Metabolomics-inferred BMI reflected gut microbiome profiles better
thanBMI. a, Overview of study cohorts and the gut microbiome-based obesity
classifier generation. CV, cross-validation; RF, random forest. b, Differencein
gut microbiome a-diversity between the matched and mismatched groups
within the normal or obese BMI class. Each comparison value indicates adjusted
Pvalue, calculated from OLS linear regression with BMI, sex, age and ancestry
principal components as covariates while adjusting multiple testing with the
Benjamini-Hochberg method across the 24 (2 BMI classes x 4 omics categories x
3 metrics) regressions. Data: the standard box plot (Methods); n =240 (Normal)
or 260 (Obese) participants (see Supplementary Data 6 for each sample size).

a.u., arbitrary units. c,e, ROC curve of the gut microbiome-based model classifying
participants to the normal versus obese class in the Arivale (c) or TwinsUK (e)
cohort. Each ROC curve was generated from the overall participants: n = 500 (c, BMI
class), 427 (c, MetBMi class), 209 (e, BMI class) or 145 (e, MetBMI class) participants.
The dashed lineindicates arandom classification line. P: Pvalue of two-sided
unpaired DeLong’s test.d,f, Comparison of model performance between the BMI
and MetBM classifiers in the Arivale (d) or TwinsUK (f) cohort. Out-of-sample
metric value was calculated from each corresponding hold-out testing set. Data:
mean with 95% confidence interval, n=5models. P: Pvalue of two-sided Welch’s
t-test. All exact values of test summaries are found in Supplementary Data 6 and 10.
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we generated models classifying individuals into normal class ver-
sus obese class based on gut microbiome 16S rRNA gene amplicon
sequencing data, using a five-fold iteration scheme of the random
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five-fold cross-validation (Fig. 4a and Methods).
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thereceiver operator characteristic (ROC) curvein the Arivale cohort
(AUC = 0.66 (BMI) and 0.75 (MetBMI); Fig. 4c), with significantly higher
sensitivity and precision (Fig. 4d). Moreover, by applying the same
schemeto the stool-derived whole metagenomic shotgun sequencing
(WMGS) data of the 329 TwinsUK participants*’ (Fig. 4aand Methods),
we validated the significant outperformance of the MetBMI classifier
inthe TwinsUK cohort (AUC = 0.57 (BMI) and 0.75 (MetBMI); Fig. 4¢,f).
These classifiers were generated again for the TwinsUK cohort (instead
of using the classifiers that were fitted to the Arivale dataset; Fig. 4a)
owing to the difference in sequencing methods (amplicon sequenc-
ing versus WMGS) while considering that the TwinsUK participants’
MetBMIs were predicted from the Arivale-fitted MetBMI models (Fig.
1a). These findings suggest that, although other factors (such as dietary
intake) may be involved, MetBMI has a stronger correspondence to
gut microbiome features than classical BMI.

Responses of omics-inferred BMIs to a lifestyle intervention
Longitudinal changes in omic profiles during the Arivale program
were investigated in a subcohort of 608 participants based on the
available longitudinal measurements (Fig. 5a and Methods). Given
the participant-dependent variability in both count and timepoint of
datacollections, we estimated the average trajectory of each measured
or omics-inferred BMI in the Arivale subcohort using a linear mixed
model (LMM) with random effects for each participant (Methods).
Consistent with previous analysis***, the mean BMI estimate for the
overall cohort decreased during the program (Fig. 5b). The decrease
of MetBMIwas larger than that of measured BMI, whereas the decrease
of ProtBMI was minimal and even smaller than that of measured BMI
(Fig.5b), suggesting that plasma metabolomics is highly responsive to
thelifestyle interventionin the short term, whereas proteomics (meas-
ured from the same blood draw) is more resistant to change during the
same intervention period. Subsequently, we generated LMMs with the
baseline BMI class stratification. The mean estimates of the measured
BMI, ProtBMI and ChemBMI exhibited negative changes over time in
the overweight and obese BMI classes but not in the normal BMI class
(Fig.5c).In contrast, the mean MetBMI estimate exhibited asignificant
decrease across all BMI classes (Fig. 5c), suggesting that metabolomics
data capture information about the metabolic health response to the
lifestyle intervention, beyond the baseline BMI class and the changes
inactual BMI and other omic profiles.

Giventhe existence of multiple metabolic health substates within
the standard BMI classes (Fig. 3), we further investigated the difference
between misclassification strata against the baseline MetBMI class.
In the (baseline) normal BMI class, whereas the mean estimate of the
measured BMI remained constant in both matched and mismatched
groups, the mean MetBMI estimate exhibited larger reduction in the
mismatched group than the matched group (Fig. 5d), suggesting that
the participants with MUNW phenotype improved their metabolic

Fig. 5| Metabolic health of the metabolically obese group was improved
during a healthy lifestyle intervention program. a, Overview of the
longitudinal analysis using omics-inferred BMI. b,c, Longitudinal change in
the omics-inferred BMIwithin the overall cohort (b) or within each baseline
BMi class (c). Average trajectory of each measured or omics-inferred BMI was
independently estimated using LMM with random effects for each participant
(Methods) inthe overall cohort (b) or in each baseline BMI class-stratified
group (c). d,e, Longitudinal change in MetBMI of the misclassified participants
within the normal (d) or obese (e) BMI class. Average trajectory of each BMI or
MetBMIwas independently estimated using the above LMM with the baseline
misclassification of BMI class against MetBMI class as additional fixed effects
(Methods) in each baseline BMI class-stratified group. b-e, The dashed line
corresponds to the baseline value of each estimate. Data: mean with 95%
confidenceinterval; n = 608 (b), 222 (c, Normal), 185 (c, Overweight),

196 (c, Obese), 137 (d, Matched), 85 (d, Mismatched), 139 (e, Matched) or

57 (e, Mismatched) participants.

health toagreater extent than the participants with MHNW phenotype.
Likewise, in the (baseline) obese BMI class, whereas the decrease in
the mean estimate of the measured BMI was not different between
the matched and mismatched groups (at 1 year after the enrollment),
the decrease in the mean MetBMI estimate was larger in the matched
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group than in the mismatched group (Fig. 5e), suggesting that the
participants with MUO phenotype improved their metabolic health
to agreater extent than the participants with MHO phenotype. These
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results suggest that metabolic health was substantiallyimproved dur-
ing the program, in accordance with an individual’s baseline metabo-
lomic state rather than with the individual’s baseline BMI class.
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Fig. 6 | Plasma analyte correlation network in the metabolically obese group
shifted toward astructure observed in ametabolically healthier state duringa
healthy lifestyle intervention program. a, Cross-omic interactions modified by
MetBMI and days in the program. For each of the 608,856 pairwise relationships of
plasma analytes (766 metabolites, 274 proteomics and 64 clinical laboratory tests),
the baseline relationship between analyte-analyte pair and MetBMI within the
Arivale subcohort (Fig. 5a; 608 participants) was assessed using their interaction
termin each GLM (Methods) while adjusting multiple testing with the Benjamini-
Hochberg method. The 100 analyte-analyte pairs (82 metabolites, 33 proteins

and 16 clinical laboratory tests) that were significantly modified by the baseline
MetBMl are presented. For each of these 100 pairs, the longitudinal relationship
between analyte-analyte pair and days in the program within the metabolically
obese group (that s, the baseline obese MetBMI class; 182 participants) was

further assessed using their interaction termin each GEE (Methods) while
adjusting multiple testing with the Benjamini-Hochberg method. The 27 analyte-
analyte pairs (21 metabolites, three proteins and three clinical laboratory tests)
that were significantly modified by days in the program are highlighted by line
width and label fontsize. N.A., not available. All exact values of test summaries
arefoundinSupplementary Data 7. b,c, Representative examples of the analyte—
analyte pair that was significantly modified by both baseline MetBMI (b) and days
inthe program (c) ina. The solid line in each panelis the OLS linear regression

line with 95% confidence interval.n=>530 (b, left), 553 (b, center) or 566 (b, right)
participants; n =324 (c, left), 339 (c, center) or 347 (c, right) measurements from
the 182 participants of the metabolically obese group. Of note, data points outside
of plotrange are trimmed in these presentations.

