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Multiomic signatures of body mass index 
identify heterogeneous health phenotypes 
and responses to a lifestyle intervention

Kengo Watanabe    1, Tomasz Wilmanski1, Christian Diener1, John C. Earls1,2, 
Anat Zimmer1,8, Briana Lincoln1, Jennifer J. Hadlock    1, Jennifer C. Lovejoy1, 
Sean M. Gibbons    1,3,4, Andrew T. Magis1, Leroy Hood1,3,5,6,7, Nathan D. Price    1,2,3,7 
& Noa Rappaport    1 

Multiomic profiling can reveal population heterogeneity for both health 
and disease states. Obesity drives a myriad of metabolic perturbations 
and is a risk factor for multiple chronic diseases. Here we report an atlas of 
cross-sectional and longitudinal changes in 1,111 blood analytes associated 
with variation in body mass index (BMI), as well as multiomic associations 
with host polygenic risk scores and gut microbiome composition, from a 
cohort of 1,277 individuals enrolled in a wellness program (Arivale). Machine 
learning model predictions of BMI from blood multiomics captured 
heterogeneous phenotypic states of host metabolism and gut microbiome 
composition better than BMI, which was also validated in an external 
cohort (TwinsUK). Moreover, longitudinal analyses identified variable BMI 
trajectories for different omics measures in response to a healthy lifestyle 
intervention; metabolomics-inferred BMI decreased to a greater extent than 
actual BMI, whereas proteomics-inferred BMI exhibited greater resistance to 
change. Our analyses further identified blood analyte–analyte associations 
that were modified by metabolomics-inferred BMI and partially reversed in 
individuals with metabolic obesity during the intervention. Taken together, 
our findings provide a blood atlas of the molecular perturbations associated 
with changes in obesity status, serving as a resource to quantify metabolic 
health for predictive and preventive medicine.

Obesity has been increasing in prevalence over the past four decades in 
adults, adolescents and children around most of the world1,2. Many stud-
ies have demonstrated that obesity is a major risk factor for multiple 
chronic diseases, such as type 2 diabetes mellitus (T2DM), metabolic 
syndrome (MetS), cardiovascular disease (CVD) and certain types of 

cancer3–6. In individuals with obesity, even a 5% loss in body weight can 
improve metabolic and cardiovascular health7, and weight loss through 
lifestyle interventions (for example, diet and exercise) can reduce the 
risk for obesity-related chronic diseases8. Nevertheless, obesity and 
its physiological manifestations can vary widely across individuals, 
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activity (that is, wearables) and health/lifestyle questionnaires, and 
by employing machine learning to predict BMI.

Results
Arivale cohort characteristics
We selected a study cohort of 1,277 adults who participated in a scien-
tific wellness program (Arivale)20,24–29 and had coupled measurements 
of plasma metabolomics, proteomics and clinical laboratory tests from 
the same blood draw (Fig. 1a and Methods). This study design allowed 
us to directly investigate the similarities and differences between omics 
platforms according to the physiological health state of each individual 
across the BMI spectrum. This cohort was characteristically female 
(64.3%), middle-aged (mean ± s.d.: 46.6 ± 10.8 years) and White (69.7%) 
(Extended Data Fig. 1a–c and Supplementary Data 1). Based on the 
World Health Organization (WHO) international standards for BMI 
cutoffs (underweight: <18.5 kg m−2, normal: 18.5–25 kg m−2, overweight: 
25–30 kg m−2, obese: ≥30 kg m−2)12, the baseline BMI prevalence was 
similar among normal, overweight and obese classes, whereas only 
0.8% of participants were in the underweight class (underweight: ten 
participants (0.8%), normal: 426 participants (33.4%), overweight: 391 
participants (30.6%), obese: 450 participants (35.2%)). In the Arivale 
program, personalized healthy lifestyle coaching was provided to all 
participants (Methods), resulting in clinical improvement across mul-
tiple measures of health25.

Blood omics-based BMI models
Leveraging the baseline measurements of plasma molecular analytes 
(766 metabolites, 274 proteins and 71 clinical laboratory tests; Sup-
plementary Data 2), we trained machine learning models to predict 
baseline BMI for each of the omics platforms (metabolomics, pro-
teomics and clinical labs) or in combination: metabolomics-based 
BMI (MetBMI), proteomics-based BMI (ProtBMI), clinical labs 
(chemistries)-based BMI (ChemBMI) and combined omics-based 
BMI (CombiBMI) models. To address multicollinearity among the 
analytes (Extended Data Fig. 2a) and to obtain predictions for all par-
ticipants, we applied a ten-fold iteration scheme of the least absolute 
shrinkage and selection operator (LASSO) algorithm with ten-fold 
cross-validation (Fig. 1a and Methods). This approach generated ten 
fitted sparse models for each omics category (Supplementary Data 3)  
and one single testing (hold-out) set-derived prediction from each 
omics category for each participant (Fig. 1b). The resulting models 
retained 62 metabolites, 30 proteins, 20 clinical laboratory tests and 
132 analytes across all ten MetBMI, ProtBMI, ChemBMI and CombiBMI 
models, respectively, which exhibited low collinearity (Extended Data 
Fig. 2b,c) as expected from the LASSO algorithm30. In contrast to a 
model including obesity-related standard clinical measures (that is, 
ordinary least squares (OLS) linear regression model with sex, age, 
triglycerides, high-density lipoprotein (HDL) cholesterol, low-density 
lipoprotein (LDL) cholesterol, glucose, insulin and homeostatic model 
assessment for insulin resistance (HOMA-IR) as regressors; StandBMI 

necessitating additional research to better understand this prevalent 
health condition.

Obesity is commonly quantified using the anthropometric body 
mass index (BMI), defined as body weight divided by body height 
squared (kg m−2). Although BMI does not directly measure body com-
position, BMI correlates well at the population level with the body fat 
percentage measured by specialized devices, such as dual-energy X-ray 
absorptiometry (DXA)9. As an easily calculated and commonly under-
stood measure among researchers, clinicians and the general public, 
BMI is widely used for the primary diagnosis of obesity, and changes in 
BMI are often used to assess the effectiveness of lifestyle interventions.

There are limitations to BMI as a surrogate measure of health state. 
BMI can lead to misclassification of people with a high muscle-to-fat 
ratio (for example, athletes) as individuals with obesity and can 
undervalue metabolic improvements in health after exercise10. A 
meta-analysis showed that the common obesity diagnoses based on 
BMI cutoffs had high specificity but low sensitivity in identifying indi-
viduals with excess body fat11. The misclassification is likely due, in part, 
to the differences in BMI thresholds for obesity across different ethnic 
populations12 as well as the existence of a metabolically unhealthy, 
normal-weight (MUNW) group within the normal BMI class13,14. Likewise, 
there are health-heterogeneous groups among individuals with obesity: 
metabolically healthy obese (MHO) and metabolically unhealthy obese 
(MUO). Although most individuals in the MHO group are not necessarily 
healthy but simply healthier than individuals in the MUO group15, the 
transition from MHO to MUO phenotype may be a preceding step to 
the development of obesity-related chronic diseases16. Moreover, this 
transition is potentially preventable through lifestyle interventions17. 
Hence, BMI is unequivocally useful at the population level but too crude 
to capture a variety of heterogeneous metabolic health states.

Omics studies have demonstrated how blood omic profiles contain 
information relevant to a wide range of human health conditions; for 
example, blood proteomics captured 11 health indicators, such as the 
liver fat measured by ultrasound and the body composition measured 
by DXA18, whereas blood metabolomics tended to reflect dietary intake, 
lifestyle patterns and gut microbiome profiles19,20. A machine learning 
model that was trained to predict BMI using 49 BMI-associated blood 
metabolites captured obesity-related clinical measurements (for exam-
ple, visceral fat percentage) better than observed BMI or genetic predis-
position for high BMI21. Moreover, another blood metabolomics-based 
model of BMI reflected differences between individuals with or without 
acute coronary syndrome22. Thus, although a single targeted metric 
(for example, body composition) or a specific biomarker (for example, 
leptin23) provides useful information, multiomic blood profiling has the 
potential to comprehensively bridge the multifaceted gaps between 
BMI and heterogeneous physiological states.

Here we report heterogeneous molecular signatures of obesity by 
leveraging a cohort of 1,277 individuals with phenotype data, including 
human genomes and longitudinal measurements of metabolomics, 
proteomics, clinical laboratory tests, gut microbiomes, physical 

Fig. 1 | Plasma multiomics captured 48–78% of the variance in BMI.  
a, Overview of study cohorts and the omics-based BMI model generation.  
CV, cross-validation. b, Correlation between the measured and predicted BMIs. 
The solid line is the OLS linear regression line with 95% confidence interval, and 
the dotted line is measured BMI = predicted BMI. Standard measures: OLS linear 
regression model with sex, age, triglycerides, HDL cholesterol, LDL cholesterol, 
glucose, insulin and HOMA-IR as regressors; Padj: adjusted P value of two-sided 
Pearson’s correlation test with the Benjamini–Hochberg method across 
the five categories (n = 1,277 participants). c,d, Model performance of each 
fitted BMI model. Out-of-sample R2 was calculated from each corresponding 
hold-out testing set (Arivale: c,d) or from the external testing set (TwinsUK: d). 
Metabolomics (full): LASSO model trained by all 766 metabolites of the Arivale 
dataset; Metabolomics (restricted): LASSO model trained by the common 489 
metabolites in the Arivale and TwinsUK datasets (Extended Data Fig. 3 and 

Methods); Padj: adjusted P value of two-sided Welch’s t-test with the Benjamini–
Hochberg method across the four (c) or three (d) comparisons. Data: mean 
with 95% confidence interval, n = 10 models. Note that Standard measures and 
Metabolomics (full) of Arivale in d are the same with corresponding ones in  
c. e, Association between omics-inferred BMI and physiological feature. For each 
of the 51 numeric physiological features (Supplementary Data 4), β-coefficient 
was estimated using OLS linear regression model with the measured or omics-
inferred BMI as a dependent variable and sex, age and ancestry principal 
components as covariates. Presented are the 30 features that were significantly 
associated with at least one of the BMI types after multiple testing adjustment 
with the Benjamini–Hochberg method across the 255 (51 features × 5 BMI 
types) regressions. n, number of assessed participants. Data: estimate with 95% 
confidence interval. *Adjusted P < 0.05, **adjusted P < 0.01, ***adjusted P < 0.001. 
All exact values of test summaries are found in Supplementary Data 4 and 10.
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model), each omics-based model demonstrated significantly higher 
performance in BMI prediction, ranging from out-of-sample R2 = 0.48 
(ChemBMI) to 0.70 (ProtBMI) compared to 0.37 (StandBMI) (Fig. 1c). 
The CombiBMI model exhibited the best performance in BMI prediction 

(out-of-sample R2 = 0.78; Fig. 1c), but the variances explained were not 
completely additive, suggesting that, although there is a considerable 
overlap in the signal detected by each omics platform, different omic 
measurements still contain non-redundant information regarding BMI. 

