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Abstract: Metabolic syndrome and obesity have become important health issues of epidemic propor-
tions and are often the cause of related pathologies such as type 2 diabetes (T2DM), hypertension,
and cardiovascular disease. Adipose tissues (ATs) are dynamic tissues that play crucial physiological
roles in maintaining health and homeostasis. An ample body of evidence indicates that in some
pathophysiological conditions, the aberrant remodeling of adipose tissue may provoke dysregulation
in the production of various adipocytokines and metabolites, thus leading to disorders in metabolic
organs. Thyroid hormones (THs) and some of their derivatives, such as 3,5-diiodo-l-thyronine
(T2), exert numerous functions in a variety of tissues, including adipose tissues. It is known that
they can improve serum lipid profiles and reduce fat accumulation. The thyroid hormone acts on
the brown and/or white adipose tissues to induce uncoupled respiration through the induction
of the uncoupling protein 1 (UCP1) to generate heat. Multitudinous investigations suggest that
3,3′,5-triiodothyronine (T3) induces the recruitment of brown adipocytes in white adipose depots,
causing the activation of a process known as “browning”. Moreover, in vivo studies on adipose
tissues show that T2, in addition to activating brown adipose tissue (BAT) thermogenesis, may further
promote the browning of white adipose tissue (WAT), and affect adipocyte morphology, tissue vascu-
larization, and the adipose inflammatory state in rats receiving a high-fat diet (HFD). In this review,
we summarize the mechanism by which THs and thyroid hormone derivatives mediate adipose tissue
activity and remodeling, thus providing noteworthy perspectives on their efficacy as therapeutic
agents to counteract such morbidities as obesity, hypercholesterolemia, hypertriglyceridemia, and
insulin resistance.

Keywords: adipose tissues; thyroid hormones; 3,5 diiodo-L-thyronine; browning; metabolic
disease; obesity

1. Introduction

The prevalence of obesity is well acknowledged worldwide as a major health issue.
Due to changes in food composition and sedentary lifestyles in Western societies, obesity
has reached epidemic proportions [1]. Excessive weight gain causes an increased risk of
several diseases, mostly cardiovascular diseases (CVDs), type 2 diabetes (T2DM), non-
alcoholic fatty liver disease (NAFLD), and cancer [2–4]. White adipose tissue (WAT) is the
main storage site for excess calorie intake [5]. It ensures the survival of an organism during
long periods of fasting [6]. It is also an organ that is able to respond rapidly and dynamically
to nutrient deprivation and excess through adipocyte hypertrophy and hyperplasia [7]. In
obese individuals, WAT exhibits reduced angiogenesis, excessive production of extracellular
matrix (ECM), increased infiltration of immune cells, and consequent pro-inflammatory
responses [8]. The remodeling of WAT is a continuous process that is pathologically
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accelerated in the state of obesity. In mammals, including humans, another major type of
adipose tissue (AT), namely brown adipose tissue (BAT), is present in addition to WAT.
Unlike white fat, the BAT is a specialized tissue for non-shivering thermogenesis (NST)
to dissipate energy as heat, thereby playing a key role in the energetic homeostasis of the
entire body. Thyroid hormones (THs) and their derivatives exert numerous functions in
many tissues, including the activation and remodeling of AT. THs contribute significantly
to brown adipocyte thermogenesis, and in white adipose depots, THs are also able to
induce brown adipocyte recruitment, known as “browning”. The browning of WAT is
certainly worthy of in-depth analysis to promote targeted therapeutic weight loss [9,10].
Herein, we summarize our current knowledge regarding the mechanism by which THs
and their derivatives mediate AT activity and remodeling. This review provides relevant
information on their potential use as therapeutic agents for the treatment of obesity and
associated diseases.