Blood analyte network dynamics and MetBMI class
Weexploredlongitudinalchangesinplasmaanalyte correlationnetworks,
focusing on the metabolically obese group defined by MetBMI class.
Based ontheimportance of the baseline metabolomicstate (Fig. 5d,e),
we first assessed relationships between each plasma analyte-analyte
correlation and the baseline MetBMI within the Arivale subcohort
(Fig.5a; 608 participants), using their interaction terminageneralized
linear model (GLM) of each analyte-analyte pair (Methods). In this type
of model, the statistical test assesses whether the relationship between
any two analytesis dependent onathird variable (in this case, the base-
line MetBMI). Among 608,856 pairwise relationships of plasma ana-
lytes, 100 analyte-analyte correlation pairs, comprising 82 metabolites,
33 proteins and 16 clinical laboratory tests, were significantly modified
by the baseline MetBMI (FDR < 0.05; Supplementary Data 7). Subse-
quently, we assessed longitudinal changes of these 100 pairs within the
baseline obese MetBMI class (182 participants), using the interaction
term (that is, interaction with days in the program) in a generalized
estimating equation (GEE) of each analyte-analyte pair (Methods).
Among the 100 pairs, 27 analyte-analyte correlation pairs were sig-
nificantly modified by daysin the program (FDR < 0.05; Fig. 6a). These
27 pairs were mainly derived from metabolites (21 metabolites, three
proteins and three clinical laboratory tests). One of these time-varying
pairs was homoarginine and phenyllactate (PLA). Homoarginine was
found to be abiomarker for CVD* and was arobustly retained positive
predictorin MetBMIand CombiBMImodels (Fig. 2a and Extended Data
Fig.5a). PLA is a gut microbiome-derived phenylalanine derivative
known to have antimicrobial activity and antioxidant activity*®*’. The
positive association between homoarginine and PLA was observed
in the obese MetBMI class at baseline (Fig. 6b) and became weaker in
this class during the course of the intervention (Fig. 6¢), implying that
metabolic dysregulation specific to the metabolically obese group was
somewhatimproved during the program. These findings indicate that
metabolic improvement was not limited to changes in specific blood
analyte concentrations but also changes in the association structure
among analytes.

Discussion

Obesity is a significant risk factor for many chronic diseases® . The
heterogeneous nature of human health conditions, with variable mani-
festations ranging from metabolic abnormalities to cardiovascular
symptoms, calls for deeper molecular characterizations to optimize
wellness and reduce the current global epidemic of chronic diseases.
In this study, we demonstrated that obesity perturbs human physi-
ology, as reflected across all the studied omics modalities. Machine
learning-based multiomic BMI estimates were better suited to identi-
fying heterogeneous metabolic health and gut microbiome structure
than actual BMI while maintaining a high level of interpretability and
intuitiveness attributed to the original metric. Plasma metabolomics
exhibited the strongest (and/or earliest) response to lifestyle coaching,
whereas plasma proteomics exhibited a weaker (and/or more delayed)

response than actual BMI. Compared to the participants with meta-
bolically healthy phenotype (that is, BMI class > MetBMI class), the
participants with metabolically unhealthy phenotype (thatis, BMI class
<MetBMl class) exhibited a greater improvement in their metabolic
health (but notinweightloss per se) inresponse to the healthy lifestyle
coaching. Dozens of analyte-analyte associations were modified in the
participants of the metabolically obese group (that is, obese MetBMI
class), after the healthy lifestyle intervention.

Although many observational studies have explored proteins and
metabolites as biomarkers for obesity>****-°, each biomarker usually
reflects a specific aspect (or population average) of obesity, and rela-
tionships between the biomarkers remainto be elucidated. In contrast,
the omics-based BMI models automatically incorporated well-known
biomarkersand, hence, canberegarded as multidimensional profiles of
obesity. Furthermore, we observed analytes that were associated with
asmall proportion of the variance in BMI while being strong predictive
features in the omics-based BMI models—for example, RAGE, which
has been highlighted in the contexts of T2DM and CVD®". Therefore,
the omics-based BMI models may reflect not only the mechanistic
information of obesity but also the early transition toward clinical
manifestations of obesity-related chronic diseases.

Aprevious study investigating multiomic changes in response to
weight perturbations demonstrated that some weight gain-associated
blood signatures were reversed during subsequent weight loss while
others persisted®’. We found that MetBMI was more responsive to the
healthy lifestyle intervention than actual BMI or ChemBMI, whereas
ProtBMIwas more resistant to the same intervention. Our analyses on
the predictors of the omics-based BMI models suggested that the dis-
tribution of featureimportance among metabolites was wider, whereas
only a small subset of measured proteins (-5 proteins) was predomi-
nantly reflective of obesity profiles. Therefore, the effect of lifestyle
coaching may consist of small additive contributions inblood metab-
olites in the short term. However, longer longitudinal analyses are
needed toinfer the physiological meaning of these omics-dependent
dynamics. Itis possible that ProtBMI shows a delayed response to the
intervention, indicating that blood metabolites and proteins may be
early and lateresponderstoalifestyle intervention, respectively, such
astherelationship between blood glucose and HbAlcin the assessment
of glucose homeostasis®. If the difference between the measured
and omics-inferred BMIs remains constant even after 1year, blood
metabolites and proteins could be more and less sensitive to alifestyle
intervention than classical BMI, respectively. As a translational impli-
cation, monitoring blood multiomics during weight loss programs
would help participants maintain their motivation to stay engaged
with persistent lifestyle changes, because they would receive rapid
feedback on how lifestyle changes were impacting their health, even
inthe absence of weight loss.

Our study had several limitations. The analytes that were retained
inthe omics-based models do not necessarily have causal relationships
with obesity phenotypes. These relationships could be indicative
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of obesity or affected by other factors that were not included in the
models. Our measurements did not cover all biomolecules in blood;
in particular, proteomics was based on three targeted Olink panels.
Thus, our findings on metabolomic and proteomic states are restricted
to the analytes that we could measure. This study was not designed
as arandomized controlled trial, and we cannot strictly evaluate the
effectiveness of thelifestyle intervention (for example, biggerimprove-
mentsinthe obese group compared to the normal-weight group may
be due to the regression-toward-the-mean effect**). In addition, we
used time as the variable in longitudinal analyses under an assumption
that the program enrollmentitself affected participants’ BMland omic
profiles. If we had more detailed data on the intervention (for example,
magnitude and participant compliance), we would be able toimprove
the assessment of its effect. The generalizability of our findings may
be limited, because this study was an observational study of largely
White individuals from the Pacific West of the United States and from
the United Kingdom, and validation with an external cohort relied
on the female-dominated cohort (96.7%) and its metabolomics data.

In summary, this study highlights the usefulness of blood multi-
omic profiling for predictive and preventive medicine. Italso outlines
anunprecedented multiomic characterization of obesity and will serve
asavaluableresource for characterizing metabolic health and identify-
ing actionable targets for health management.

Online content
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Methods

Arivale cohort

The main study cohort was derived from 6,223 individuals who partici-
patedinawellness program offered by a currently closed commercial
company (Arivale, Inc.) between 2015 and 2019. An individual was
eligible for enrollment if the individual was over 18 years of age, not
pregnant and aresident of any US state except New York; participants
were primarily recruited from Washington, Californiaand Oregon. The
participants were not screened for any particular disease. During the
Arivale program, each participant was provided personalized lifestyle
coaching via telephone by registered dietitians, certified nutrition-
ists or registered nurses. This coaching was designed to improve the
participant’s health based on the combination of clinical laboratory
tests, genetic predispositions and published scientific evidence; for
example, reduction of sodium intake might be recommended to any
participants with high blood pressure, but if they also had risk alleles
indicating enhanced susceptibility to dietary sodium, this risk would
be emphasized (see a previous report® for more details).

In the current study, to compare the associations between BMI
and host phenotypes across different omics, we limited the original
cohortto the participants whose datasets contained (1) all main omic
measurements (metabolomics, proteomics and clinical laboratory
tests) from the same first blood draw; (2) a BMI measurement within
+1.5 months from the first blood draw; and (3) genetic information
(for using as covariates). We also eliminated (1) outlier participants
whose baseline BMI was beyond +3 s.d. from the mean in the baseline
BMlIdistribution and (2) participants whose any of omic datasets con-
tained more than10% missingnessinthe filtered analytes (see the ‘data
cleaning’ subsection). The final Arivale cohort consisted 0f 1,277 (821
female and 456 male) participants (Fig. 1a) who exhibited consistent
demographics (Extended Data Fig. 1a-c and Supplementary Data 1)
with the study cohorts defined in the previous Arivale studies?** %,
For the analyses of gut microbiome, subcohort was defined with the
702 (486 female and 216 male) participants from the Arivale cohort
who collected a stool sample within +1.5 months from the first blood
draw and did not use antibiotics in the last 3 months (Fig. 4a and Sup-
plementary Data1). For longitudinal analyses, subcohort was defined
with the 608 (410 female and 198 male) participants from the Arivale
cohort whose datasets contained two or more time-series datasets
for both BMI and omics during 18 months after enrollment (Fig. 5a
and Supplementary Data 1). For the analyses of WHtR, subcohort
was defined with the 1,078 (689 female and 389 male) participants
from the Arivale cohort whose datasets contained the baseline WHtR
measurement within+1.5 months fromthe first blood draw and within
13 s.d.fromthe meanin the baseline WHtR distribution (Extended Data
Fig.7aand Supplementary Datal).