Participants in the Arivale program (n = 6,223)

Study cohort: Arivale cohort (n = 1,277)

Underweight
n = 10 (0.8%)

Overweight
n = 391 (30.6%)

Normal
n = 426 (33.4%)

Obese
n = 450 (35.2%)

Select the participants having:
Metabolomics, proteomics and clinical
labs from the same first blood draw
Baseline BMI
Genomics

Eliminate the participants having:
Baseline BMI out of mean ± 3 s.d.
>10% missingness in any omics

Split into 10 sets
n = 127 or 128

Testing set
(hold-out)

10%

Training set
90%

Fit model using LASSO with 10-fold CV
(i.e., internal training/validation sets)

log BMI = β
0 
+ ΣN

i = 1
 β

i
 · analyte

i
 + ε

n = 766 (Metabolomics),
274 (Proteomics),
71 (Clinical labs),
1,111 (Combined omics)

Prediction
Model performance

Select a testing set and generate model k for each omics

Repeat for each set as the testing set
10 fitted models for each omics
One prediction for each participant and omics

Fitted
models • Prediction

• Model performance

Testing set (external)
100%

Participants in the TwinsUK Registry (n = 17,630)

Select the participants having:
Metabolomics, BMI and standard clinical measures from the
same visit

BMI out of mean ± 3 s.d.
Eliminate the participants having:

>10% missingness in metabolomics or standard clinical measures

External cohort: TwinsUK cohort (n = 1,834)

Underweight
n = 15 (0.8%)

Overweight
n = 706 (38.5%)

Normal
n = 779 (42.5%)

Obese
n = 334 (18.2%)

a

10 20 30 40 50 60

10

20

30

40

50

60

M
ea

su
re

d 
BM

I (
kg

 m
−2

) Pearson's r = 0.583
Padj = 3.6 × 10−117

Pearson's r = 0.830
Padj < 2.2 × 10−308

Pearson's r = 0.842
Padj < 2.2 × 10−308

Pearson's r = 0.682
Padj = 5.0 × 10−175

Pearson's r = 0.883
Padj < 2.2 × 10−308

Standard measures

10 20 30 40 50 60

Metabolomics

10 20 30 40 50 60

Predicted BMI (kg m–2)

Proteomics

10 20 30 40 50 60

Clinical labs

10 20 30 40 50 60

Combined omicsb

St
an

da
rd

 m
ea

su
re

s
M

et
ab

ol
om

ic
s

Pr
ot

eo
m

ic
s

C
lin

ic
al

 la
bs

C
om

bi
ne

d 
om

ic
s

0

0.2

0.4

0.6

0.8

O
ut

-o
f-s

am
pl

e 
R2

Padj = 1.6 × 10−10

Padj = 3.5 × 10−10

Padj = 7.5 × 10−10

Padj = 9.1 × 10−23

Padj = 3.5 × 10−10

Padj = 8.5 × 10−4
c

St
an

da
rd

 m
ea

su
re

s
M

et
ab

ol
om

ic
s 

(fu
ll)

M
et

ab
ol

om
ic

s 
(re

st
ric

te
d)

0

0.2

0.4

0.6

0.8

O
ut

-o
f-s

am
pl

e 
R2

Padj = 0.57

Arivale

St
an

da
rd

 m
ea

su
re

s
M

et
ab

ol
om

ic
s 

(re
st

ric
te

d)

TwinsUK
d

0 0.1 0.2

Waist-to-height ratio
(n = 1,072)

Systolic blood pressure
(n = 1,264)

BMI PRS (2018)
(n = 1,276)

Mean arterial pressure
(n = 1,243)

Diastolic blood pressure
(n = 1,259)

Pulse pressure
(n = 1,251)

Resting heart rate
(n = 1,085)

BMI PRS
(n = 1,272)

Fat-burning heart rate duration
(n = 1,069)

BMI PRS (over 50)
(n = 1,271)

Waist circumference PRS
(n = 1,273)

Calorie burned
(n = 1,198)

BMI PRS (low activity)
(n = 1,273)

Restless duration in sleep
(n = 1,138)

LDL PRS
(n = 1,273)

***

***

***

***

***

***

***

***

***

***

***

**

*

*

***

***

***

***

***

***

***

***

***

***

**

***

***

***

***

***

***

***

***

***

***

*

***

***

***

***

***

***

***

**

***

***

**

***

***

***

***

***

***

***

***

***

***

**

−0.1 0 0.1

Sedentary minutes
(n = 1,208)

Total cholesterol PRS
(n = 1,272)

Lightly active minutes
(n = 1,206)

Cortisol (night)
(n = 988)

Fairly active minutes
(n = 1,190)

Sleep e©iciency
(n = 1,085)

Cortisol (morning)
(n = 992)

Very active minutes
(n = 1,186)

Peak heart rate duration
(n = 1,065)

Cortisol (noon)
(n = 993)

Cardio heart rate duration
(n = 1,066)

Steps taken
(n = 1,202)

Distance traveled
(n = 1,201)

Elevation gained
(n = 1,182)

Floors climbed
(n = 1,183)

*

**

**

**

**

***

***

***

***

***

***

***

***

**

***

**

***

**

**

***

***

***

***

***

***

***

***

*

**

**

***

**

**

***

***

**

***

***

***

***

***

**

**

**

***

**

*

***

***

**

***

***

***

***

***

*

**

**

***

**

**

***

***

***

***

***

***

***

***

BMI type

BMI

MetBMI

ProtBMI

ChemBMI

CombiBMI

β-coe©icient (log-scaled measured or omics-inferred BMI (kg m−2) per s.d.)

e

http://www.nature.com/naturemedicine


Nature Medicine

Article https://doi.org/10.1038/s41591-023-02248-0

Additionally, these results were consistent in sex-stratified models, 
with the exception of the male ChemBMI model that exhibited higher 
performance than the StandBMI model without statistical significance 
(Extended Data Fig. 2d).

To confirm the generalizability of our results, we investigated an 
external cohort of 1,834 adults from the TwinsUK registry31 whose data-
sets included serum metabolomics32 and the aforementioned standard 
clinical measures (Fig. 1a, Extended Data Fig. 1d–f and Supplementary 
Data 1). We calculated BMI predictions for the TwinsUK cohort using the 
StandBMI and restricted MetBMI models that were fitted to the Arivale 
datasets (Extended Data Fig. 3 and Methods). The restricted MetBMI 
model exhibited a lower absolute performance on the TwinsUK cohort 
compared to the Arivale cohort but a significantly higher performance 
than the StandBMI model (out-of-sample R2 = 0.30 (MetBMI) and −0.13 
(StandBMI); Fig. 1d), confirming that blood metabolomics generally 
captures BMI better than the standard clinical measures.

BMI has been reported to be associated with multiple anthropo-
metric and clinical measures, such as waist circumference, blood pres-
sure, sleep quality and several polygenic risk scores (PRSs)3,4,15,27,33. We 
examined the association between the omics-inferred BMI and each of 
the available numeric physiological measures (Methods and Supple-
mentary Data 4). Among the 51 assessed features, classically measured 
BMI was significantly associated with 27 features (false discovery rate 
(FDR) < 0.05), including daily physical activity measures from wearable 
devices, waist-to-height ratio (WHtR), blood pressure and BMI PRS 
(Fig. 1e). With minor differences in effect sizes, these BMI-associated 
features were concordantly associated with each omics-inferred BMI 
(Fig. 1e), indicating that the omics-inferred BMIs primarily maintain the 
characteristics of classical BMI in terms of anthropometric, genetic, 
lifestyle and physiological associations.

Predictive features in omics-based BMI models
Because our LASSO linear regression model showed similar perfor-
mance to elastic net and ridge linear regression models and a non-linear 
random forest regression model (Extended Data Fig. 4a,b), and because 
the LASSO model’s β-coefficients are generally easier to interpret, we 
chose to focus on the LASSO models. However, the LASSO algorithm 
randomly retains variables from highly collinear groups and sets 
β-coefficients of the other variables to 0. To confirm the robustness 
of the variable selection process, we iterated the LASSO modeling while 
removing the strongest analyte (that is, the analyte that had the highest 
absolute value for the mean of the ten β-coefficients) from the input 
omic dataset at the end of each iteration. If a variable is indispensable for 
a model, the performance should largely decrease after removing it. In 
all omics categories, a steep decay in the out-of-sample R2 was observed 
in the first 5–9 iterations (Extended Data Fig. 2e–h), suggesting that, 
at least, the 5–9 analytes that had the highest absolute β-coefficients 
in the original LASSO models were indispensable for predicting BMI. 
Compared to ProtBMI and ChemBMI models, the overall slope of R2 in 
the MetBMI model decayed more gradually (Extended Data Fig. 2e–g), 
and the proportion of the variables that were robustly retained across 
all ten LASSO models (Extended Data Fig. 5) to the variables that were 
retained in at least one of the ten LASSO models was lower in the MetBMI 
model (MetBMI: 62/209 metabolites ≈30%; ProtBMI: 30/74 proteins 
≈41%; ChemBMI: 20/41 clinical laboratory tests ≈49%), implying that 

metabolomics data contain more redundant information about BMI 
than the other omics data. Nevertheless, metabolites still constituted 
58% of the 132 analytes that were retained across all ten CombiBMI 
models (77 metabolites, 51 proteins and four clinical laboratory tests; 
Fig. 2a), suggesting that each of the omics categories possesses unique 
information about BMI. The strongest predictors in the CombiBMI 
model were primarily proteins; analytes having the mean absolute 
β-coefficient >0.02 were leptin (LEP), adrenomedullin (ADM) and fatty 
acid-binding protein 4 (FABP4) as the positive predictors and insulin-like 
growth factor-binding protein 1 (IGFBP1) and advanced glycosylation 
end-product-specific receptor (AGER; also called RAGE) as the negative 
predictors. These strongest proteins were consistent in the elastic net 
models (Extended Data Fig. 4c–f) and had high importance in the ridge 
and random forest models (Extended Data Fig. 4g,h).

These consistently retained predictors in the omics-based BMI 
models implied that a single analyte might be a suitable biomarker to 
predict BMI. To address this possibility, we assessed the association 
between each single analyte and BMI for the analytes that were retained 
in at least one of the ten LASSO models (MetBMI: 209 metabolites, 
ProtBMI: 74 proteins and ChemBMI: 41 clinical laboratory tests; Supple-
mentary Data 5). Among the analytes that were significantly associated 
with BMI (180 metabolites, 63 proteins and 30 clinical laboratory tests), 
only LEP, FABP4 and interleukin 1 receptor antagonist (IL1RN) exhibited 
over 30% of the explained variance in BMI by themselves (Fig. 2b–d), 
with a maximum of 37.9% variance explained (LEP). In contrast, MetBMI, 
ProtBMI and ChemBMI models explained 68.9%, 70.6% and 48.8% of 
the variance, respectively. Moreover, even upon eliminating several 
strong analytes (for example, LEP and FABP4) from the omic datasets, 
the models still explained more variance in BMI than any single analyte 
(Extended Data Fig. 2e–h). These results indicate that the multiomic 
BMI prediction models explain a larger portion of the variation in BMI 
than any single analyte and highlight the multivariable perturbation 
of blood analytes across all platforms with increasing BMI.

Metabolic heterogeneity within the standard BMI classes
Although the omics-inferred BMIs showed the similar phenotypic asso-
ciations as classical BMI (Fig. 1e), we observed that the difference of the 
predicted BMI from the measured BMI (ΔBMI) was highly correlated 
among the omics categories, ranging from Pearson’s r = 0.64 (Chem-
BMI versus CombiBMI) to 0.83 (ProtBMI versus CombiBMI) (Fig. 3a),  
implying that this deviation stemmed from a true biological signal of 
a perturbed physiological state rather than from noise or modeling 
artifacts. When individuals in the normal and obese BMI classes (defined 
by the WHO international standards) were subdivided by a clinical defi-
nition of metabolic health (that is, defining metabolically unhealthy if 
having two or more MetS risks; Methods)34,35, ΔBMI was significantly 
higher in MUNW and MUO groups compared to metabolically healthy, 
normal-weight (MHNW) and MHO groups, respectively, for all omics 
categories (Fig. 3b), suggesting that the deviations of model predic-
tions are related to metabolic health.