2. Types of Adipose Tissue

AT plays a critical role in regulating body metabolism and homeostasis. Unlike other
organs and tissues, AT can expand to accommodate excess energy in the form of accumu-
lated lipids, distinguishing it from other organs and tissues [11]. AT is divided into two
major types, WAT and BAT. Most of the WAT deposits are widely characterized as visceral
(vWAT) or subcutaneous (sWAT) [12]. vWAT is further subdivided into mesenteric, omen-
tal, perirenal, and peritoneal deposits [13] (Figure 1). Alternatively, BAT is a thermogenic
tissue specialized in the conversion of lipids into heat. It is indeed perfused by an extensive
network of blood capillaries and highly innervated by noradrenergic fibers [14]. In addition
to WAT and BAT, a third type of adipocyte has been described, termed “beige”, or “brite”
(brown-in-white) [15]. In this tissue, white adipocytes show high plasticity and possess
multiple similarities to brown adipocytes. Beige adipocytes are fundamental in weight
control, energy balance regulation, and amelioration of glucose and lipid metabolism [9].
A growing body of evidence indicates that pathophysiological conditions such as obesity
and aberrant remodeling of AT can induce dysregulation in the production of various
adipocytokines, hormones, and metabolites, thus resulting in metabolic disorders [16].
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Figure 1. Adipose tissue distribution. (A) Distribution of WAT and BAT in humans. Both vWAT
and sWAT possess abilities to store energy and secrete various adipokines. The sWAT is distributed
throughout the body under the skin, while the vWAT surrounds the intra-abdominal organs. Located
around the shoulders and ribs, BAT contributes to heat generation through the expression of UCP-1.
(B) As compared to adult humans, the BAT in adult mice is well developed and easy to observe. The
gonadal WAT depots located around the ovaries and the testes are studied as a model of vWAT. The
figure was created with Biorender.com.(https://www.biorender.com/ Accessed on 16 May 2022).
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3. WAT

WAT comprises adipocytes, which are bound by loose, vascularized, and innervated
connective tissue. In white adipocytes, a large “unilocular” lipid droplet occupies more than
90% of the cell volume. Additionally, a thin layer of cytoplasm containing other organelles
is present [17]. WAT plays an endocrine role as well as exerting a metabolic function.
The metabolic functions include lipogenesis, fatty acid oxidation, and lipolysis, while
adipokines are produced by the endocrine system. During fasting periods, WAT supplies
fuel to the organism by storing and releasing highly energetic molecules, particularly
fatty acids. The balance between lipid synthesis and fatty acid oxidation, as well as
fatty acid release, is essential for adipocyte function [18]. Adipocytes secrete a variety of
mediators, including exosomes, miRNAs, lipids, inflammatory cytokines, and peptide
hormones [19,20]. However, numerous investigations have been conducted as regards the
secretion of hormones by WAT. Among these hormones are leptin, adiponectin, and resistin
which regulate food intake, the reproductive axis, insulin sensitivity, and immune responses.
It has been shown that dysregulation of any of these hormones can lead to systemic
metabolic dysfunction, as well as chronic metabolic diseases and several cancers [21].

4. Hypertrophic and Hyperplasic WAT Expansion

Metabolic syndrome/obesity is currently considered a burdensome and important
health issue that may prompt the occurrence of related pathologies such as T2DM, hyperten-
sion, and cardiovascular disease (CVD). It is widely recognized that metabolic disorders are
multifactorial pathologies in which nutrient excesses are closely related to the activation of
the innate immune system in most organs responsible for maintaining energy balance [22].
In the presence of a positive energy balance, there is an increase in demand for lipid stor-
age, which can be accommodated either by increasing adipocyte size (hypertrophy) or
by increasing the number of adipocytes (hyperplasia) [23]. Adipocyte hypertrophy and
hyperplasia are regulated by environmental and genetic factors [24]. According to some
research, obesity is associated with an increase in dead adipocytes, which impair AT func-
tion and promote subsequent inflammation. In hypertrophic adipocytes, pro-inflammatory
cytokines, including tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), interleukin 8
(IL-8), and monocyte chemoattractant protein-1 (MCP-1), are expressed and secreted [25].
An increase in pro-inflammatory cytokines leads to insulin resistance and inflammation of
AT due to the recruitment of macrophages and T cells [26,27]. Moreover, increased adipose
mass is associated with hypoxia [28]. Activation of hypoxia-inducible factor 1α (HIF-1α), a
key transcription factor mediating hypoxic responses, accelerates adipose tissue fibrosis.
Alternately, hyperplasia is observed. The remodeling of AT involves reversible changes
in the composition of immune cells and the size of adipocytes, altering numerous AT
functions. Adipose tissue-activated macrophages (ATMs) polarize in response to changes
in their environment, forming M1 and M2 macrophage phenotypes [29]. AT inflammation
and insulin resistance (IR) in the whole body are initiated and maintained by classically
activated M1 macrophages [30]. A large number of inflammatory cytokines, including IL-6,
interleukin 1β (IL-1β), and MCP-1, are produced by macrophages that infiltrate the target
organ under the condition of obesity. These cytokines negatively influence the transmission
of insulin signals and increase the development of chronic inflammation and IR [31–33].
The M2 phenotype is, however, mainly responsible for anti-inflammatory responses and
maintaining tissue homeostasis [34]. In general, M1 macrophages are mainly induced by
Th1 signaling. On the other hand, M2 macrophages are induced by Th2 signaling and re-
lease arginase-1, interleukin 10 (IL-10), interleukin 4 (IL-4), interleukin 13 (IL-13), ornithine,
and polyamines, promoting proliferation, tissue repair, and immune tolerance [35]. It is
estimated that more than 90% of ATMs in healthy AT are of the M2 phenotype containing
anti-inflammatory properties [36].
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5. BAT