TwinsUK cohort

The external cohort was derived from 17,630 individuals who par-
ticipated in the TwinsUK Registry, a British national register of adult
twins®. Twins were recruited as volunteers by media campaigns without
screening for any particular disease. The participants had two or more
clinical visits for biological sampling between 1992 and 2022. In the cur-
rent study, to validate our findings in the Arivale cohort, we limited the
original cohort to the participants whose datasets contained all meas-
urements for metabolomics®, BMI and the obesity-related standard
clinical measures (that is, defined by triglycerides, HDL cholesterol,
LDL cholesterol, glucose, insulinand HOMA-IR throughout the current
study) from the same visit. We also eliminated (1) outlier participants
whose BMIwasbeyond +3 s.d.from the meaninthe overall BMI distribu-
tionand (2) participants whose metabolomic dataset contained more
than 10% missingness in the filtered metabolites (see the ‘data clean-
ing’ subsection). The final TwinsUK cohort consisted of 1,834 (1,774
female and 60 male) participants (Fig. 1a, Extended Data Fig.1d-fand
Supplementary Datal). For the analyses of gut microbiome, subcohort

was defined with the 329 (307 female and 22 male) participants from
the TwinsUK cohort who collected a stool sample within 1.5 months
from the clinical visit and did not use antibiotics at that time (Fig. 4a
and Supplementary Data1).

Ethics statement

The current study was conducted with de-identified data of the par-
ticipants who had consented to the use of their anonymized data in
research. Procedures were run under the Western Institutional Review
Board (study numbers 20170658 at the Institute for Systems Biology
and 1178906 at Arivale). Application of data access for the TwinsUK
cohort was approved by the TwinsUK Resource Executive Committee
(project number E1192).

Data collections and data cleaning for the Arivale cohort
Multiomics data for the Arivale participants included genomics and
longitudinal measurements of metabolomics, proteomics, clinical lab-
oratory tests, gut microbiomes, wearable devices and health/lifestyle
questionnaires. Peripheral venous blood draws for all measurements
were performed by trained phlebotomists at LabCorp (Laboratory
Corporation of America Holdings) or Quest (Quest Diagnostics) ser-
vice centers. Saliva to measure analytes such as diurnal cortisol and
dehydroepiandrosterone was sampled by participants athome usinga
standardized kit (ZRT Laboratory). Stool samples for gut microbiome
measurements were obtained by participants athome using astandard-
ized kit (DNA Genotek).

» Genomics
DNA was extracted from each whole blood sample and under-
went whole-genome sequencing (1,257 participants) or
single-nucleotide polymorphism (SNP) microarray genotyping
(20 participants). Genetic ancestry was calculated with princi-
pal components using a set of ~100,000 ancestry-informative
SNP markers, as described previously”. PRSs were constructed
using publicly available summary statistics from published
genome-wide association studies, as described previously”.

» Blood-measured omics
Metabolomics data were generated by Metabolon using ultra-
high-performance liquid chromatography-tandem mass spec-
trometry (UHPLC-MS/MS) for plasma derived from each whole
blood sample. Proteomics data were generated using proximity
extensionassay for plasmaderived fromeachwholeblood sample
with several Olink target panels (Olink Proteomics), and only the
measurements with the Cardiovascular I, Cardiovascular Il and
Inflammation panels were used in the current study because the
other panels were not necessarily applied to all samples. All clinical
laboratory tests were performed by LabCorp or Questin a Clinical
Laboratory Improvement Amendments-certified lab, and only the
measurements by LabCorp were selected in the current study to
eliminate potential differences between vendors. In the current
study, the batch-corrected datasets with in-house pipeline were
used, and the metabolomic dataset was log,-transformed. Inaddi-
tion, analytes missing in more than 10% of the baseline samples
were removed from each omic dataset, and observations missing
inmore than10% of the remaining analytes were further removed.
The finalfiltered metabolomics, proteomics and clinical labs con-
sisted of 766 metabolites, 274 proteins and 71 clinical laboratory
tests, respectively (Supplementary Data 2).

+ Gutmicrobiome
Gut microbiome data were generated based on 16S amplicon
sequencing of the V3+V4 region using a MiSeq sequencer (Illu-
mina) for DNA extracted from each stool sample, as previously
described®. In brief, the FASTQ files were processed using the
mbtools workflow (version 0.37.1; https://github.com/
Gibbons-Lab/mbtools) to remove noise, infer amplicon sequence
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variants (ASVs) and remove chimeras. Taxonomy assignment was
performed using the SILVA ribosomal RNA gene database (version
132)**.Inthe current study, the final collapsed ASV table across the
samples consisted of 394, 341, 85, 45, 26 and 16 taxa for species,
genus, family, order, class and phylum, respectively. Gut microbi-
ome a-diversity was calculated at the ASV level using Shannon’s
index calculated by H = —Zle pilnp;, where p;is the proportion of

a community i represented by ASVs, or using Chaol diversity
2

n .
score calculated by Schaor = Sobs + i where S, is the number of

observed ASVs; n, is the number of singletons (ASVs captured
once); and n, is the number of doubletons (ASVs captured twice).
» Anthropometrics, saliva-measured analytes and daily physical
activity measures
Anthropometrics, including weight, height, waist circumference
andblood pressure, were measured at the time of blood draw and
alsoreported by participants, which generated diverse timing and
numbers of observations depending on each participant. BMI
and WHtR were calculated from the measured anthropometrics
with the weight divided by squared height (kg m™) and the waist
circumference divided by height (unit-less), respectively. Measure-
ments of salivasamples were performed in the testing laboratory
of ZRT Laboratory. Daily physical activity measures, such as heart
rate, moving distance, step count, burned calories, floors climbed
and sleep quality, were tracked using the Fitbit wearable device.
Tomanage variations between days, monthly averaged datawere
used for these daily measures. In the current study, the baseline
measurement for these longitudinal measures was defined with
the closest observation to the first blood draw per participant
and data type, and each dataset was eliminated from analyses
when its baseline measurement was beyond +1.5 months from
thefirst blood draw.

Data collections and data cleaning for the TwinsUK cohort
Dataresource for the TwinsUK participantsincluded longitudinal meas-
urements of metabolomics, clinical laboratory tests, DXA and health/
lifestyle questionnaires®. The necessary datasets for the current study
were provided by the Department of Twin Research & Genetic Epidemi-
ology (King’s College London). In the current study, after each provided
dataset was cleaned as follows, the earliest visit among the visits from
which all of metabolomics, BMI and standard clinical measures had
been measured was defined as the baseline visit for each participant. As
anexception, the later visitamong them was prioritized as the baseline
visit if the participant had gut microbiome data within £1.5 months
from the visit. Only the baseline visit measurements were analyzed.

+ Blood-measured metabolomics
Metabolomics data were originally generated by Metabolon using
UHPLC-MS/MS for each serum sample®. In the current study,
the provided median-normalized dataset was log,-transformed.
In addition, metabolites missing in more than 10% of the overall
samples were removed from the metabolomic dataset, and obser-
vations missing in more than 10% of the remaining metabolites
were further removed. The final filtered metabolomics consisted
of 683 metabolites.

* BMI
In the current study, the BMI values that had been already calcu-
lated and included in the provided metabolomics data file were
used.

 Standard clinical measures and other phenotypic measures
In the current study, because the provided phenotypic datasets
contained multiple measurements for a phenotype even from a
single visit of a participant (for example, owing to project differ-
ence or repeated measurements), multiple measurements were
flattened into a single measurement for a phenotype per each

participant’s visit by taking the mean value. During this flattening
step, the difference in unit was properly adjusted, and the value
indicating below detection limit was regarded as 0. HOMA-IR was
calculated fromthe datasets of glucose, insulin and fasting condi-
tionwith the formula: HOMA-IR = fasting glucose (mmol L™) x fast-
inginsulin (mIUL™) x22.57.
« Gutmicrobiome

Gut microbiome data were originally generated based on WMGS
using a HiSeq 2500 sequencer (Illumina) for DNA extracted from
each stool sample*. Inthe current study, the raw sequencing data
were obtained from the National Center for Biotechnology Infor-
mation (NCBI) Sequence Read Archive (PRJEB32731) and applied to
aprocessing pipeline on Nextflow (version22.04.5; https://github.
com/Gibbons-Lab/pipelines). Through this pipeline, the obtained
FASTQ files were processed using the fastp (version 0.23.2) tool*’ to
filter and trim the reads, and taxonomic abundance was obtained
using the Kraken 2 (version 2.1.2) and Bracken (version 2.6.0)
tools*® with the Kraken 2 default database (based on NCBIRefSeq).
Thefinal collapsed taxonomic table across the samples consisted
of 4,669,1,225,354,167,76 and 35 taxa for species, genus, family,
order, class and phylum, respectively.