Nevertheless, there has been no universally accepted definition of 
metabolic health14,15,34,35. Given the high interpretability and intuitive-
ness of the omics-inferred BMI, we explored a potential application: 
using the omics-inferred BMI (instead of actual BMI) for improved 
classification of both obesity and metabolic health with the WHO 

Fig. 2 | Omics-based BMI estimates captured the variance in BMI better than 
any single analyte. a, The variables that were retained across all ten CombiBMI 
models (132 analytes: 77 metabolites, 51 proteins and four clinical laboratory 
tests). β-coefficient was obtained from the fitted CombiBMI model with LASSO 
linear regression (Supplementary Data 3). Each background color corresponds 
to the analyte category. Data: the standard box plot (Methods), n = 10 models. 
b–d, Univariate explained variance in BMI by each metabolite (b), protein (c) 
or clinical laboratory test (d). BMI was independently regressed on each of 
the analytes that were retained in at least one of the ten LASSO models (209 

metabolites, 74 proteins and 41 clinical laboratory tests; Supplementary Data 5), 
using OLS linear regression with sex, age and ancestry principal components as 
covariates. Multiple testing was adjusted with the Benjamini–Hochberg method 
across the 210 (b), 75 (c) or 42 (d) regressions, including each omics-based BMI 
model as reference. Among the analytes that were significantly associated with 
BMI (180 metabolites, 63 proteins and 30 clinical laboratory tests), only the top 
30 significant analytes are presented with their univariate variances. All exact 
values of test summaries are found in Supplementary Data 5.

http://www.nature.com/naturemedicine


Nature Medicine

Article https://doi.org/10.1038/s41591-023-02248-0

international standards. Each participant was classified using each 
of the measured and omics-inferred BMIs based on the standard 
BMI cutoffs and categorized into either a matched or a mismatched 

group when the measured BMI class was matched or mismatched to 
each omics-inferred BMI class, respectively. The misclassification 
rate against the omics-inferred BMI class was ~30% across all omics 
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categories and BMI classes (Fig. 3c), consistent with the previously 
reported misclassification rates about the cardiometabolic health 
classification36,37. We then examined relationships between this 

omics-based misclassification within normal or obese BMI class and the 
obesity-related clinical blood markers (Supplementary Data 6), includ-
ing triglycerides, HDL cholesterol, LDL cholesterol, high-sensitivity 
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C-reactive protein (hs-CRP), glucose, insulin, HOMA-IR, glycated 
hemoglobin A1c (HbA1c), adiponectin and vitamin D3,15,23,38,39. Because 
ChemBMI and CombiBMI models were not independent of these mark-
ers, only the misclassification against MetBMI or ProtBMI class was 
examined in this analysis. The mismatched group of normal BMI class 
exhibited significantly higher values of the markers that are positively 
associated with BMI (+BMI), including triglycerides, hs-CRP, glucose 
and HOMA-IR, and significantly lower values of the markers that are 
negatively associated with BMI (−BMI), including HDL cholesterol and 
adiponectin, compared to the matched group of normal BMI class 
(FDR < 0.05; Fig. 3d). These patterns suggest that the participant mis-
classified into the normal BMI class possesses less healthy molecular 
profiles comparable to an individual with overweight or obesity, cor-
responding to the individual with MUNW phenotype. Conversely, the 
mismatched group of obese BMI class exhibited significantly lower 
and higher values of the positively and negatively BMI-associated 
markers, respectively, compared to the matched group of obese BMI 
class (FDR < 0.05; Fig. 3d), suggesting that the participant misclassi-
fied as obese BMI class has healthier blood signatures comparable to 
an individual with overweight or normal weight, corresponding to the 
individual with MHO phenotype.

We re-examined the 27 BMI-associated numeric physiological fea-
tures (Fig. 1e and Supplementary Data 6) as well and found the concord-
ant pattern of significant phenotypic differences between the matched 
and mismatched groups in WHtR (+BMI), heart rate (+BMI), blood pressure 
(+BMI) and daily physical activity (−BMI) measures (FDR < 0.05; Fig. 3e). 
There was no difference in BMI PRS (+BMI) between the matched and 
mismatched groups (Fig. 3e), implying that lifestyle or environmental 
factors, rather than genetic risk, are likely associated with the discord-
ance between the measured and omics-inferred BMIs. Furthermore, 
we validated these findings using the TwinsUK cohort (Extended Data  
Fig. 6). Taken together, these results suggest that the omics-inferred 
BMIs are associated with heterogeneous metabolic health states that 
are not captured by classical BMI with the standard BMI cutoffs.

Abdominal obesity and omics-based BMI models
Fat distribution in the body is an important feature for understanding 
the heterogeneous nature of obesity. In particular, abdominal obesity, 

which is characterized by excessive visceral fat (rather than subcuta-
neous fat) around the abdominal region, is associated with chronic 
diseases such as MetS40. Thus, we analyzed WHtR, an anthropometric 
measure of abdominal obesity41,42, in the Arivale cohort using the same 
scheme with the omics-based BMI models (Extended Data Fig. 7a and 
Methods). The omics-based WHtR models exhibited consistent find-
ings (Extended Data Fig. 7) and characteristics (Extended Data Fig. 8) 
to the omics-based BMI models. Moreover, in the TwinsUK cohort, DXA 
measurements of fat in the android region (+BMI) were significantly 
higher in the mismatched group compared to the matched group 
within the normal BMI class (FDR < 0.05; Extended Data Fig. 6c). Col-
lectively, although classical BMI requires complementary informa-
tion of the fat distribution for the diagnosis of abdominal obesity, the 
omics-based BMI model likely captures the obesity characteristics, 
including abdominal obesity.

Gut microbiome and omics-inferred BMIs
Given our previous finding that the association between blood metab-
olites and bacterial diversity is dependent on BMI20 and the current 
finding that the omics-based BMI models capture heterogeneous 
metabolic health states (Fig. 3), we hypothesized that MetBMI repre-
sents gut microbiome α-diversity better than actual BMI. For the 702 
Arivale participants who had both stool-derived gut microbiome and 
blood omic datasets (Fig. 4a and Methods), we examined relationships 
between gut microbiome α-diversity (the number of observed species, 
Shannon’s index and Chao1 index) and the omics-based BMI misclas-
sification. The matched and mismatched groups against MetBMI class 
showed significant differences in all α-diversity metrics within both 
normal and obese BMI classes (Fig. 4b), with the concordant pattern 
to the phenotypes that are negatively associated with BMI (Fig. 3d,e), 
implying that the MetBMI class reflects bacterial diversity better than 
the standard BMI class. The misclassification against the other omics 
categories did not show these significant differences for all α-diversity 
metrics and both BMI classes (Fig. 4b), consistent with our previous 
observation that plasma metabolomics showed stronger association 
with gut microbiome structure than either proteomics or clinical labs20.

We further examined the predictive power of gut microbiome  
profiles for MetBMI. For each of the measured BMI and MetBMI classes, 

Fig. 3 | Metabolic heterogeneity was responsible for the high rate of 
misclassification within the standard BMI classes. a, Difference of the 
omics-inferred BMI from the measured BMI (ΔBMI). Padj: adjusted P value of 
two-sided Pearson’s correlation test with the Benjamini–Hochberg method 
across the six combinations (n, number of participants in each BMI class; total 
n = 1,277 participants). The line in the histogram panel indicates the kernel 
density estimate. b, Difference in ΔBMI between clinically defined metabolic 
health conditions within the normal or obese BMI class. Each comparison value 
indicates adjusted P value, calculated from OLS linear regression with BMI, sex, 
age and ancestry principal components as covariates while adjusting multiple 
testing with the Benjamini–Hochberg method across the eight (2 BMI classes 
× 4 omics categories) regressions. c, Misclassification rate of overall cohort 
or each BMI class against the omics-inferred BMI class. Reference range: the 
previously reported misclassification rate36,37. The underweight BMI class is 
not presented owing to small sample size, but its misclassification rate was 

80% against CombiBMI class and 100% against the others. d,e, Difference in the 
obesity-related clinical blood marker (d) or BMI-associated physiological feature 
(e) between the matched and mismatched groups within the normal or obese 
BMI class. Each comparison value indicates adjusted P value, calculated from 
OLS linear regression with BMI, sex, age and ancestry principal components 
as covariates while adjusting multiple testing with the Benjamini–Hochberg 
method across the 40 (d, 2 BMI classes × 2 omics categories × 10 markers) or 216 
(e, 2 BMI classes × 4 omics categories × 27 features) regressions. Four of the 27 
features that were significantly associated with BMI (Fig. 1c) are representatively 
presented in e, and the other results are found in Supplementary Data 6. 25(OH)D,  
25-hydroxyvitamin D; a.u., arbitrary units. b,d,e, Data: the standard box 
plot (Methods); n = 373 (b, Healthy in Normal), 49 (b, Unhealthy in Normal), 
208 (b, Healthy in Obese) or 241 (b, Unhealthy in Obese) participants (see 
Supplementary Data 6 for each sample size in d and e). All exact values of test 
summaries are found in Supplementary Data 6 and 10.

Fig. 4 | Metabolomics-inferred BMI reflected gut microbiome profiles better 
than BMI. a, Overview of study cohorts and the gut microbiome-based obesity 
classifier generation. CV, cross-validation; RF, random forest. b, Difference in  
gut microbiome α-diversity between the matched and mismatched groups  
within the normal or obese BMI class. Each comparison value indicates adjusted 
P value, calculated from OLS linear regression with BMI, sex, age and ancestry 
principal components as covariates while adjusting multiple testing with the 
Benjamini–Hochberg method across the 24 (2 BMI classes × 4 omics categories ×  
3 metrics) regressions. Data: the standard box plot (Methods); n = 240 (Normal)  
or 260 (Obese) participants (see Supplementary Data 6 for each sample size).  

a.u., arbitrary units. c,e, ROC curve of the gut microbiome-based model classifying 
participants to the normal versus obese class in the Arivale (c) or TwinsUK (e) 
cohort. Each ROC curve was generated from the overall participants: n = 500 (c, BMI 
class), 427 (c, MetBMI class), 209 (e, BMI class) or 145 (e, MetBMI class) participants. 
The dashed line indicates a random classification line. P: P value of two-sided 
unpaired DeLong’s test. d,f, Comparison of model performance between the BMI 
and MetBMI classifiers in the Arivale (d) or TwinsUK (f) cohort. Out-of-sample 
metric value was calculated from each corresponding hold-out testing set. Data: 
mean with 95% confidence interval, n = 5 models. P: P value of two-sided Welch’s 
t-test. All exact values of test summaries are found in Supplementary Data 6 and 10.
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we generated models classifying individuals into normal class ver-
sus obese class based on gut microbiome 16S rRNA gene amplicon 
sequencing data, using a five-fold iteration scheme of the random 

forest algorithm with five-fold cross-validation (Fig. 4a and Methods). 
Compared to the classifier for the measured BMI class, the classifier for 
MetBMI class showed significantly larger area under the curve (AUC) in 
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the receiver operator characteristic (ROC) curve in the Arivale cohort 
(AUC = 0.66 (BMI) and 0.75 (MetBMI); Fig. 4c), with significantly higher 
sensitivity and precision (Fig. 4d). Moreover, by applying the same 
scheme to the stool-derived whole metagenomic shotgun sequencing 
(WMGS) data of the 329 TwinsUK participants43 (Fig. 4a and Methods), 
we validated the significant outperformance of the MetBMI classifier 
in the TwinsUK cohort (AUC = 0.57 (BMI) and 0.75 (MetBMI); Fig. 4e,f). 
These classifiers were generated again for the TwinsUK cohort (instead 
of using the classifiers that were fitted to the Arivale dataset; Fig. 4a) 
owing to the difference in sequencing methods (amplicon sequenc-
ing versus WMGS) while considering that the TwinsUK participants’ 
MetBMIs were predicted from the Arivale-fitted MetBMI models (Fig. 
1a). These findings suggest that, although other factors (such as dietary 
intake19) may be involved, MetBMI has a stronger correspondence to 
gut microbiome features than classical BMI.