In the last two decades, positron emission tomography scans have revealed that
metabolically active BAT exists in specific regions of adult humans. The amount of this
tissue correlates positively with resting metabolic rate and negatively with body mass
index [37]. BAT is characterized by multilocular lipid droplets; high mitochondrial density,
which contributes to its coloration; and high expression of uncoupling protein 1 (UCP1).
BAT is mainly located in the interscapular (iBAT) and subscapular (sBAT) regions of adult
mice. In addition, small deposits of BAT are found deep between the scapula and the head
(cervical BAT (cBAT)), around the aorta in the thoracic cavity (mediastinal BAT (mBAT)),
and around the kidney (perirenal BAT (pBAT)). iBAT is the most widely used depot for
the study of BAT function in mice [38]. The main role of BAT is to maintain a constant
body temperature by generating heat. Unlike WAT, BAT is involved in non-shivering
thermogenesis, a process that produces heat either through mitochondrial respiration
uncoupling dependent on UCP1 or through a UCP1-independent mechanism [39]. Com-
pared to white adipocytes, which contain a single lipid droplet, brown adipocytes contain
many smaller droplets and a substantial number of mitochondria. In addition, brown fat
contains more capillaries than white fat; capillaries supply oxygen and nutrients to the
tissues and distribute heat throughout the body. BAT cells derive from a muscle-like Myf5+
cell line. PR domain containing 16 (PRDM16) controls the determination between brown
fat and muscle between days 9 and 12 of pregnancy [40,41]. As previously mentioned,
heat production is due to a UCP1 protein found almost exclusively in brown adipocytes.
Additionally, diet-induced obesity is associated with decreased UCP1 expression and BAT
thermogenesis [42]. During its active phase, BAT is able to absorb large quantities of
lipids, glucose, and lactate from circulation, thereby affecting triglyceride levels as well
as glucose concentrations in the blood, playing a fundamental role in metabolic home-
ostasis [43]. However, recent data suggest that BAT may play an endocrine role through
the release of endocrine factors. Under conditions of thermogenic activation, brown fat
releases several endocrine signaling molecules [44]. Although the endocrine role of BAT
is still unknown, accumulating evidence indicates that BAT releases factors that act with
both autocrine and paracrine action. These include vascular endothelial growth factor-A
(VEGF-A), which probably promotes angiogenesis in response to sympathetic nervous
system activation, insulin-like growth factor-I (IGF-I), and fibroblast growth factor-2 (FGF2)
promoting an increase in the density of brown adipocyte precursor cells [45]. In BAT
depots, thyroxine can be converted into 3,3′,5-triiodothyronine (T3) through the presence
of type II 5′-deiodinase (BAT 5′D-II). Locally generated T3 contributes to the intracellular
pathways of thermogenic activation of brown adipocytes [46]. Compared to white fat, BAT
is less susceptible to developing local inflammation in response to obesity. Fitzgibbons
TP et al. demonstrated that the BAT of obese mice exhibits significantly lower macrophage
infiltration and immune cell-enriched mRNA expression than WAT, suggesting that this
tissue “resists” obesity-induced inflammation [47]. Research studies have shown that mice
fed a long-term HFD had elevated levels of inflammation markers such as TNF-α and
EGF-like module-containing mucin-like hormone receptor-like 1 (F4/80). However, the
increased levels of pro-inflammatory cytokines were mainly associated with the presence
and activity of infiltrating pro-inflammatory immune cells [48,49].