Blood omics-based BMI and WHtR models

For each Arivale baseline omic dataset, missing values were first
imputed with a random forest algorithm using the Python missingpy
(version 0.2.0) library (corresponding to R MissForrest package™).
For sex-stratified models (Extended Data Fig. 2d), the datasets after
imputation were divided into sex-stratified datasets. Subsequently,
the values in each omic dataset were standardized with z-score using
the mean and s.d. per analyte. Then, ten iterations of LASSO mod-
eling with ten-fold cross-validation (Fig. 1a and Extended Data Fig. 7a)
were performed for the (unstandardized) log,-transformed BMI or
WHTtR and each processed omic dataset, using the LassoCV applica-
tion programming interface (API) of the Python scikit-learn (version
1.0.1) library. Training and testing (hold-out) sets were generated by
splitting participants into ten sets with one set as a testing (hold-out)
set and the remaining nine sets as a training set and iterating all com-
binations over those ten sets; that is, overfitting was controlled using
ten-fold iteration with ten testing (hold-out) sets, and hyperparameter
was decided using ten-fold cross-validation with internal training and
validation sets from each training set. Consequently, this procedure
generated ten fitted sparse models for each omics category (Supple-
mentary Data 3 and 8) and one single testing (hold-out) set-derived
prediction from each omics category for each participant. The same
modeling scheme while replacing LASSO with elastic net, ridge or
random forest was performed using Pythonscikit-learn ElasticNetCV,
RidgeCV or RandomForestRegressor-implemented GridSearchCV API,
respectively. Inthisrandom forest modeling, the number of treesin the
forestand the number of features were set as the hyperparameters to
be decided through cross-validation. For the standard measures-based
models, the above modeling scheme was applied to OLS linear regres-
sion with sex, age, triglycerides, HDL cholesterol, LDL cholesterol,
glucose, insulinand HOMA-IR as regressors, using Python scikit-learn
LinearRegression API. Of note, ten split sets were fixed among the omics
categories and the modeling methods, and no significant difference
inBMI, WHtR, sex, age and ancestry principal components 1-5among
those ten sets was confirmed, using Pearson’s x° test for categorical
variables and ANOVA for numeric variables while adjusting multiple
testing with the Benjamini-Hochberg method across the tested vari-
ables (Supplementary Data1).

For the TwinsUK cohort, the metabolomic dataset was applied to
therandom forestimputation, and then each dataset of metabolomics
and standard clinical measures was applied to z-score standardiza-
tion as well as the Arivale datasets. Using the ten LASSO or OLS linear
regression models that were fitted by the Arivale dataset, one single
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prediction was calculated from each processed dataset for each par-
ticipant by taking the mean of ten predicted values. For metabolomics,
the ten MetBMI models were generated againbut restricting the input
Arivale metabolomics to the common 489 metabolites in the Arivale
and TwinsUK panels (Extended Data Fig. 3).

For the LASSO-modeling iteration analysis (Extended Data Figs.
2e-hand 7f-i), ten LASSO models were repeatedly generated with
the above modeling scheme. At the end of each iteration, the variable
that wasretained across ten models and that had the highest absolute
value for the mean of ten -coefficients was removed from the input
omic dataset.

For longitudinal predictions of the Arivale subcohort, one sin-
gle prediction at a timepoint was calculated from each processed
time-series omic dataset for each participant, using the baseline LASSO
model for which the participant was included in the baseline testing
(hold-out) set. This was because (1) the baseline measurements were
minimally affected by the personalized lifestyle coaching; (2) both
count and timepoint of data collections were different among the
participants; and (3) potential dataleakage might be derived fromthe
relationships between the baseline and following measurements for
the same participant. For processing, each time-series omic dataset
was applied to two-step random forestimputation; that s, the baseline
missingness was firstimputed based on the baseline datastructure, and
the remaining missingness was nextimputed based on the overall data
structure. Eachimputed dataset was subsequently applied to z-score
standardization using the mean and s.d. in the baseline distribution.

Model performance was conservatively evaluated by the
out-of-sample R?that was calculated from each corresponding hold-out
testing setin the Arivale cohort or from the external testing set in the
TwinsUK cohort. Pearson’s r between the measured and predicted
values was calculated from the overall participants of the Arivale or
TwinsUK cohort. Difference of the predicted value from the measured
value (AMeasure; thatis, ABMI or AWHtR) was calculated with (the pre-
dicted value - the measured value) x (the measured value) x100 (that
is, the unit of AMeasure was (% Measure)). In the random forest model,
the importance of a feature was calculated as the normalized total
reduction of the mean squared error that was brought by the feature.

Health classification
Each participant was classified using each of the measured and
omics-inferred BMlIs based on the WHO international standards for BMI
cutoffs (underweight: <18.5 kg m, normal: 18.5-25 kg m, overweight:
25-30 kg m, obese: =30 kg m™)"2. For the misclassification of BMI class
againstthe omics-inferred BMI class, each participant was categorized into
eitheramatched oramismatched group whenthe measured BMI class was
matched or mismatched to each omics-inferred BMI class, respectively.
For a clinically defined metabolic health classification, the par-
ticipants having two or more MetS risks of the National Cholesterol
Education Program Adult Treatment Panel Il guidelines were judged
asthe metabolically unhealthy group, whereas the other participants
were judged as the metabolically healthy group®**. Concretely, the
MetS risk components were (1) systolic blood pressure =130 mm Hg,
diastolic blood pressure >85 mm Hg or using anti-hypertensive medi-
cation; (2) fasting triglyceride level =150 mg dI™*; (3) fasting HDL cho-
lesterol level <50 mg dI™ for female and <40 mg dI™ for male or using
lipid-lowering medication; and (4) fasting glucose level 2100 mg dI™
or using anti-diabetic medication. Only the participants who had
all these information were assessed in the corresponding analyses
(Fig.3band Extended Data Figs. 6a and 7m).

Gut microbiome-based models for classifying obesity

For the Arivale gut microbiome dataset, the whole ASV table (907
taxa from species to phylum) was pre-processed (that is, positively
shifted by 1, log,.-transformed and standardized with z-score using the
meanands.d. per taxon) and then applied to dimensionality reduction

using PCA APl of the Python scikit-learn (version1.0.1) library; the pro-
jected values onto the first 50 principal components (0.4-5.1% variance
explained) were supplied as the input gut microbiome features. Two
types of classifiers were trained on these gut microbiome features:
one predicting whether anindividual is obese BMI class and the other
predicting whether anindividual is obese MetBMI class. Both models
wereindependently constructed through afive-folditeration scheme
of random forest with five-fold cross-validation (Fig. 4a) using Python
scikit-learn RandomForestClassifier-implemented GridSearchCV API.
In this random forest modeling, the number of trees in the forest and
the number of features were set as the hyperparameters to be decided
through cross-validation. Training and testing (hold-out) sets were
generated by splitting the participants of the normal and obese classes
intofive sets, withone set as atesting (hold-out) set and the remaining
four setsasatrainingset, and iterating all combinations over those five
sets; that is, overfitting was controlled using five-fold iteration with
five testing (hold-out) sets, and hyperparameters were decided using
five-fold cross-validation with internal training and validation sets
from each training set. Consequently, this procedure generated five
fitted classifiers for each BMI or MetBMI class and one single testing
(hold-out) set-derived prediction from each classifier type for each
participant. Note that this predictionincluded two types: either normal
orobese classby avote of the trees (that is, binary prediction) and the
mean probability of obese class among the trees.

For the TwinsUK gut microbiome dataset, the whole taxonomic
table (6,526 taxa from species to phylum) was pre-processed and then
applied to dimensionality reduction as well as the Arivale dataset; the
projected values onto the first 50 principal components (0.2-40.1%
variance explained) were supplied as the input gut microbiome fea-
tures. Then, the five obesity classifiers for each BMI or MetBMI class
were generated as well as the above Arivale procedure, and one single
testing (hold-out) set-derived prediction from each classifier type was
calculated for each participant (Fig. 4a).