Responses of omics-inferred BMIs to a lifestyle intervention
Longitudinal changes in omic profiles during the Arivale program 
were investigated in a subcohort of 608 participants based on the 
available longitudinal measurements (Fig. 5a and Methods). Given 
the participant-dependent variability in both count and timepoint of 
data collections, we estimated the average trajectory of each measured 
or omics-inferred BMI in the Arivale subcohort using a linear mixed 
model (LMM) with random effects for each participant (Methods). 
Consistent with previous analysis25,44, the mean BMI estimate for the 
overall cohort decreased during the program (Fig. 5b). The decrease 
of MetBMI was larger than that of measured BMI, whereas the decrease 
of ProtBMI was minimal and even smaller than that of measured BMI 
(Fig. 5b), suggesting that plasma metabolomics is highly responsive to 
the lifestyle intervention in the short term, whereas proteomics (meas-
ured from the same blood draw) is more resistant to change during the 
same intervention period. Subsequently, we generated LMMs with the 
baseline BMI class stratification. The mean estimates of the measured 
BMI, ProtBMI and ChemBMI exhibited negative changes over time in 
the overweight and obese BMI classes but not in the normal BMI class 
(Fig. 5c). In contrast, the mean MetBMI estimate exhibited a significant 
decrease across all BMI classes (Fig. 5c), suggesting that metabolomics 
data capture information about the metabolic health response to the 
lifestyle intervention, beyond the baseline BMI class and the changes 
in actual BMI and other omic profiles.

Given the existence of multiple metabolic health substates within 
the standard BMI classes (Fig. 3), we further investigated the difference 
between misclassification strata against the baseline MetBMI class. 
In the (baseline) normal BMI class, whereas the mean estimate of the 
measured BMI remained constant in both matched and mismatched 
groups, the mean MetBMI estimate exhibited larger reduction in the 
mismatched group than the matched group (Fig. 5d), suggesting that 
the participants with MUNW phenotype improved their metabolic 

health to a greater extent than the participants with MHNW phenotype. 
Likewise, in the (baseline) obese BMI class, whereas the decrease in 
the mean estimate of the measured BMI was not different between 
the matched and mismatched groups (at 1 year after the enrollment), 
the decrease in the mean MetBMI estimate was larger in the matched 
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Fig. 5 | Metabolic health of the metabolically obese group was improved 
during a healthy lifestyle intervention program. a, Overview of the 
longitudinal analysis using omics-inferred BMI. b,c, Longitudinal change in 
the omics-inferred BMI within the overall cohort (b) or within each baseline 
BMI class (c). Average trajectory of each measured or omics-inferred BMI was 
independently estimated using LMM with random effects for each participant 
(Methods) in the overall cohort (b) or in each baseline BMI class-stratified 
group (c). d,e, Longitudinal change in MetBMI of the misclassified participants 
within the normal (d) or obese (e) BMI class. Average trajectory of each BMI or 
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57 (e, Mismatched) participants.
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group than in the mismatched group (Fig. 5e), suggesting that the 
participants with MUO phenotype improved their metabolic health 
to a greater extent than the participants with MHO phenotype. These 

results suggest that metabolic health was substantially improved dur-
ing the program, in accordance with an individual’s baseline metabo-
lomic state rather than with the individual’s baseline BMI class.
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Blood analyte network dynamics and MetBMI class
We explored longitudinal changes in plasma analyte correlation networks, 
focusing on the metabolically obese group defined by MetBMI class. 
Based on the importance of the baseline metabolomic state (Fig. 5d,e),  
we first assessed relationships between each plasma analyte–analyte 
correlation and the baseline MetBMI within the Arivale subcohort  
(Fig. 5a; 608 participants), using their interaction term in a generalized 
linear model (GLM) of each analyte–analyte pair (Methods). In this type 
of model, the statistical test assesses whether the relationship between 
any two analytes is dependent on a third variable (in this case, the base-
line MetBMI). Among 608,856 pairwise relationships of plasma ana-
lytes, 100 analyte–analyte correlation pairs, comprising 82 metabolites, 
33 proteins and 16 clinical laboratory tests, were significantly modified 
by the baseline MetBMI (FDR < 0.05; Supplementary Data 7). Subse-
quently, we assessed longitudinal changes of these 100 pairs within the 
baseline obese MetBMI class (182 participants), using the interaction 
term (that is, interaction with days in the program) in a generalized 
estimating equation (GEE) of each analyte–analyte pair (Methods). 
Among the 100 pairs, 27 analyte–analyte correlation pairs were sig-
nificantly modified by days in the program (FDR < 0.05; Fig. 6a). These 
27 pairs were mainly derived from metabolites (21 metabolites, three 
proteins and three clinical laboratory tests). One of these time-varying 
pairs was homoarginine and phenyllactate (PLA). Homoarginine was 
found to be a biomarker for CVD45 and was a robustly retained positive 
predictor in MetBMI and CombiBMI models (Fig. 2a and Extended Data 
Fig. 5a). PLA is a gut microbiome-derived phenylalanine derivative 
known to have antimicrobial activity and antioxidant activity46,47. The 
positive association between homoarginine and PLA was observed 
in the obese MetBMI class at baseline (Fig. 6b) and became weaker in 
this class during the course of the intervention (Fig. 6c), implying that 
metabolic dysregulation specific to the metabolically obese group was 
somewhat improved during the program. These findings indicate that 
metabolic improvement was not limited to changes in specific blood 
analyte concentrations but also changes in the association structure 
among analytes.

Discussion
Obesity is a significant risk factor for many chronic diseases3–6. The 
heterogeneous nature of human health conditions, with variable mani-
festations ranging from metabolic abnormalities to cardiovascular 
symptoms, calls for deeper molecular characterizations to optimize 
wellness and reduce the current global epidemic of chronic diseases. 
In this study, we demonstrated that obesity perturbs human physi-
ology, as reflected across all the studied omics modalities. Machine 
learning-based multiomic BMI estimates were better suited to identi-
fying heterogeneous metabolic health and gut microbiome structure 
than actual BMI while maintaining a high level of interpretability and 
intuitiveness attributed to the original metric. Plasma metabolomics 
exhibited the strongest (and/or earliest) response to lifestyle coaching, 
whereas plasma proteomics exhibited a weaker (and/or more delayed) 

response than actual BMI. Compared to the participants with meta-
bolically healthy phenotype (that is, BMI class ≥ MetBMI class), the 
participants with metabolically unhealthy phenotype (that is, BMI class 
< MetBMI class) exhibited a greater improvement in their metabolic 
health (but not in weight loss per se) in response to the healthy lifestyle 
coaching. Dozens of analyte–analyte associations were modified in the 
participants of the metabolically obese group (that is, obese MetBMI 
class), after the healthy lifestyle intervention.

Although many observational studies have explored proteins and 
metabolites as biomarkers for obesity5,6,23,48–50, each biomarker usually 
reflects a specific aspect (or population average) of obesity, and rela-
tionships between the biomarkers remain to be elucidated. In contrast, 
the omics-based BMI models automatically incorporated well-known 
biomarkers and, hence, can be regarded as multidimensional profiles of 
obesity. Furthermore, we observed analytes that were associated with 
a small proportion of the variance in BMI while being strong predictive 
features in the omics-based BMI models—for example, RAGE, which 
has been highlighted in the contexts of T2DM and CVD51. Therefore, 
the omics-based BMI models may reflect not only the mechanistic 
information of obesity but also the early transition toward clinical 
manifestations of obesity-related chronic diseases.

A previous study investigating multiomic changes in response to 
weight perturbations demonstrated that some weight gain-associated 
blood signatures were reversed during subsequent weight loss while 
others persisted52. We found that MetBMI was more responsive to the 
healthy lifestyle intervention than actual BMI or ChemBMI, whereas 
ProtBMI was more resistant to the same intervention. Our analyses on 
the predictors of the omics-based BMI models suggested that the dis-
tribution of feature importance among metabolites was wider, whereas 
only a small subset of measured proteins (~5 proteins) was predomi-
nantly reflective of obesity profiles. Therefore, the effect of lifestyle 
coaching may consist of small additive contributions in blood metab-
olites in the short term. However, longer longitudinal analyses are 
needed to infer the physiological meaning of these omics-dependent 
dynamics. It is possible that ProtBMI shows a delayed response to the 
intervention, indicating that blood metabolites and proteins may be 
early and late responders to a lifestyle intervention, respectively, such 
as the relationship between blood glucose and HbA1c in the assessment 
of glucose homeostasis53. If the difference between the measured 
and omics-inferred BMIs remains constant even after 1 year, blood 
metabolites and proteins could be more and less sensitive to a lifestyle 
intervention than classical BMI, respectively. As a translational impli-
cation, monitoring blood multiomics during weight loss programs 
would help participants maintain their motivation to stay engaged 
with persistent lifestyle changes, because they would receive rapid 
feedback on how lifestyle changes were impacting their health, even 
in the absence of weight loss.

Our study had several limitations. The analytes that were retained 
in the omics-based models do not necessarily have causal relationships 
with obesity phenotypes. These relationships could be indicative 

Fig. 6 | Plasma analyte correlation network in the metabolically obese group 
shifted toward a structure observed in a metabolically healthier state during a 
healthy lifestyle intervention program. a, Cross-omic interactions modified by 
MetBMI and days in the program. For each of the 608,856 pairwise relationships of 
plasma analytes (766 metabolites, 274 proteomics and 64 clinical laboratory tests), 
the baseline relationship between analyte–analyte pair and MetBMI within the 
Arivale subcohort (Fig. 5a; 608 participants) was assessed using their interaction 
term in each GLM (Methods) while adjusting multiple testing with the Benjamini–
Hochberg method. The 100 analyte–analyte pairs (82 metabolites, 33 proteins 
and 16 clinical laboratory tests) that were significantly modified by the baseline 
MetBMI are presented. For each of these 100 pairs, the longitudinal relationship 
between analyte–analyte pair and days in the program within the metabolically 
obese group (that is, the baseline obese MetBMI class; 182 participants) was 

further assessed using their interaction term in each GEE (Methods) while 
adjusting multiple testing with the Benjamini–Hochberg method. The 27 analyte–
analyte pairs (21 metabolites, three proteins and three clinical laboratory tests) 
that were significantly modified by days in the program are highlighted by line 
width and label font size. N.A., not available. All exact values of test summaries 
are found in Supplementary Data 7. b,c, Representative examples of the analyte–
analyte pair that was significantly modified by both baseline MetBMI (b) and days 
in the program (c) in a. The solid line in each panel is the OLS linear regression 
line with 95% confidence interval. n = 530 (b, left), 553 (b, center) or 566 (b, right) 
participants; n = 324 (c, left), 339 (c, center) or 347 (c, right) measurements from 
the 182 participants of the metabolically obese group. Of note, data points outside 
of plot range are trimmed in these presentations.
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of obesity or affected by other factors that were not included in the 
models. Our measurements did not cover all biomolecules in blood; 
in particular, proteomics was based on three targeted Olink panels. 
Thus, our findings on metabolomic and proteomic states are restricted 
to the analytes that we could measure. This study was not designed 
as a randomized controlled trial, and we cannot strictly evaluate the 
effectiveness of the lifestyle intervention (for example, bigger improve-
ments in the obese group compared to the normal-weight group may 
be due to the regression-toward-the-mean effect44). In addition, we 
used time as the variable in longitudinal analyses under an assumption 
that the program enrollment itself affected participants’ BMI and omic 
profiles. If we had more detailed data on the intervention (for example, 
magnitude and participant compliance), we would be able to improve 
the assessment of its effect. The generalizability of our findings may 
be limited, because this study was an observational study of largely 
White individuals from the Pacific West of the United States and from 
the United Kingdom, and validation with an external cohort relied 
on the female-dominated cohort (96.7%) and its metabolomics data.