6. Beige Adipose Tissue (BeAT)

In addition to WAT and BAT, a third type of adipocyte has been described, termed
“beige”, or “brite” (brown-in-white). Similar to brown adipocytes, these are multilocular
cells with moderate mitochondrial content and inducible expression of UCP1 [50]. The
beige adipocytes arise from Myf 5-negative (Myf 5-) precursors [15,51]. It has been shown
that some beige adipocytes express myosin-heavy chain 11 (Myh11), a selective marker
of smooth muscles [51]. Recent findings have suggested that beige cells could originate
from the transdifferentiation of white fat cells [52,53]. However, it is not clear whether
this conversion involves a cell type with this specific predisposition. Therefore, several
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studies have been conducted to demonstrate that different WAT depots bear different
browning capacities that most likely resort to alternative mechanisms to originate beige
cells [54–56]. As observed in obesity, the infiltration of immune cells in the sWAT alters
the ability of precursor cells to differentiate into active beige adipocytes and creates a
deleterious inflammatory microenvironment involving TNF-α, interferon-c (IFN-c), and
interleukin 17 (IL-17) [57]. Similarly to BAT, BeAT affects the entire body’s energy balance,
and numerous investigations are underway to develop novel treatments for obesity and
related complications. Loss of BeAT leads to obesity susceptibility [58]; indeed, when
exposed to cold or activated by beta-adrenergic receptors (β-ARs), beige adipocytes can
be detected in WAT. This phenomenon is known as the “browning of WAT” [59,60]. As
indicated previously, BAT plays a key role in thermogenesis, contributing to energy con-
sumption and the prevention of obesity. In addition to classic BAT activation for treating
obesity and T2DM, the recruitment of beige adipocytes has received much attention in
recent years. This could represent a novel therapeutic target for obesity and T2DM. Beige
adipocytes are also crucial in weight control, energy balance regulation, and amelioration of
glucose and lipid metabolism. External stimuli (cold exposure, β-adrenergic agonists, etc.)
accelerate beige adipocyte recruitment by WAT, resulting in increased energy consumption
and thermogenesis. The consumption of glucose and lipids indirectly improves glucose
tolerance, insulin sensitivity, and beta-cell function [61,62].

7. Pink Adipose Tissue

Pink adipocytes are an alternative class of adipocytes that has recently generated
interest in the scientific world. Pink adipocytes are alveolar epithelial cells of the mam-
mary gland that produce and secrete milk for the nourishment of the pups [63]. It has
been hypothesized that they derive from subcutaneous white adipocytes that have trans-
differentiated [64]. It has also been observed that post-lactational pink adipocytes may
trans-differentiate into brown adipocytes [65].

8. Thyroid Hormones and AT
8.1. Thyroid Hormone Biosynthesis and Actions: The Effect of 3,5,3′-Triiodo-L-thyronine (T3) on AT

The primary product of the thyroid is 3,5,3′,5′-tetraiodo-L-thyronine (T4), which is
synthesized at three “hormonogenic sites” on the thyroglobulin chain. Despite exhibiting
certain biological activities, T4 is a precursor to the active hormone, T3 [66]. In target tissues,
T4 is also converted to T3 by type I 5′-deiodinase (D1) and type II 5′-deiodinase (D2). Further
deiodination of circulating T4 and T3 produces TH derivatives that bind poorly to thyroid
receptors (TRs). From T4, type III 5-deiodinase (D3) generates 3,3′,5′-triiodothyronine
(reverse T3) and 3,3′-diiodo-l-thyronine (3,3′-T2). Together, the deiodination processes of T3
and rT3 give rise to different diiodothyronines and monoiodothyronines that are present in
trace concentrations in the sera [67]. THs are hormones that affect almost all cells of the hu-
man body. Generally, THs increase metabolic rate and thus thermogenesis by binding their
intranuclear receptor. Increased metabolic rate results in a greater consumption of oxygen
and energy [68]. The effects of THs on target cells are exerted by different pathways, which
can be subdivided into “genomic” and “nongenomic” actions [69]. The genomic actions of
THs are initiated in the cell nucleus via TRs. T3 receptors are ligand-activated transcription
factors. TRs can interact with thyroid-hormone response elements (TREs) as protein dimers,
heterodimerizing with another member of the nuclear receptor family or with retinoic
acid receptors (RXRs), or self-homodimerizing. In addition to the conventional effects of
transcriptional regulation via TRs, THs exhibit a remarkably rapid action on cells which
may be initiated outside the nucleus and involve a variety of signal transduction pathways
(non-genomic action) [69]. The sites of nongenomic actions are distributed throughout
various cellular compartments, including the plasma membrane, cytoplasm, cytoskeleton,
and subcellular organelles (such as mitochondria) [70–73]. Membrane receptors, consisting
of specific integrin αv/β3 receptors, have been identified and found to mediate actions at
multiple sites [74,75].