Model performance of each classifier was conservatively evalu-
ated using each corresponding hold-out testing set. AUC in the ROC
curve and the average precision were calculated using the probability
predictions, whereas sensitivity and specificity were calculated from
the confusion matrix using the binary predictions. The overall ROC
curveandits AUC were calculated fromall the participants’ probability
predictions, using the R pROC (version 1.18.0) package™.

Longitudinal changes in the measured and omics-inferred BMIs
An LMM was generated for each log.-transformed measured or
omics-inferred BMI in the Arivale subcohort, following the previous
approach®. As fixed effects regarding time, linear regression splines
with knots at 0, 6, 12 and 18 months were applied to days in the pro-
gram to fit time as a continuous variable rather than a categorical
variable, because both count and timepoint of data collections were
different among the participants. In addition to the linear regression
splines of time as fixed effects, the LMM included sex, baseline age,
ancestry principal components 1-5 and meteorological seasons as
fixed effects (to adjust potential confounding effects) and random
intercepts and random slopes of daysin the program as random effects
for each participant. Additionally, the same LMM for each measured or
omics-inferred BMI was independently generated from each baseline
BMI class-stratified group. Of note, this stratified LMM was not gener-
ated fromthe underweight group because its sample size was too small
for convergence. For comparing difference among the misclassification
strata against the baseline MetBMI class, the above LMM while adding
additional fixed effects (the categorical baseline misclassification of
BMI class against MetBMI class (that is, binary for the matched versus
mismatched) anditsinteractiontermswiththelinear regression splines
of time) was generated for each measured BMI or MetBMI from each
baseline BMI class-stratified group. All LMMs were modeled using
MixedLM APl of the Python statsmodels (version 0.13.0) library.
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Plasma analyte correlation network analysis

Before the analysis, outlier values that were beyond +3 s.d. from the
mean in the Arivale subcohort baseline distribution were eliminated
fromthe dataset per analyte, and sevenclinical laboratory tests, which
became almost invariant across the participants, were eliminated
from analyses, allowing convergence in the following modeling. Per
each analyte, values were converted with a transformation pipeline
producing the lowest skewness (for example, no transformation, the
logarithm transformation for right-skewed distribution or the square
root transformation with mirroring for left-skewed distribution) and
standardized with z-score using the mean ands.d.

Against 608,856 pairwise combinations of the analytes (766
metabolites, 274 proteomics and 64 clinical laboratory tests), GLMs
for the baseline measurements of the Arivale subcohort (Fig. 5a; 608
participants) were independently generated with the Gaussian distribu-
tionand identity link function using glm APl of the Python statsmodels
(version 0.13.0) library. Each GLM consisted of an analyte as a depend-
ent variable, another analyte and the baseline MetBMI as independ-
ent variables (with their interaction term) and sex, baseline age and
ancestry principal components1-5as covariates. The analyte-analyte
correlation pair that was significantly modified by the baseline MetBMI
was obtained based on the -coefficient (two-sided t-test) of the inter-
actiontermbetween theindependent variablesin GLM while adjusting
multiple testing with the Benjamini-Hochberg method (FDR < 0.05).

Against the significant 100 pairs from the GLM analysis (82 metab-
olites, 33 proteins and 16 clinical laboratory tests; Supplementary
Data7), GEEs for the longitudinal measurements of the metabolically
obesegroup (thatis, the baseline obese MetBMI class; 182 participants)
were independently generated with the exchangeable covariance
structure using Python statsmodels GEE API. Each GEE consisted of
an analyte as a dependent variable, another analyte and days in the
programasindependent variables (withtheirinteraction term) and sex,
baseline age, ancestry principal components 1-5 and meteorological
seasons as covariates. The analyte-analyte correlation pair that was
significantly modified by days in the program was obtained based on
the B-coefficient (two-sided t-test) of the interaction term between the
independent variables in GEE while adjusting multiple testing with the
Benjamini-Hochberg method (FDR < 0.05).

Statistical analysis
Alldata pre-processing and statistical analyses were performed using
Python NumPy (version1.18.10r1.21.3), pandas (version1.0.30r1.3.4),
SciPy (version 1.4.1 or 1.7.1) and statsmodels (version 0.11.1 or 0.13.0)
libraries, except for using the R pROC (version 1.18.0) package™ for
DelLong’s test™. All statistical tests were performed using a two-sided
hypothesis. Inall cases of multiple testing, Pvalues were adjusted with
the Benjamini-Hochberg method. Of note, because some hypotheses
were not completelyindependent (for example, hypotheses between
combined omics and each individual omics and hypotheses among
glucose, insulin and HOMA-IR), this simple P value adjustment was
regarded as a conservative approach. Significance was based on
P<0.05 for single testing and FDR < 0.05 for multiple testing. Test
summaries (forexample, sample size, degree of freedom, test statistic
and exact Pvalue) are found in Supplementary Data4-6,9 and 10.

Correlations (Figs. 1b and 3a and Extended Data Figs. 3b-d, 4bf,
7¢,d,land 8d,e) were independently assessed using Pearson’s correla-
tion test (Python SciPy pearsonr API) (with the P value adjustment
if multiple testing). Comparisons of model performance (Figs. 1¢,d
and 4d,f and Extended Data Figs. 2d, 4a and 7e) were independently
assessed using Welch’s ¢-test (Python statsmodels ttest_ind API) (with
the Pvalue adjustmentif multiple testing). Comparison of overallROC
curves (Fig. 4c,e) was assessed using unpaired DeLong’s test*’.

In all regression analyses, only the baseline datasets were used,
and, unless otherwise specified, all numeric variables were centered
and scaled in advance. For the Arivale datasets of anthropometrics,

saliva-measured analytes, daily physical activity measures and PRSs,
(1) outlier values that were beyond +3 s.d. from the meanin the cohort
distribution were eliminated from the dataset per variable; (2) variables
thatbecame almostinvariant across the participants were eliminated
from the datasets; (3) values were converted with a transformation
pipeline producing the lowest skewness (for example, no transforma-
tion, the logarithm transformation for right-skewed distribution or the
square root transformation with mirroring for left-skewed distribu-
tion); and (4) the transformed values were standardized with z-score
using themeanands.d.; these pre-processed 51 variables were used as
the numeric physiological features (Supplementary Data 4). Likewise,
the Arivale datasets of the obesity-related clinical blood markers (that
is, selected clinical labs; Supplementary Data 6) and the TwinsUK data-
sets of the obesity-related phenotypic measures (Supplementary Data
6) were pre-processed. For gut microbiome a-diversity metrics, the
number of observed ASVs and Chaolindex were converted with square
root transformation, and Shannon’s index was converted with square
transformation, and then these transformed values were standardized
withz-score using the mean and s.d. Relationships of the numeric physi-
ological features with the measured or omics-inferred BMI (Fig. 1e) were
independently assessed using each OLS linear regression model with
the (unstandardized) log,-transformed measured or omics-inferred
BMlasadependentvariable, afeature asanindependent variable and
sex, age and ancestry principal components 1-5 as covariates while
adjusting multiple testing across the 255 (51 features x 5 BMI types)
regressions. Relationships between Measure (that is, BMI or WHtR)
andthe analytesthat wereretained in atleast one of ten LASSO models
(Fig. 2b-d and Extended Data Fig. 7k) were independently assessed
using each OLS linear regression model with the (unstandardized)
log.-transformed Measure as a dependent variable, an analyte as an
independent variable and sex, age and ancestry principal component
1-5ascovariateswhile adjusting multiple testing across the 210 (Fig. 2b),
75 (Fig. 2c), 42 (Fig. 2d) or 289 (Extended Data Fig. 7k) regressions. In
this regression analysis, amodelincluding the omics-inferred Measure
asanindependent variable was also assessed as reference. Differences
in AMeasure (thatis, ABMIor AWHtR) between clinically defined meta-
bolic health conditions (Fig. 3b and Extended Data Figs. 6a and 7m)
wereindependently assessed using each OLS linear regression model
with AMeasure as a dependent variable, metabolic condition (that is,
healthy versus unhealthy) as a categorical independent variable and
Measure, sex, age and ancestry principal components 1-5 as covari-
ates while adjusting multiple testing across the eight (2 BMI classes x
4 omics categories; Fig. 3b and Extended Data Fig. 7m) or four (2 BMI
classes x 2 cohorts; Extended Data Fig. 6a) regressions. Differencesin
the obesity-related clinical blood markers, the BMI-associated numeric
physiological features or the gut microbiome a-diversity metrics
between the misclassification strata against the omics-inferred BMI
class (Figs.3d,e and 4b and Extended Data Fig. 6¢) were independently
assessed using each OLS linear regression model with amarker, feature
or metric as a dependent variable, misclassification (that is, matched
versus mismatched) as a categorical independent variable and BMI,
sex, age and ancestry principal components 1-5 as covariates while
adjusting multiple testing across the 40 (2 BMI classes x 2 omics cat-
egories x10 markers; Fig. 3d), 216 (2BMI classes x 4 omics categories x
27 features; Fig. 3e), 24 (2 BMI classes x 4 omics categories x 3 metrics;
Fig. 4b) or 24 (2 BMI classes x 12 measures; Extended Data Fig. 6¢)
regressions. Inthe above regression analyses for the TwinsUK cohort,
ancestry principal components were eliminated from the covariates
owing to data availability.