In summary, this study highlights the usefulness of blood multi-
omic profiling for predictive and preventive medicine. It also outlines 
an unprecedented multiomic characterization of obesity and will serve 
as a valuable resource for characterizing metabolic health and identify-
ing actionable targets for health management.

Online content
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Methods
Arivale cohort
The main study cohort was derived from 6,223 individuals who partici-
pated in a wellness program offered by a currently closed commercial 
company (Arivale, Inc.) between 2015 and 2019. An individual was 
eligible for enrollment if the individual was over 18 years of age, not 
pregnant and a resident of any US state except New York; participants 
were primarily recruited from Washington, California and Oregon. The 
participants were not screened for any particular disease. During the 
Arivale program, each participant was provided personalized lifestyle 
coaching via telephone by registered dietitians, certified nutrition-
ists or registered nurses. This coaching was designed to improve the 
participant’s health based on the combination of clinical laboratory 
tests, genetic predispositions and published scientific evidence; for 
example, reduction of sodium intake might be recommended to any 
participants with high blood pressure, but if they also had risk alleles 
indicating enhanced susceptibility to dietary sodium, this risk would 
be emphasized (see a previous report25 for more details).

In the current study, to compare the associations between BMI 
and host phenotypes across different omics, we limited the original 
cohort to the participants whose datasets contained (1) all main omic 
measurements (metabolomics, proteomics and clinical laboratory 
tests) from the same first blood draw; (2) a BMI measurement within 
±1.5 months from the first blood draw; and (3) genetic information 
(for using as covariates). We also eliminated (1) outlier participants 
whose baseline BMI was beyond ±3 s.d. from the mean in the baseline 
BMI distribution and (2) participants whose any of omic datasets con-
tained more than 10% missingness in the filtered analytes (see the ‘data 
cleaning’ subsection). The final Arivale cohort consisted of 1,277 (821 
female and 456 male) participants (Fig. 1a) who exhibited consistent 
demographics (Extended Data Fig. 1a–c and Supplementary Data 1) 
with the study cohorts defined in the previous Arivale studies20,25–29. 
For the analyses of gut microbiome, subcohort was defined with the 
702 (486 female and 216 male) participants from the Arivale cohort 
who collected a stool sample within ±1.5 months from the first blood 
draw and did not use antibiotics in the last 3 months (Fig. 4a and Sup-
plementary Data 1). For longitudinal analyses, subcohort was defined 
with the 608 (410 female and 198 male) participants from the Arivale 
cohort whose datasets contained two or more time-series datasets 
for both BMI and omics during 18 months after enrollment (Fig. 5a 
and Supplementary Data 1). For the analyses of WHtR, subcohort 
was defined with the 1,078 (689 female and 389 male) participants 
from the Arivale cohort whose datasets contained the baseline WHtR 
measurement within ±1.5 months from the first blood draw and within 
±3 s.d. from the mean in the baseline WHtR distribution (Extended Data  
Fig. 7a and Supplementary Data 1).

TwinsUK cohort
The external cohort was derived from 17,630 individuals who par-
ticipated in the TwinsUK Registry, a British national register of adult 
twins31. Twins were recruited as volunteers by media campaigns without 
screening for any particular disease. The participants had two or more 
clinical visits for biological sampling between 1992 and 2022. In the cur-
rent study, to validate our findings in the Arivale cohort, we limited the 
original cohort to the participants whose datasets contained all meas-
urements for metabolomics32, BMI and the obesity-related standard 
clinical measures (that is, defined by triglycerides, HDL cholesterol, 
LDL cholesterol, glucose, insulin and HOMA-IR throughout the current 
study) from the same visit. We also eliminated (1) outlier participants 
whose BMI was beyond ±3 s.d. from the mean in the overall BMI distribu-
tion and (2) participants whose metabolomic dataset contained more 
than 10% missingness in the filtered metabolites (see the ‘data clean-
ing’ subsection). The final TwinsUK cohort consisted of 1,834 (1,774 
female and 60 male) participants (Fig. 1a, Extended Data Fig. 1d–f and 
Supplementary Data 1). For the analyses of gut microbiome, subcohort 

was defined with the 329 (307 female and 22 male) participants from 
the TwinsUK cohort who collected a stool sample within ±1.5 months 
from the clinical visit and did not use antibiotics at that time (Fig. 4a 
and Supplementary Data 1).

Ethics statement
The current study was conducted with de-identified data of the par-
ticipants who had consented to the use of their anonymized data in 
research. Procedures were run under the Western Institutional Review 
Board (study numbers 20170658 at the Institute for Systems Biology 
and 1178906 at Arivale). Application of data access for the TwinsUK 
cohort was approved by the TwinsUK Resource Executive Committee 
(project number E1192).

Data collections and data cleaning for the Arivale cohort
Multiomics data for the Arivale participants included genomics and 
longitudinal measurements of metabolomics, proteomics, clinical lab-
oratory tests, gut microbiomes, wearable devices and health/lifestyle 
questionnaires. Peripheral venous blood draws for all measurements 
were performed by trained phlebotomists at LabCorp (Laboratory 
Corporation of America Holdings) or Quest (Quest Diagnostics) ser-
vice centers. Saliva to measure analytes such as diurnal cortisol and 
dehydroepiandrosterone was sampled by participants at home using a 
standardized kit (ZRT Laboratory). Stool samples for gut microbiome 
measurements were obtained by participants at home using a standard-
ized kit (DNA Genotek).

•	 Genomics
DNA was extracted from each whole blood sample and under-
went whole-genome sequencing (1,257 participants) or 
single-nucleotide polymorphism (SNP) microarray genotyping 
(20 participants). Genetic ancestry was calculated with princi-
pal components using a set of ~100,000 ancestry-informative 
SNP markers, as described previously25. PRSs were constructed 
using publicly available summary statistics from published 
genome-wide association studies, as described previously27.

•	 Blood-measured omics
Metabolomics data were generated by Metabolon using ultra- 
high-performance liquid chromatography–tandem mass spec-
trometry (UHPLC–MS/MS) for plasma derived from each whole 
blood sample. Proteomics data were generated using proximity 
extension assay for plasma derived from each whole blood sample 
with several Olink target panels (Olink Proteomics), and only the 
measurements with the Cardiovascular II, Cardiovascular III and 
Inflammation panels were used in the current study because the 
other panels were not necessarily applied to all samples. All clinical 
laboratory tests were performed by LabCorp or Quest in a Clinical 
Laboratory Improvement Amendments-certified lab, and only the 
measurements by LabCorp were selected in the current study to 
eliminate potential differences between vendors. In the current 
study, the batch-corrected datasets with in-house pipeline were 
used, and the metabolomic dataset was loge-transformed. In addi-
tion, analytes missing in more than 10% of the baseline samples 
were removed from each omic dataset, and observations missing 
in more than 10% of the remaining analytes were further removed. 
The final filtered metabolomics, proteomics and clinical labs con-
sisted of 766 metabolites, 274 proteins and 71 clinical laboratory 
tests, respectively (Supplementary Data 2).

•	 Gut microbiome
Gut microbiome data were generated based on 16S amplicon 
sequencing of the V3+V4 region using a MiSeq sequencer (Illu-
mina) for DNA extracted from each stool sample, as previously 
described28. In brief, the FASTQ files were processed using the 
mbtools workflow (version 0.37.1; https://github.com/
Gibbons-Lab/mbtools) to remove noise, infer amplicon sequence 

http://www.nature.com/naturemedicine
https://github.com/Gibbons-Lab/mbtools
https://github.com/Gibbons-Lab/mbtools


Nature Medicine

Article https://doi.org/10.1038/s41591-023-02248-0

variants (ASVs) and remove chimeras. Taxonomy assignment was 
performed using the SILVA ribosomal RNA gene database (version 
132)54. In the current study, the final collapsed ASV table across the 
samples consisted of 394, 341, 85, 45, 26 and 16 taxa for species, 
genus, family, order, class and phylum, respectively. Gut microbi-
ome α-diversity was calculated at the ASV level using Shannon’s 
index calculated by H = −∑S

i=1 pilnpi, where pi is the proportion of 
a community i represented by ASVs, or using Chao1 diversity 

score calculated by SChao1 = Sobs +
n2
1

2n2
, where Sobs is the number of 

observed ASVs; n1 is the number of singletons (ASVs captured 
once); and n2 is the number of doubletons (ASVs captured twice).

•	 Anthropometrics, saliva-measured analytes and daily physical 
activity measures
Anthropometrics, including weight, height, waist circumference 
and blood pressure, were measured at the time of blood draw and 
also reported by participants, which generated diverse timing and 
numbers of observations depending on each participant. BMI 
and WHtR were calculated from the measured anthropometrics 
with the weight divided by squared height (kg m−2) and the waist 
circumference divided by height (unit-less), respectively. Measure-
ments of saliva samples were performed in the testing laboratory 
of ZRT Laboratory. Daily physical activity measures, such as heart 
rate, moving distance, step count, burned calories, floors climbed 
and sleep quality, were tracked using the Fitbit wearable device. 
To manage variations between days, monthly averaged data were 
used for these daily measures. In the current study, the baseline 
measurement for these longitudinal measures was defined with 
the closest observation to the first blood draw per participant 
and data type, and each dataset was eliminated from analyses 
when its baseline measurement was beyond ±1.5 months from 
the first blood draw.

Data collections and data cleaning for the TwinsUK cohort
Data resource for the TwinsUK participants included longitudinal meas-
urements of metabolomics, clinical laboratory tests, DXA and health/
lifestyle questionnaires31. The necessary datasets for the current study 
were provided by the Department of Twin Research & Genetic Epidemi-
ology (King’s College London). In the current study, after each provided 
dataset was cleaned as follows, the earliest visit among the visits from 
which all of metabolomics, BMI and standard clinical measures had 
been measured was defined as the baseline visit for each participant. As 
an exception, the later visit among them was prioritized as the baseline 
visit if the participant had gut microbiome data within ±1.5 months 
from the visit. Only the baseline visit measurements were analyzed.

•	 Blood-measured metabolomics
Metabolomics data were originally generated by Metabolon using 
UHPLC–MS/MS for each serum sample32. In the current study, 
the provided median-normalized dataset was loge-transformed. 
In addition, metabolites missing in more than 10% of the overall 
samples were removed from the metabolomic dataset, and obser-
vations missing in more than 10% of the remaining metabolites 
were further removed. The final filtered metabolomics consisted 
of 683 metabolites.

•	 BMI
In the current study, the BMI values that had been already calcu-
lated and included in the provided metabolomics data file were 
used.