Datavisualization

Results were visualized using Python matplotlib (version 3.4.3) and
seaborn (version 0.11.2) libraries, except for the plasma analyte correla-
tion network. Datawere summarized as the mean with 95% confidence
interval or the standard box plot (median: center line; 95% confidence
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interval around median: notch; [Q;, Q;]: box limits; [X i, Xmaxd: Whiskers,
where Q,and Q,arethelst and 3rd quartile values, and x,,,,and x,,, are
the minimum and maximum values in [Q; - 1.5 x IQR, Q; + 1.5 x IQR]
(IQR, interquartile range, Q; — Q,), respectively), as indicated in each
figure legend. For presentation purposes, confidence interval was
simultaneously calculated during visualization using Python seaborn
barplot or boxplot APl with default setting (1,000 times bootstrapping
oraGaussian-based asymptotic approximation, respectively). The OLS
linear regression line with 95% confidence interval was simultaneously
generated during visualization using Python seabornregplot APl with
default setting (1,000 times bootstrapping). The plasma analyte cor-
relation network was visualized with a circos plot using the R circlize
(version 0.4.15) package®°.

Reporting summary
Furtherinformation onresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

The Arivale datasets that were used in this study are not publicly avail -
able owing toboth ethical and legal reasons (see Reporting Summary),
but qualified researchers can assess the de-identified datasets for
research purposes through a Data Use Agreement. Inquiries about
data access should be sent to data-access@isbscience.org and will
be responded to within seven business days. The TwinsUK datasets
that were used in this study were provided by the Department of Twin
Research & Genetic Epidemiology (King’s College London) after the
approval of our Data Access Application (project number E1192). The
raw WMGS data of the TwinsUK cohort (without metadata) are pub-
licly available on the NCBI Sequence Read Archive (https://www.ncbi.
nlm.nih.gov/bioproject/PRJEB32731/). Requests should be referred
to their website (http://twinsuk.ac.uk/resources-for-researchers/
access-our-data/).

Code availability
Code used in this study is freely available on GitHub (https://github.
com/PriceLab/Multiomics-BMI).
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Extended Data Fig. 2| Quality check of the LASSO modeling. a,b, Pairwise
correlation of all plasma analytes (a; Metabolomics: 766 metabolites,
Proteomics: 274 proteins, Clinical labs: 71 clinical laboratory tests, Combined
omics: 1,111 analytes) or the analytes that were retained across all ten LASSO
models (b; Metabolomics: 62 metabolites, Proteomics: 30 proteins, Clinical
labs: 20 clinical laboratory tests, Combined omics: 132 analytes). Each violin

is scaled to have same width between the omics categories and represents the
kernel density distribution with the standard boxplot (Methods). ¢, Hierarchical
clustering and heatmap for the pairwise correlations of the analytes that

were retained across all ten CombiBMI models (132 analytes: 77 metabolites,
S1proteins and four clinical laboratory tests). Of note, both upper and lower
triangular sides of the symmetric matrix are visualized. d, Model performance
of each fitted BMImodel with sex stratification. Out-of-sample R* was calculated

from each corresponding hold-out testing set. Standard measures: OLS linear
regression model with sex, age, triglycerides, HDL cholesterol, LDL cholesterol,
glucose, insulinand HOMA-IR as regressors; P,q;: adjusted Pvalue of two-sided
Welch’s t-test with the Benjamini-Hochberg method across the eight (four
comparisons x two sexes) comparisons. Data: mean with 95% confidence interval,
n=10models. All exact values of test summaries are found in Supplementary
Data10. Note that the sample size for modeling was different between female and
male (Female: 821 participants versus Male: 456 participants). e-h, Transition

of out-of-sample R?in the LASSO-modeling iteration analysis (Methods) for
metabolomics (e), proteomics (f), clinical labs (g) or combined omics (h). The
iteration is highlighted with shading color when the removed analyte is the
variable that was retained across all the original ten models. Data: mean with 95%
confidence interval, n =10 models.

Nature Medicine


http://www.nature.com/naturemedicine

Article

https://doi.org/10.1038/s41591-023-02248-0

o

Mean of B-coefficients

(7]

MetBMI [kg m~2]

i i Pearsonis r = 0.917 Pearson's r = 0.978
Robustly retained metabolites € 0.04- p2atxio s S 40| PezoxioE o
2z : [z
2 0.02- 2 g
3 B %0-
27 [2 35 39 G 5
[2] 2 000 g, .- ,
estricted version &"’, oJ¥°  Robustly retained é 20
i 5 in both i
(74 metabolites) -0.02- o: ® (35 metaboltos)
I I I I I 1 I
-0.02 0.00 0.02 0.04 20 30 40
Full version Full version
Arivale Arivale TwinsUK TwinsUK
Standard measures Metabolomics Standard measures Metabolomics
= Pearson's r = 0.583 . Pearson's r = 0.823 43 Pearson's r = 0.443 Pearson's r = 0.715
e 907 Pag=48x10 17 T Pagy=39%x107315 L T Pag=5.1x107% & | Pag=32x107%7
2754 - - .
== | | ; |
o 60
B 45- s i s s 7
?
$ 30 E . .
=
154 - -1 -

T T T T T T
15 30 45 60 75 90

T T T T T T
15 30 45 60 75 90

T T T T T T T T T T T T
15 30 45 60 75 90 15 30 45 60 75 90

Predicted BMI [kg m™2]
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glucose, insulinand HOMA-IR as regressors; Metabolomics: the restricted
version of MetBMI model, corresponding to Metabolomics (restricted) in Fig. 1d;
P, adjusted Pvalue of two-sided Pearson’s correlation test with the Benjamini-
Hochberg method across the four (two categories x two cohorts) tests. n=1,277
(Arivale) or 1,834 (TwinsUK) participants. All exact values of test summaries are
found in Supplementary Data10.
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Extended Data Fig. 4 | Omics-based BMI models were similar between LASSO
and the other methods. a, Model performance of each fitted BMI model.

P,4: adjusted Pvalue of two-sided Welch'’s t-test with the Benjamini-Hochberg
method across the 12 (3 methods x 4 categories) comparisons. Data: mean
with 95% confidence interval, n =10 models. b, Correlation of the predicted
BMIbetween LASSO and the other methods. The solid lineis the OLS linear
regression line with 95% confidence interval, and the dotted line is LASSO = the
other method. P,;: adjusted Pvalue of two-sided Pearson’s correlation test
with the Benjamini-Hochberg method across the 12 (3 methods x 4 categories)
combinations. n =1,277 participants. c-f, Comparison of the omics-based
BMImodel between LASSO and elastic net. c-e, The number of the variables
that were robustly retained across all ten models. f, Correlation of the mean of
B-coefficients in the ten models. Only the robustly retained analytesin either

LASSO models or elastic net models were analyzed. The solid line is the OLS linear
regression line with 95% confidence interval. P, adjusted Pvalue of two-sided
Pearson’s correlation test with the Benjamini-Hochberg method across the four
categories. n =62 metabolites, 30 proteins, 20 clinical laboratory tests or 134
analytes. a,b,f, All exact values of test summaries are found in Supplementary
Datal0. g, The top 30 variables that had the highest absolute value for the mean
of B-coefficientsin the ten ridge CombiBMI models. B-coefficient was obtained
from the fitted CombiBMI model with ridge linear regression. Data: the standard
box plot (Methods), n =10 models. h, The top 30 variables that had the highest
mean of feature importance in the ten random forest CombiBMImodels. Feature
importance was calculated as the normalized total reduction of the mean
squared error. Data: mean with 95% confidence interval, n = 10 models.
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Extended DataFig. 5| Variable diversity and contribution to the omics-based (a: 62 metabolites, b: 30 proteins, c: 20 clinical laboratory tests). S-coefficient was
BMImodel were different between omics categories. a-c, The variables that obtained from the fitted omics-based BMI model with LASSO linear regression
wereretained across all ten MetBMI (a), ProtBMI (b) or ChemBMI (c) models (Supplementary Data 3). Data: the standard boxplot (Methods), n =10 models.

Nature Medicine


http://www.nature.com/naturemedicine

Article

https://doi.org/10.1038/s41591-023-02248-0

a Arivale  TwinsUK c Triglycerides HDL-cholesterol LDL-cholesterol ll  Hs-CRP |
S 4 ax10- = Overall MetBMI Overall MetBMI Overall MetBMI Overall MetBMI
@ ] 105 . 0.32
° 30 7.7%10-10 066 % 3 - oot ko 42 s 3107 o1 o :
=15 3 2 = = =L - 473
= 5% 1] ] ] ] ] ]
e o Hin Jaes: |
2-15 EN ! B - - . R
3 5~ -2 . . 1 1 i .
-30 % -3 _ a a n _
J : i ; E 14 _ N i i i
§ﬂ7 é,%’ g‘u ‘Zq)) g T T T T T T T T T T T T T T T T T T T T T T T T
§ & &8 . o
< = Glucose Insulin | HOMA-R | Adiponectin
BMI class
Y = = Overall MetBMI Overall MetBMI Overall MetBMI Overall MetBMI
S 2- 13 E g °°°2 . . 0033 s = Q087 Underweight
b TO 4 . - . - A - . I Normal
X ° § 0 4 - 4 - - 4 - [ Overweight
P £n -1 B B —* B B B I Obese
8 5%-2 - - - - -
® =3 - - 4 - -
& g -4 i i i i i i vs. MetBMI class
% g T 17T T T T 17T T T T T 17T T T T 17T T T l:' Matched
] - o : . . . M
3 Percent total fat |l Android-to-gynoid Systolic BP Diastolic BP NGaEESa
= 3 Overall MetBMI Overall MetBMI Overall MetBMI Overall MetBMI
s‘ Dﬂz 0.22 'w
5 B . Do 048 182 o2 + o e
S~ 2 —p.9x107% e - - = -
© O T
>5 1 -1 o - — — —
38 o % 1 + % . .
BMI class EN -1 - - - .
vs. MetBMI class 2 :g ] ] ] ]
[ Arivale (full) £ i i ] ]
I Arivale (restricted) = Sato » 9 Sato B 9 Saro @ 0 Sazo a3 o
S S 9 ) S S 2 2] S S 2 9 s S 9 2]
== Twi S ES Y 3 5} S ES 3 ] S5 &9 ¢ I3 i S E.S g 3 3
ds FEES £ & L2885 £ & £o85 £ 5 £888 £ 6
s ¢ s ¢ s ¢ g 9
[ Reference range S © BMiclass S © BMiclass S © BMiclass S © BMiclass

Extended DataFig. 6 | The metabolic heterogeneity within the standard BMI
classes was validated with the TwinsUK cohort. a, Difference in AMetBMI (that
is, difference of MetBMI from the measured BMI) between clinically-defined
metabolic health conditions. Each comparison value indicates adjusted Pvalue,
calculated from OLS linear regression with BMI, sex and age as covariates, while
adjusting multiple testing with the Benjamini-Hochberg method across the
four (two BMI classes x two cohorts) regressions. For Arivale cohort, ancestry
principal components were also included in the covariates. MetBMl in Arivale
was derived from the restricted version of MetBMI model (Extended Data Fig. 3
and Methods). b, Misclassification rate of overall cohort or each BMI class
against MetBMI class. Arivale (full): based on the full version of MetBMI model

in Extended Data Fig. 3 (that is, the same with the corresponding ones in Fig. 3c),
Arivale (restricted): based on the restricted version of MetBMI model in Extended

DataFig. 3, Reference range: the previously reported misclassification rate®*,

The underweight BMI class is not presented owing to small sample size, but its
misclassification rate was 100% in both cohorts. ¢, Difference in the obesity-
related phenotypic measure between the matched and mismatched groupsinthe
TwinsUK cohort. Each comparison value indicates adjusted P value, calculated
from OLS linear regression with BMI, sex and age as covariates, while adjusting
multiple testing with the Benjamini-Hochberg method across the 24 (2 BMI
classes x 12 measures) regressions. Percent total fat: percentage of total fatin
the whole body, Android-to-gynoid: ratio of fatin the android region to fat in the
gynoid region, BP: blood pressure, a.u.: arbitrary units. a,c, Data: the standard
boxplot (Methods). See Supplementary Data 6 for the number of participantsin
eachgroup. All exact values of test summaries are found in Supplementary Data
6and10.
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Extended Data Fig. 7| Omics-based WHtR models consistently supported
the findings of omics-based BMI models. a, Overview of study cohort and

the omics-based WHtR model generation. CV,cross-validation. b, Distribution
ofthe baseline WHtR. ¢, Correlation between the measured WHtR and BMI. d,
Correlation between the measured and predicted WHtRs. e, Model performance
of each fitted WHtR model. f-i, Transition of out-of-sample R?in the LASSO-
modeling iteration analysis (Methods) for metabolomics (f), proteomics

(g), clinical labs (h) or combined omics (i). The iteration is highlighted with
shading color when the removed analyte is the variable that was retained across
all the original ten models. j, The variables that were retained across all ten
CombiWHtR models (37 analytes: 18 metabolites, 15 proteins and four clinical
laboratory tests). -coefficient was obtained from the fitted CombiWHtR model
(Supplementary Data 8). k, Univariate explained variance in WHtR by each
analyte. Among the analytes that were significantly associated with WHtR

(212 analytes; Methods), only the top 30 significant analytes are presented with
their univariate variances. I, Difference of the omics-inferred WHtR from the
measured WHtR (AWHtR). m, Difference in AWHtR between clinically-defined
metabolic health conditions. Each comparison value indicates adjusted Pvalue,
calculated from OLS linear regression with WHtR, sex, age and ancestry principal
components as covariates, while adjusting multiple testing with the Benjamini-
Hochberg method across the eight (two BMI classes x four omics categories)
regressions. P,q;: adjusted Pvalue of two-sided Pearson’s correlation test (c,d,I) or
Welch’s t-test (e) with the Benjamini-Hochberg method across the two sexes (c),
five categories (d), four comparisons (e) or six combinations (I). Data: mean with
95% confidence interval (e-i) or the standard boxplot (j,m), n =10 models (e-i,j)
(see Supplementary Data 10 for each number of participants in m). All exact
values of test summaries are found in Supplementary Data 9 and 10.
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from the measured WHtR). Only the participants having both BMland WHtR were

analyzed. d,e, Thesolid lineis the OLS linear regression line with 95% confidence

interval. P,4;: adjusted Pvalue of two-sided Pearson’s correlation test with the

Benjamini-Hochberg method across the four categories. n = 92 metabolites

(d, Metabolomics), 36 proteins (d, Proteomics), 26 clinical laboratory tests

(d, Clinical labs), 146 analytes (d, Combined omics) or 1,078 participants (e).

All exact values of test summaries are found in Supplementary Data 10.
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Software and code

Policy information about availability of computer code

Data collection  For the Arivale data, blood was sampled by trained phlebotomists at LabCorp (Laboratory Corporation of America Holdings, North Carolina,
USA) or Quest (Quest Diagnostics, New Jersey, USA) service centers. Blood metabolomics, proteomics, and clinical labs were generated by
Metabolon, Inc. (North Carolina, USA), Olink Proteomics (Uppsala, Sweden), and LabCorp or Quest in a Clinical Laboratory Improvement
Amendments-certified lab, respectively. Saliva was sampled at home and measured by ZRT Laboratory (Oregon, USA). Daily physical activity
measures were collected using wearable device and generated by its default algorithm (Fitbit, Inc., California, USA). Stool samples were
collected by participants at home and measured by DNA Genotek, Inc. (Ottawa, Canada). The obtained FASTQ files were processed using the
mbtools workflow (version 0.37.1; https://github.com/Gibbons-Lab/mbtools), and taxonomy assignment was performed using the SILVA
ribosomal RNA gene database (version 132).

The TwinsUK data was provided by Department of Twin Research & Genetic Epidemiology (King’s College London). The raw data of whole
metagenomic shotgun sequencing was obtained from the National Center for Biotechnology Information (NCBI) Sequence Read Archive
(PRJEB32731), and applied to a processing pipeline on Nextflow (version 22.04.5; https://github.com/Gibbons-Lab/pipelines). Through this
pipeline, the obtained FASTQ files were processed using the fastp (version 0.23.2) tool (ref. 55) to filter and trim the reads, and taxonomic
abundance was obtained using the Kraken 2 (version 2.1.2) and Bracken (version 2.6.0) tools (ref. 56) with the Kraken 2 default database
(based on NCBI RefSeq).