•	 Standard clinical measures and other phenotypic measures
In the current study, because the provided phenotypic datasets 
contained multiple measurements for a phenotype even from a 
single visit of a participant (for example, owing to project differ-
ence or repeated measurements), multiple measurements were 
flattened into a single measurement for a phenotype per each 

participant’s visit by taking the mean value. During this flattening 
step, the difference in unit was properly adjusted, and the value 
indicating below detection limit was regarded as 0. HOMA-IR was 
calculated from the datasets of glucose, insulin and fasting condi-
tion with the formula: HOMA-IR = fasting glucose (mmol L−1) × fast-
ing insulin (mIU L−1) × 22.5−1.

•	 Gut microbiome
Gut microbiome data were originally generated based on WMGS 
using a HiSeq 2500 sequencer (Illumina) for DNA extracted from 
each stool sample43. In the current study, the raw sequencing data 
were obtained from the National Center for Biotechnology Infor-
mation (NCBI) Sequence Read Archive (PRJEB32731) and applied to 
a processing pipeline on Nextflow (version 22.04.5; https://github.
com/Gibbons-Lab/pipelines). Through this pipeline, the obtained 
FASTQ files were processed using the fastp (version 0.23.2) tool55 to 
filter and trim the reads, and taxonomic abundance was obtained 
using the Kraken 2 (version 2.1.2) and Bracken (version 2.6.0) 
tools56 with the Kraken 2 default database (based on NCBI RefSeq). 
The final collapsed taxonomic table across the samples consisted 
of 4,669, 1,225, 354, 167, 76 and 35 taxa for species, genus, family, 
order, class and phylum, respectively.

Blood omics-based BMI and WHtR models
For each Arivale baseline omic dataset, missing values were first 
imputed with a random forest algorithm using the Python missingpy 
(version 0.2.0) library (corresponding to R MissForrest package57). 
For sex-stratified models (Extended Data Fig. 2d), the datasets after 
imputation were divided into sex-stratified datasets. Subsequently, 
the values in each omic dataset were standardized with z-score using 
the mean and s.d. per analyte. Then, ten iterations of LASSO mod-
eling with ten-fold cross-validation (Fig. 1a and Extended Data Fig. 7a) 
were performed for the (unstandardized) loge-transformed BMI or 
WHtR and each processed omic dataset, using the LassoCV applica-
tion programming interface (API) of the Python scikit-learn (version 
1.0.1) library. Training and testing (hold-out) sets were generated by 
splitting participants into ten sets with one set as a testing (hold-out) 
set and the remaining nine sets as a training set and iterating all com-
binations over those ten sets; that is, overfitting was controlled using 
ten-fold iteration with ten testing (hold-out) sets, and hyperparameter 
was decided using ten-fold cross-validation with internal training and 
validation sets from each training set. Consequently, this procedure 
generated ten fitted sparse models for each omics category (Supple-
mentary Data 3 and 8) and one single testing (hold-out) set-derived 
prediction from each omics category for each participant. The same 
modeling scheme while replacing LASSO with elastic net, ridge or 
random forest was performed using Python scikit-learn ElasticNetCV, 
RidgeCV or RandomForestRegressor-implemented GridSearchCV API, 
respectively. In this random forest modeling, the number of trees in the 
forest and the number of features were set as the hyperparameters to 
be decided through cross-validation. For the standard measures-based 
models, the above modeling scheme was applied to OLS linear regres-
sion with sex, age, triglycerides, HDL cholesterol, LDL cholesterol, 
glucose, insulin and HOMA-IR as regressors, using Python scikit-learn 
LinearRegression API. Of note, ten split sets were fixed among the omics 
categories and the modeling methods, and no significant difference 
in BMI, WHtR, sex, age and ancestry principal components 1–5 among 
those ten sets was confirmed, using Pearson’s χ2 test for categorical 
variables and ANOVA for numeric variables while adjusting multiple 
testing with the Benjamini–Hochberg method across the tested vari-
ables (Supplementary Data 1).

For the TwinsUK cohort, the metabolomic dataset was applied to 
the random forest imputation, and then each dataset of metabolomics 
and standard clinical measures was applied to z-score standardiza-
tion as well as the Arivale datasets. Using the ten LASSO or OLS linear 
regression models that were fitted by the Arivale dataset, one single 
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prediction was calculated from each processed dataset for each par-
ticipant by taking the mean of ten predicted values. For metabolomics, 
the ten MetBMI models were generated again but restricting the input 
Arivale metabolomics to the common 489 metabolites in the Arivale 
and TwinsUK panels (Extended Data Fig. 3).

For the LASSO-modeling iteration analysis (Extended Data Figs. 
2e–h and 7f–i), ten LASSO models were repeatedly generated with 
the above modeling scheme. At the end of each iteration, the variable 
that was retained across ten models and that had the highest absolute 
value for the mean of ten β-coefficients was removed from the input 
omic dataset.

For longitudinal predictions of the Arivale subcohort, one sin-
gle prediction at a timepoint was calculated from each processed 
time-series omic dataset for each participant, using the baseline LASSO 
model for which the participant was included in the baseline testing 
(hold-out) set. This was because (1) the baseline measurements were 
minimally affected by the personalized lifestyle coaching; (2) both 
count and timepoint of data collections were different among the 
participants; and (3) potential data leakage might be derived from the 
relationships between the baseline and following measurements for 
the same participant. For processing, each time-series omic dataset 
was applied to two-step random forest imputation; that is, the baseline 
missingness was first imputed based on the baseline data structure, and 
the remaining missingness was next imputed based on the overall data 
structure. Each imputed dataset was subsequently applied to z-score 
standardization using the mean and s.d. in the baseline distribution.

Model performance was conservatively evaluated by the 
out-of-sample R2 that was calculated from each corresponding hold-out 
testing set in the Arivale cohort or from the external testing set in the 
TwinsUK cohort. Pearson’s r between the measured and predicted 
values was calculated from the overall participants of the Arivale or 
TwinsUK cohort. Difference of the predicted value from the measured 
value (ΔMeasure; that is, ΔBMI or ΔWHtR) was calculated with (the pre-
dicted value − the measured value) × (the measured value)−1 × 100 (that 
is, the unit of ΔMeasure was (% Measure)). In the random forest model, 
the importance of a feature was calculated as the normalized total 
reduction of the mean squared error that was brought by the feature.

Health classification
Each participant was classified using each of the measured and 
omics-inferred BMIs based on the WHO international standards for BMI 
cutoffs (underweight: <18.5 kg m−2, normal: 18.5–25 kg m−2, overweight: 
25–30 kg m−2, obese: ≥30 kg m−2)12. For the misclassification of BMI class 
against the omics-inferred BMI class, each participant was categorized into 
either a matched or a mismatched group when the measured BMI class was 
matched or mismatched to each omics-inferred BMI class, respectively.

For a clinically defined metabolic health classification, the par-
ticipants having two or more MetS risks of the National Cholesterol 
Education Program Adult Treatment Panel III guidelines were judged 
as the metabolically unhealthy group, whereas the other participants 
were judged as the metabolically healthy group34,35. Concretely, the 
MetS risk components were (1) systolic blood pressure ≥130 mm Hg, 
diastolic blood pressure ≥85 mm Hg or using anti-hypertensive medi-
cation; (2) fasting triglyceride level ≥150 mg dl−1; (3) fasting HDL cho-
lesterol level <50 mg dl−1 for female and <40 mg dl−1 for male or using 
lipid-lowering medication; and (4) fasting glucose level ≥100 mg dl−1 
or using anti-diabetic medication. Only the participants who had  
all these information were assessed in the corresponding analyses  
(Fig. 3b and Extended Data Figs. 6a and 7m).

Gut microbiome-based models for classifying obesity
For the Arivale gut microbiome dataset, the whole ASV table (907 
taxa from species to phylum) was pre-processed (that is, positively 
shifted by 1, loge-transformed and standardized with z-score using the 
mean and s.d. per taxon) and then applied to dimensionality reduction 

using PCA API of the Python scikit-learn (version 1.0.1) library; the pro-
jected values onto the first 50 principal components (0.4–5.1% variance 
explained) were supplied as the input gut microbiome features. Two 
types of classifiers were trained on these gut microbiome features: 
one predicting whether an individual is obese BMI class and the other 
predicting whether an individual is obese MetBMI class. Both models 
were independently constructed through a five-fold iteration scheme 
of random forest with five-fold cross-validation (Fig. 4a) using Python 
scikit-learn RandomForestClassifier-implemented GridSearchCV API. 
In this random forest modeling, the number of trees in the forest and 
the number of features were set as the hyperparameters to be decided 
through cross-validation. Training and testing (hold-out) sets were 
generated by splitting the participants of the normal and obese classes 
into five sets, with one set as a testing (hold-out) set and the remaining 
four sets as a training set, and iterating all combinations over those five 
sets; that is, overfitting was controlled using five-fold iteration with 
five testing (hold-out) sets, and hyperparameters were decided using 
five-fold cross-validation with internal training and validation sets 
from each training set. Consequently, this procedure generated five 
fitted classifiers for each BMI or MetBMI class and one single testing 
(hold-out) set-derived prediction from each classifier type for each 
participant. Note that this prediction included two types: either normal 
or obese class by a vote of the trees (that is, binary prediction) and the 
mean probability of obese class among the trees.

For the TwinsUK gut microbiome dataset, the whole taxonomic 
table (6,526 taxa from species to phylum) was pre-processed and then 
applied to dimensionality reduction as well as the Arivale dataset; the 
projected values onto the first 50 principal components (0.2–40.1% 
variance explained) were supplied as the input gut microbiome fea-
tures. Then, the five obesity classifiers for each BMI or MetBMI class 
were generated as well as the above Arivale procedure, and one single 
testing (hold-out) set-derived prediction from each classifier type was 
calculated for each participant (Fig. 4a).

Model performance of each classifier was conservatively evalu-
ated using each corresponding hold-out testing set. AUC in the ROC 
curve and the average precision were calculated using the probability 
predictions, whereas sensitivity and specificity were calculated from 
the confusion matrix using the binary predictions. The overall ROC 
curve and its AUC were calculated from all the participants’ probability 
predictions, using the R pROC (version 1.18.0) package58.

Longitudinal changes in the measured and omics-inferred BMIs
An LMM was generated for each loge-transformed measured or 
omics-inferred BMI in the Arivale subcohort, following the previous 
approach25. As fixed effects regarding time, linear regression splines 
with knots at 0, 6, 12 and 18 months were applied to days in the pro-
gram to fit time as a continuous variable rather than a categorical 
variable, because both count and timepoint of data collections were 
different among the participants. In addition to the linear regression 
splines of time as fixed effects, the LMM included sex, baseline age, 
ancestry principal components 1–5 and meteorological seasons as 
fixed effects (to adjust potential confounding effects) and random 
intercepts and random slopes of days in the program as random effects 
for each participant. Additionally, the same LMM for each measured or 
omics-inferred BMI was independently generated from each baseline 
BMI class-stratified group. Of note, this stratified LMM was not gener-
ated from the underweight group because its sample size was too small 
for convergence. For comparing difference among the misclassification 
strata against the baseline MetBMI class, the above LMM while adding 
additional fixed effects (the categorical baseline misclassification of 
BMI class against MetBMI class (that is, binary for the matched versus 
mismatched) and its interaction terms with the linear regression splines 
of time) was generated for each measured BMI or MetBMI from each 
baseline BMI class-stratified group. All LMMs were modeled using 
MixedLM API of the Python statsmodels (version 0.13.0) library.
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Plasma analyte correlation network analysis
Before the analysis, outlier values that were beyond ±3 s.d. from the 
mean in the Arivale subcohort baseline distribution were eliminated 
from the dataset per analyte, and seven clinical laboratory tests, which 
became almost invariant across the participants, were eliminated 
from analyses, allowing convergence in the following modeling. Per 
each analyte, values were converted with a transformation pipeline 
producing the lowest skewness (for example, no transformation, the 
logarithm transformation for right-skewed distribution or the square 
root transformation with mirroring for left-skewed distribution) and 
standardized with z-score using the mean and s.d.