Data analysis Data was processed and analyzed using Python 3 (version 3.7.6 or 3.9.6) with Python NumPy (version 1.18.1 or 1.21.3) and pandas (version
1.0.3 or 1.3.4) libraries. The omics-based BMI and WHtR models and the gut microbiome-based obesity classifiers were generated using
Python scikit-earn (version 1.0.1) library. LMMs, GLMs, and GEEs were modeled using Python statsmodels (version 0.13.0) library. Statistical
analysis was performed using Python SciPy (version 1.4.1 or 1.7.1) and statsmodels (version 0.11.1 or 0.13.0) libraries and R pROC (version
1.18.0) package (ref. 58). Results were visualized using Python matplotlib (version 3.4.3) and seaborn (version 0.11.2) libraries and R circlize
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(version 0.4.15) package (ref. 60). Code required to replicate the results of this study is freely available on GitHub (https://github.com/
PriceLab/Multiomics-BMI).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The Arivale datasets that were used in this study were originally generated by Arivale's commercial service. Institute for Systems Biology (ISB) and Arivale have an
Asset License Agreement, which gives us the access to de-identified datasets from Arivale commercial subscribers. Because of ethical and legal points in the
agreement, we are not permitted to upload the Arivale datasets to public databases. However, to facilitate collaborative validation and follow-up studies, ISB can
share the Arivale de-identified datasets on the basis of signing a Data Use Agreement (DUA) that governs use of the data. The restrictions are consistent with
general DUAs by other controlled-access databases (e.g., dbGaP): the recipient will not disclose the data to 3rd parties who themselves have not signed the DUA;
the recipient will not attempt to re-identify the participants from their data; and the recipient may only use the data for non-commercial purposes. Inquiries about
the data access should be sent to data-access@isbscience.org, and will be responded to within seven business days.

The TwinsUK datasets that were used in this study were provided by Department of Twin Research & Genetic Epidemiology (King’s College London) after the
approval of our Data Access Application (Project Number: E1192). The raw WMGS data of TwinsUK cohort (without metadata) is publicly available on the NCBI
Sequence Read Archive (https://www.ncbi.nlm.nih.gov/bioproject/PRIEB32731/). Requests should be referred to their website (http://twinsuk.ac.uk/resources-for-
researchers/access-our-data/).

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender We followed the Sex and Gender Equity in Research (SAGER) guideline and included the recommended information in our
manuscript. This study relied on self-reported sex in both Arivale and TwinsUK cohorts, and our findings apply to both sexes.
This study was conducted with de-identified data of the participants who had consented to the use of their anonymized data
in research. We did not have access to gender information in both cohorts. The number of individuals from each sex was
clearly reported in Methods, and demographics was provided for each sex (Extended Data Fig. 1, Supplementary Data 1). In
all the statistical analyses, we adjusted for sex. Moreover, we addressed sex-specific models for BMI (Extended Data Fig. 2d).

Population characteristics A detailed description of population characteristics was provided for each sex (Extended Data Fig. 1, Supplementary Data 1,
Methods).
Recruitment We did not play a role in recruiting participants for the current study.

The Arivale participants were self-enrolled in the Arivale program, since it was a commercial subscription service. An
individual was eligible for enrollment between 2015-2019 if the individual was over 18 years old, not pregnant, and a
resident of any U.S. state except New York; participants were primarily recruited from Washington, California, and Oregon.
The participants were not screened for any particular disease. Upon entering the program, the participants were provided
with the option to permit the use of their de-identified data for scientific discovery. The participants who had consented to
this option joined the research cohort, and were analylzed in the current study.

The TwinsUK participants voluntarily joined to the TwinsUK Registry, a British national register of adult twins (Ref. 31). The
participants must be twins, and were recruited by media campaigns without screening for any particular disease. The
participants had two or more clinical visits for biological sampling between 1992-2022. The de-identified data of the
participants who had consented to the use of their anonymized data in research was provided by Department of Twin
Research & Genetic Epidemiology (King’s College London), and analyzed in the current study.

Ethics oversight The current study was conducted with de-identified data of the participants who had consented to the use of their
anonymized data in research. Procedures were run under the Western Institutional Review Board with Institutional Review
Board (Study Number: 20170658 at Institute for Systems Biology and 1178906 at Arivale). Application of data access for the
TwinsUK cohort was approved by the TwinsUK Resource Executive Committee (Project Number: E1192).

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size In both Arivale and TwinsUK datasets, sample size was not pre-determined by statistical methods, because the participant recruitment and
data collections were done prior to the current study; i.e., the original datasets were collected independent from the aim of the current study.
Instead, we used all the available datasets for the participants who satisfied the inclusion criteria (see next), and thus these inclusion criteria
were the main factor for determining the sample size in the current study.

Data exclusions  Inthe current study, to compare the associations between BMI and host phenotypes across different omics, we limited our main study cohort
to the Arivale participants whose datasets contained (1) all main omic measurements (metabolomics, proteomics, clinical laboratory tests)
from the same first blood draw, (2) a BMI measurement within +1.5 month from the first blood draw, and (3) genetic information (for using as
covariates). Likewise, we limited the external cohort to the TwinsUK participants whose datasets contained all measurements for
metabolomics, BMI, and the obesity-related standard clinical measures (i.e., triglycerides, HDL-cholesterol, LDL-cholesterol, glucose, insulin,
and HOMA-IR) from the same visit. In addition, we eliminated (1) outlier participants whose baseline BMI was beyond +3 s.d. from the mean
in the baseline BMI distribution and (2) participants whose any of omic datasets contained more than 10% missingness in the filtered analytes.
This elimination is because penalized regression is sensitive to outliers which skews the resulting models, and because imputation for too
much missingness weights on available data which results in biased models. The final Arivale and TwinsUK cohorts consisted of 1,277 (821
female and 456 male) and 1,834 (1,774 female and 60 male) participants, respectively (Fig. 1a, Extended Data Fig. 1, Supplementary Data 1),
which exhibited consistent demographics with the study cohorts defined in the previous studies (Ref. 20,25-29).

For the analyses of gut microbiome, the 702 (486 female and 216 male) and 329 (307 female and 22 male) participants were selected from
the Arivale and TwinsUK cohorts, respectively, who collected a stool sample within +1.5 month from the first blood draw and did not use
antibiotics (Fig. 4a, Supplementary Data 1). This is because we needed to compare the gut microbiome profiles with the blood omic profiles,
and because antibiotics directly affects the gut microbiome ecosystem.

For longitudinal analyses, the 608 (410 female and 198 male) participants were selected from the Arivale cohort, whose datasets contained
two or more time-series datasets for both BMI and omics during 18 months after enroliment (Fig. 5a, Supplementary Data 1). This is because
we cannot perform longitudinal analyses without data from more than two time points.

For the analyses of WHtR, the 1,078 (689 female and 389 male) participants were selected from the Arivale cohort, whose datasets contained
the baseline WHtR measurement within +1.5 month from the first blood draw and within +3 s.d. from the mean in the baseline WHtR
distribution (Extended Data Fig. 7a, Supplementary Data 1). This is because we needed to generate and compare WHtR models as well as BMI
models.

In “Plasma analyte correlation network analysis" and “Statistical analysis", outlier values which were beyond +3 s.d. from mean in the target
cohort were eliminated. This is because the models is sensitive to outliers and their elimination allows convergence in modeling.

All these inclusions/exclusions criteria were also described in the Methods section.

Replication Due to the nature of observational study, we cannot deny the possibility that the findings are restricted to our studied cohorts. However, to
mitigate this limitation, we generated models while splitting dataset into training and testing datasets with a tenfold cross-validation scheme,
and evaluated all the models with the hold-out testing set and confirmed robustness of parameters (e.g., Extended Data Fig. 2e—h). Moreover,
we utilized the external TwinsUK cohort to validate the findings observed in the Arivale cohort.

Randomization In both Arivale and TwinsUK datasets, the participant recruitment and data collections were done prior to the current study; i.e., the original
datasets were collected independent from the aim of the current study. Hence, the longitudinal analyses in the Arivale cohort were unable to
be designed as a randomized control trial in advance, and no randomization was performed in lifestyle intervention (i.e., all participants
received lifestyle intervention). This was clearly described as a limitation in Discussion section. In data analysis, where appropriate, our
statistical models were adjusted for covariates including sex, age, ancestry principal components, and meteorological seasons. The variables
adjusted for each regression model were described in figure legend and Methods section.

Blinding Because completely different researchers performed data collection and data analysis independently, further blinding was not performed in
this study.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies IZI |:| ChiIP-seq
Eukaryotic cell lines IZI |:| Flow cytometry
Palaeontology and archaeology IZI |:| MRI-based neuroimaging
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