Against 608,856 pairwise combinations of the analytes (766 
metabolites, 274 proteomics and 64 clinical laboratory tests), GLMs 
for the baseline measurements of the Arivale subcohort (Fig. 5a; 608 
participants) were independently generated with the Gaussian distribu-
tion and identity link function using glm API of the Python statsmodels 
(version 0.13.0) library. Each GLM consisted of an analyte as a depend-
ent variable, another analyte and the baseline MetBMI as independ-
ent variables (with their interaction term) and sex, baseline age and 
ancestry principal components 1–5 as covariates. The analyte–analyte 
correlation pair that was significantly modified by the baseline MetBMI 
was obtained based on the β-coefficient (two-sided t-test) of the inter-
action term between the independent variables in GLM while adjusting 
multiple testing with the Benjamini–Hochberg method (FDR < 0.05).

Against the significant 100 pairs from the GLM analysis (82 metab-
olites, 33 proteins and 16 clinical laboratory tests; Supplementary  
Data 7), GEEs for the longitudinal measurements of the metabolically 
obese group (that is, the baseline obese MetBMI class; 182 participants) 
were independently generated with the exchangeable covariance 
structure using Python statsmodels GEE API. Each GEE consisted of 
an analyte as a dependent variable, another analyte and days in the 
program as independent variables (with their interaction term) and sex, 
baseline age, ancestry principal components 1–5 and meteorological 
seasons as covariates. The analyte–analyte correlation pair that was 
significantly modified by days in the program was obtained based on 
the β-coefficient (two-sided t-test) of the interaction term between the 
independent variables in GEE while adjusting multiple testing with the 
Benjamini–Hochberg method (FDR < 0.05).

Statistical analysis
All data pre-processing and statistical analyses were performed using 
Python NumPy (version 1.18.1 or 1.21.3), pandas (version 1.0.3 or 1.3.4), 
SciPy (version 1.4.1 or 1.7.1) and statsmodels (version 0.11.1 or 0.13.0) 
libraries, except for using the R pROC (version 1.18.0) package58 for 
DeLong’s test59. All statistical tests were performed using a two-sided 
hypothesis. In all cases of multiple testing, P values were adjusted with 
the Benjamini–Hochberg method. Of note, because some hypotheses 
were not completely independent (for example, hypotheses between 
combined omics and each individual omics and hypotheses among 
glucose, insulin and HOMA-IR), this simple P value adjustment was 
regarded as a conservative approach. Significance was based on 
P < 0.05 for single testing and FDR < 0.05 for multiple testing. Test 
summaries (for example, sample size, degree of freedom, test statistic 
and exact P value) are found in Supplementary Data 4–6, 9 and 10.

Correlations (Figs. 1b and 3a and Extended Data Figs. 3b–d, 4b,f, 
7c,d,l and 8d,e) were independently assessed using Pearson’s correla-
tion test (Python SciPy pearsonr API) (with the P value adjustment 
if multiple testing). Comparisons of model performance (Figs. 1c,d 
and 4d,f and Extended Data Figs. 2d, 4a and 7e) were independently 
assessed using Welch’s t-test (Python statsmodels ttest_ind API) (with 
the P value adjustment if multiple testing). Comparison of overall ROC 
curves (Fig. 4c,e) was assessed using unpaired DeLong’s test59.

In all regression analyses, only the baseline datasets were used, 
and, unless otherwise specified, all numeric variables were centered 
and scaled in advance. For the Arivale datasets of anthropometrics, 

saliva-measured analytes, daily physical activity measures and PRSs, 
(1) outlier values that were beyond ±3 s.d. from the mean in the cohort 
distribution were eliminated from the dataset per variable; (2) variables 
that became almost invariant across the participants were eliminated 
from the datasets; (3) values were converted with a transformation 
pipeline producing the lowest skewness (for example, no transforma-
tion, the logarithm transformation for right-skewed distribution or the 
square root transformation with mirroring for left-skewed distribu-
tion); and (4) the transformed values were standardized with z-score 
using the mean and s.d.; these pre-processed 51 variables were used as 
the numeric physiological features (Supplementary Data 4). Likewise, 
the Arivale datasets of the obesity-related clinical blood markers (that 
is, selected clinical labs; Supplementary Data 6) and the TwinsUK data-
sets of the obesity-related phenotypic measures (Supplementary Data 
6) were pre-processed. For gut microbiome α-diversity metrics, the 
number of observed ASVs and Chao1 index were converted with square 
root transformation, and Shannon’s index was converted with square 
transformation, and then these transformed values were standardized 
with z-score using the mean and s.d. Relationships of the numeric physi-
ological features with the measured or omics-inferred BMI (Fig. 1e) were 
independently assessed using each OLS linear regression model with 
the (unstandardized) loge-transformed measured or omics-inferred 
BMI as a dependent variable, a feature as an independent variable and 
sex, age and ancestry principal components 1–5 as covariates while 
adjusting multiple testing across the 255 (51 features × 5 BMI types) 
regressions. Relationships between Measure (that is, BMI or WHtR) 
and the analytes that were retained in at least one of ten LASSO models 
(Fig. 2b–d and Extended Data Fig. 7k) were independently assessed 
using each OLS linear regression model with the (unstandardized) 
loge-transformed Measure as a dependent variable, an analyte as an 
independent variable and sex, age and ancestry principal component 
1–5 as covariates while adjusting multiple testing across the 210 (Fig. 2b),  
75 (Fig. 2c), 42 (Fig. 2d) or 289 (Extended Data Fig. 7k) regressions. In 
this regression analysis, a model including the omics-inferred Measure 
as an independent variable was also assessed as reference. Differences 
in ΔMeasure (that is, ΔBMI or ΔWHtR) between clinically defined meta-
bolic health conditions (Fig. 3b and Extended Data Figs. 6a and 7m) 
were independently assessed using each OLS linear regression model 
with ΔMeasure as a dependent variable, metabolic condition (that is, 
healthy versus unhealthy) as a categorical independent variable and 
Measure, sex, age and ancestry principal components 1–5 as covari-
ates while adjusting multiple testing across the eight (2 BMI classes × 
4 omics categories; Fig. 3b and Extended Data Fig. 7m) or four (2 BMI 
classes × 2 cohorts; Extended Data Fig. 6a) regressions. Differences in 
the obesity-related clinical blood markers, the BMI-associated numeric 
physiological features or the gut microbiome α-diversity metrics 
between the misclassification strata against the omics-inferred BMI 
class (Figs. 3d,e and 4b and Extended Data Fig. 6c) were independently 
assessed using each OLS linear regression model with a marker, feature 
or metric as a dependent variable, misclassification (that is, matched 
versus mismatched) as a categorical independent variable and BMI, 
sex, age and ancestry principal components 1–5 as covariates while 
adjusting multiple testing across the 40 (2 BMI classes × 2 omics cat-
egories × 10 markers; Fig. 3d), 216 (2 BMI classes × 4 omics categories × 
27 features; Fig. 3e), 24 (2 BMI classes × 4 omics categories × 3 metrics; 
Fig. 4b) or 24 (2 BMI classes × 12 measures; Extended Data Fig. 6c) 
regressions. In the above regression analyses for the TwinsUK cohort, 
ancestry principal components were eliminated from the covariates 
owing to data availability.

Data visualization
Results were visualized using Python matplotlib (version 3.4.3) and 
seaborn (version 0.11.2) libraries, except for the plasma analyte correla-
tion network. Data were summarized as the mean with 95% confidence 
interval or the standard box plot (median: center line; 95% confidence 
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interval around median: notch; [Q1, Q3]: box limits; [xmin, xmax]: whiskers, 
where Q1 and Q3 are the 1st and 3rd quartile values, and xmin and xmax are 
the minimum and maximum values in [Q1 − 1.5 × IQR, Q3 + 1.5 × IQR] 
(IQR, interquartile range, Q3 − Q1), respectively), as indicated in each 
figure legend. For presentation purposes, confidence interval was 
simultaneously calculated during visualization using Python seaborn 
barplot or boxplot API with default setting (1,000 times bootstrapping 
or a Gaussian-based asymptotic approximation, respectively). The OLS 
linear regression line with 95% confidence interval was simultaneously 
generated during visualization using Python seaborn regplot API with 
default setting (1,000 times bootstrapping). The plasma analyte cor-
relation network was visualized with a circos plot using the R circlize 
(version 0.4.15) package60.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The Arivale datasets that were used in this study are not publicly avail-
able owing to both ethical and legal reasons (see Reporting Summary), 
but qualified researchers can assess the de-identified datasets for 
research purposes through a Data Use Agreement. Inquiries about 
data access should be sent to data-access@isbscience.org and will 
be responded to within seven business days. The TwinsUK datasets 
that were used in this study were provided by the Department of Twin 
Research & Genetic Epidemiology (King’s College London) after the 
approval of our Data Access Application (project number E1192). The 
raw WMGS data of the TwinsUK cohort (without metadata) are pub-
licly available on the NCBI Sequence Read Archive (https://www.ncbi.
nlm.nih.gov/bioproject/PRJEB32731/). Requests should be referred 
to their website (http://twinsuk.ac.uk/resources-for-researchers/
access-our-data/).

Code availability
Code used in this study is freely available on GitHub (https://github.
com/PriceLab/Multiomics-BMI).
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Extended Data Fig. 1 | Demographic information of study cohorts. 
a–c, Demographic information of the Arivale study cohort (Fig. 1a, n = 1,277 
participants). d–f, Demographic information of the TwinsUK study cohort 
(Fig. 1a, n = 1,834 participants). a,b,d,e, Distribution of the baseline BMI (a,d) 
or age (b,e). n, number of participants. The solid and dashed lines indicate the 
kernel density estimate and the mean of BMI (a, Female: 28.6 kg m−2; a, Male: 

28.1 kg m−2; d, Female: 26.2 kg m−2; d, Male: 27.1 kg m−2) or age (b, Female: 47.6 
years; b, Male: 44.7 years; e, Female: 61.4 years; e, Male: 62.0 years), respectively. 
c,f, Composition of self-reported race (c) or ethnicity (f). The number in 
parentheses indicates the number of participants. All summary values are found 
in Supplementary Data 1.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Quality check of the LASSO modeling. a,b, Pairwise 
correlation of all plasma analytes (a; Metabolomics: 766 metabolites, 
Proteomics: 274 proteins, Clinical labs: 71 clinical laboratory tests, Combined 
omics: 1,111 analytes) or the analytes that were retained across all ten LASSO 
models (b; Metabolomics: 62 metabolites, Proteomics: 30 proteins, Clinical 
labs: 20 clinical laboratory tests, Combined omics: 132 analytes). Each violin 
is scaled to have same width between the omics categories and represents the 
kernel density distribution with the standard boxplot (Methods). c, Hierarchical 
clustering and heatmap for the pairwise correlations of the analytes that 
were retained across all ten CombiBMI models (132 analytes: 77 metabolites, 
51 proteins and four clinical laboratory tests). Of note, both upper and lower 
triangular sides of the symmetric matrix are visualized. d, Model performance 
of each fitted BMI model with sex stratification. Out-of-sample R2 was calculated 

from each corresponding hold-out testing set. Standard measures: OLS linear 
regression model with sex, age, triglycerides, HDL cholesterol, LDL cholesterol, 
glucose, insulin and HOMA-IR as regressors; Padj: adjusted P value of two-sided 
Welch’s t-test with the Benjamini–Hochberg method across the eight (four 
comparisons × two sexes) comparisons. Data: mean with 95% confidence interval, 
n = 10 models. All exact values of test summaries are found in Supplementary 
Data 10. Note that the sample size for modeling was different between female and 
male (Female: 821 participants versus Male: 456 participants). e–h, Transition 
of out-of-sample R2 in the LASSO-modeling iteration analysis (Methods) for 
metabolomics (e), proteomics (f), clinical labs (g) or combined omics (h). The 
iteration is highlighted with shading color when the removed analyte is the 
variable that was retained across all the original ten models. Data: mean with 95% 
confidence interval, n = 10 models.
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Extended Data Fig. 3 | The restricted MetBMI model predominantly 
maintained the characteristics of the original full model. a–c, Comparison 
of the MetBMI model between the main analyses (Arivale cohort) and the 
validation analyses (TwinsUK cohort). Full version: LASSO model trained by all 
766 metabolites in the Arivale dataset, Restricted version: LASSO model trained 
by the common 489 metabolites in the Arivale and TwinsUK datasets (Methods). 
a, The number of the variables that were robustly retained across all ten MetBMI 
models. The number in square brackets indicates the number of the robustly 
retained metabolites that were derived from the common 489 metabolites.  
b, Correlation of the mean of β-coefficients in the ten MetBMI models. Only the 
robustly retained metabolites in either full version (37 metabolites) or restricted 
version (74 metabolites) were analyzed. c, Correlation of the MetBMI prediction. 
b,c, The solid line is the OLS linear regression line with 95% confidence interval, 

and the dotted line in c is the value in full version = the value in restricted version. 
P: P value of two-sided Pearson’s correlation test. n = 76 metabolites (b) or 1,277 
participants (c). d, Correlation between the measured and predicted BMIs. The 
solid line is the OLS linear regression line with 95% confidence interval, and the 
dotted line is measured BMI = predicted BMI. Standard measures: OLS linear 
regression model with sex, age, triglycerides, HDL cholesterol, LDL cholesterol, 
glucose, insulin and HOMA-IR as regressors; Metabolomics: the restricted 
version of MetBMI model, corresponding to Metabolomics (restricted) in Fig. 1d; 
Padj: adjusted P value of two-sided Pearson’s correlation test with the Benjamini–
Hochberg method across the four (two categories × two cohorts) tests. n = 1,277 
(Arivale) or 1,834 (TwinsUK) participants. All exact values of test summaries are 
found in Supplementary Data 10.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Omics-based BMI models were similar between LASSO 
and the other methods. a, Model performance of each fitted BMI model.  
Padj: adjusted P value of two-sided Welch’s t-test with the Benjamini–Hochberg 
method across the 12 (3 methods × 4 categories) comparisons. Data: mean 
with 95% confidence interval, n = 10 models. b, Correlation of the predicted 
BMI between LASSO and the other methods. The solid line is the OLS linear 
regression line with 95% confidence interval, and the dotted line is LASSO = the 
other method. Padj: adjusted P value of two-sided Pearson’s correlation test 
with the Benjamini–Hochberg method across the 12 (3 methods × 4 categories) 
combinations. n = 1,277 participants. c–f, Comparison of the omics-based 
BMI model between LASSO and elastic net. c–e, The number of the variables 
that were robustly retained across all ten models. f, Correlation of the mean of 
β-coefficients in the ten models. Only the robustly retained analytes in either 

LASSO models or elastic net models were analyzed. The solid line is the OLS linear 
regression line with 95% confidence interval. Padj: adjusted P value of two-sided 
Pearson’s correlation test with the Benjamini–Hochberg method across the four 
categories. n = 62 metabolites, 30 proteins, 20 clinical laboratory tests or 134 
analytes. a,b,f, All exact values of test summaries are found in Supplementary 
Data 10. g, The top 30 variables that had the highest absolute value for the mean 
of β-coefficients in the ten ridge CombiBMI models. β-coefficient was obtained 
from the fitted CombiBMI model with ridge linear regression. Data: the standard 
box plot (Methods), n = 10 models. h, The top 30 variables that had the highest 
mean of feature importance in the ten random forest CombiBMI models. Feature 
importance was calculated as the normalized total reduction of the mean 
squared error. Data: mean with 95% confidence interval, n = 10 models.
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Extended Data Fig. 5 | Variable diversity and contribution to the omics-based 
BMI model were different between omics categories. a–c, The variables that  
were retained across all ten MetBMI (a), ProtBMI (b) or ChemBMI (c) models  

(a: 62 metabolites, b: 30 proteins, c: 20 clinical laboratory tests). β-coefficient was 
obtained from the fitted omics-based BMI model with LASSO linear regression 
(Supplementary Data 3). Data: the standard boxplot (Methods), n = 10 models.
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Extended Data Fig. 6 | The metabolic heterogeneity within the standard BMI 
classes was validated with the TwinsUK cohort. a, Difference in ΔMetBMI (that 
is, difference of MetBMI from the measured BMI) between clinically-defined 
metabolic health conditions. Each comparison value indicates adjusted P value, 
calculated from OLS linear regression with BMI, sex and age as covariates, while 
adjusting multiple testing with the Benjamini–Hochberg method across the 
four (two BMI classes × two cohorts) regressions. For Arivale cohort, ancestry 
principal components were also included in the covariates. MetBMI in Arivale  
was derived from the restricted version of MetBMI model (Extended Data Fig. 3  
and Methods). b, Misclassification rate of overall cohort or each BMI class 
against MetBMI class. Arivale (full): based on the full version of MetBMI model 
in Extended Data Fig. 3 (that is, the same with the corresponding ones in Fig. 3c), 
Arivale (restricted): based on the restricted version of MetBMI model in Extended 

Data Fig. 3, Reference range: the previously reported misclassification rate36,37. 
The underweight BMI class is not presented owing to small sample size, but its 
misclassification rate was 100% in both cohorts. c, Difference in the obesity-
related phenotypic measure between the matched and mismatched groups in the 
TwinsUK cohort. Each comparison value indicates adjusted P value, calculated 
from OLS linear regression with BMI, sex and age as covariates, while adjusting 
multiple testing with the Benjamini–Hochberg method across the 24 (2 BMI 
classes × 12 measures) regressions. Percent total fat: percentage of total fat in 
the whole body, Android-to-gynoid: ratio of fat in the android region to fat in the 
gynoid region, BP: blood pressure, a.u.: arbitrary units. a,c, Data: the standard 
boxplot (Methods). See Supplementary Data 6 for the number of participants in 
each group. All exact values of test summaries are found in Supplementary Data 
6 and 10.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Omics-based WHtR models consistently supported 
the findings of omics-based BMI models. a, Overview of study cohort and 
the omics-based WHtR model generation. CV,cross-validation. b, Distribution 
of the baseline WHtR. c, Correlation between the measured WHtR and BMI. d, 
Correlation between the measured and predicted WHtRs. e, Model performance 
of each fitted WHtR model. f–i, Transition of out-of-sample R2 in the LASSO-
modeling iteration analysis (Methods) for metabolomics (f), proteomics 
(g), clinical labs (h) or combined omics (i). The iteration is highlighted with 
shading color when the removed analyte is the variable that was retained across 
all the original ten models. j, The variables that were retained across all ten 
CombiWHtR models (37 analytes: 18 metabolites, 15 proteins and four clinical 
laboratory tests). β-coefficient was obtained from the fitted CombiWHtR model 
(Supplementary Data 8). k, Univariate explained variance in WHtR by each 
analyte. Among the analytes that were significantly associated with WHtR  

(212 analytes; Methods), only the top 30 significant analytes are presented with 
their univariate variances. l, Difference of the omics-inferred WHtR from the 
measured WHtR (ΔWHtR). m, Difference in ΔWHtR between clinically-defined 
metabolic health conditions. Each comparison value indicates adjusted P value, 
calculated from OLS linear regression with WHtR, sex, age and ancestry principal 
components as covariates, while adjusting multiple testing with the Benjamini–
Hochberg method across the eight (two BMI classes × four omics categories) 
regressions. Padj: adjusted P value of two-sided Pearson’s correlation test (c,d,l) or 
Welch’s t-test (e) with the Benjamini–Hochberg method across the two sexes (c), 
five categories (d), four comparisons (e) or six combinations (l). Data: mean with 
95% confidence interval (e–i) or the standard boxplot (j,m), n = 10 models (e–i,j) 
(see Supplementary Data 10 for each number of participants in m). All exact 
values of test summaries are found in Supplementary Data 9 and 10.
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Extended Data Fig. 8 | Predominant commonality with minor specificity was 
observed between the omics-based BMI and WHtR models. a–d, Comparison 
of the omics-based LASSO model between BMI and WHtR. a–c, The number 
of the variables that were robustly retained across all ten LASSO models. d, 
Correlation of the mean of β-coefficients in the ten LASSO models. Only the 
robustly retained analytes in either BMI models or WHtR models were analyzed. 
e, Correlation between ΔBMI (that is, difference of the omics-inferred BMI from 
the measured BMI) and ΔWHtR (that is, difference of the omics-inferred WHtR 

from the measured WHtR). Only the participants having both BMI and WHtR were 
analyzed. d,e, The solid line is the OLS linear regression line with 95% confidence 
interval. Padj: adjusted P value of two-sided Pearson’s correlation test with the 
Benjamini–Hochberg method across the four categories. n = 92 metabolites  
(d, Metabolomics), 36 proteins (d, Proteomics), 26 clinical laboratory tests  
(d, Clinical labs), 146 analytes (d, Combined omics) or 1,078 participants (e).  
All exact values of test summaries are found in Supplementary Data 10.

http://www.nature.com/naturemedicine







	Multiomic signatures of body mass index identify heterogeneous health phenotypes and responses to a lifestyle intervention
	Results
	Arivale cohort characteristics
	Blood omics-based BMI models
	Predictive features in omics-based BMI models
	Metabolic heterogeneity within the standard BMI classes
	Abdominal obesity and omics-based BMI models
	Gut microbiome and omics-inferred BMIs
	Responses of omics-inferred BMIs to a lifestyle intervention
	Blood analyte network dynamics and MetBMI class

	Discussion
	Online content
	Fig. 1 Plasma multiomics captured 48–78% of the variance in BMI.
	Fig. 2 Omics-based BMI estimates captured the variance in BMI better than any single analyte.
	Fig. 3 Metabolic heterogeneity was responsible for the high rate of misclassification within the standard BMI classes.
	Fig. 4 Metabolomics-inferred BMI reflected gut microbiome profiles better than BMI.
	Fig. 5 Metabolic health of the metabolically obese group was improved during a healthy lifestyle intervention program.
	Fig. 6 Plasma analyte correlation network in the metabolically obese group shifted toward a structure observed in a metabolically healthier state during a healthy lifestyle intervention program.
	Extended Data Fig. 1 Demographic information of study cohorts.
	Extended Data Fig. 2 Quality check of the LASSO modeling.
	Extended Data Fig. 3 The restricted MetBMI model predominantly maintained the characteristics of the original full model.
	Extended Data Fig. 4 Omics-based BMI models were similar between LASSO and the other methods.
	Extended Data Fig. 5 Variable diversity and contribution to the omics-based BMI model were different between omics categories.
	Extended Data Fig. 6 The metabolic heterogeneity within the standard BMI classes was validated with the TwinsUK cohort.
	Extended Data Fig. 7 Omics-based WHtR models consistently supported the findings of omics-based BMI models.
	Extended Data Fig. 8 Predominant commonality with minor specificity was observed between the omics-based BMI and WHtR models.