Pharmaceuticals 2023, 16, 572 6 of 17

8.2. The Effect of 3,5,3′-Triiodo-L-thyronine (T3) on AT

THs exert pleiotropic actions, and AT is an important target of these hormones [76].
Panveloscki-Costa et al. have demonstrated the beneficial effects of T3 treatment of obese
rats on the improvement of insulin sensitivity and on the negative modulation of inflamma-
tory state in epididymal and mesenteric AT. Therefore, this study showed that T3 treatment
reduces adiposity and increases the lean mass of obese rats. T3 also acts as an immunomod-
ulatory agent reducing the content of inflammatory cytokines in the AT and promoting a
phenotypic switch in AT macrophage polarization [77]. In an alloxan-induced diabetic rat
model, T3 treatment (1.5 µg per 100 g BW) reduced serum TNF-α and epidydimal WAT
(eWAT) expression of IL-6 and TNF-α. Additionally, treatment with T3 decreased serum
levels of chemokine (C-C motif) ligand 2 (Ccl2) and F4/80 and expression levels of cluster
of differentiation 68 (CD68) in eWAT. This condition leads to a reduction in immune cell
infiltration [78]. As a thermogenic hormone, T3 is essential for a full metabolic response
of BAT under maximal demands [79–81]. THs can stimulate BAT directly, through TRs
expressed in brown adipocytes, and indirectly, through TRs expressed in hypothalamic
neurons. THs act on brown adipocyte thermogenesis by increasing the stimulatory ac-
tion of norepinephrine (NE), as well as enhancing the cyclic adenosine monophosphate
(cAMP)-mediated acute rise in UCP1 gene expression (Figure 2) [82]. Recently, studies
have revealed that thyroid hormones can also induce facultative thermogenesis through
central mechanisms, as central hyperthyroidism is able to directly activate BAT in a manner
dependent on AMP-activated protein kinase (AMPK) and induces browning in mice [83,84].
In brown adipose tissue, T3 stimulates thermogenesis by induction metabolic inefficiency
through the activation of the mitochondrial UCP1 [80,85]. Similar to the liver or pituitary,
BAT exhibits a high number of TRs [86]. There are two TR genes, thyroid hormone receptor
α (TRα) and thyroid hormone receptor β (TRβ), which are differentially expressed during
development and in adult tissues [87,88]. TRα has three splice products. TRα1 is located
primarily in the brain, heart, and skeletal muscles and binds to T3. TRα2 and TRα3 splice
products are non-T3-binding with several truncated variants [87]. TRβ has three major T3-
binding splice products: TRβ1 is widely expressed; TRβ2 is mainly expressed in the brain,
retina, and inner ear; and TRβ3 is widely expressed in the kidney, liver, and lung [87,89].
Both isoforms are required for adequate adaptive thermogenesis in BAT. T3-regulated UCP1
mRNA expression is mediated by TRβ, while TRα1 maintains brown adipocyte adrenergic
responsiveness [90]. Mice with global deletion of TRα1, TRβ, or TRα isoforms showed cold
intolerance associated with impaired BAT thermogenesis [86]. In brown adipocytes, DIO2
regulates local T3 levels. In mature brown adipocytes, D2-expressing cells produce high
levels of T3 and activate thyroid hormone receptors [91]. The lack of adipose DIO2 causes
abnormal lipid metabolism in BAT that subsequently leads to cold intolerance [92]. Accord-
ing to Martinez-Lopez et al., cold exposure at 4 ◦C induces lipophagy and mitophagy in
BAT, suggesting that autophagy is required for adaptive thermogenesis [93,94]. Based on
these findings, other researchers investigated whether T3 has a cell-autonomous role in BAT
activation by examining autophagy, mitochondrial turnover, fatty acid metabolism, and
mitochondrial respiration. The results suggest that T3 increases mitochondrial autophagy
(mitophagy) and biogenesis to maintain mitochondrial quality control (MQC) [95]. Apart
from regulating mature brown adipocytes’ thermogenic capacity directly or through the
sympathetic nervous system (SNS), T3 can stimulate the hyperplastic growth of iBAT [96].

8.3. The Effect of 3,5,3′-Triiodo-L-thyronine (T3) on “Browning”

Recent research by Shengnan Liu et al. has demonstrated that T3 can promote
adipocyte progenitor cell (APC) proliferation in the iBAT depot of mice. Considering
that TRα mediates the T3 effect on APC proliferation in the iBAT depot, further analysis
suggests that T3 promotes cell state transition and cell cycle progression via c-Myc in
APCs [97]. Such effects of THs on BAT are well known; however, an alternative mechanism,
the so-called “browning” of WAT, has been acknowledged as effectively supporting THs
in energy expenditure. In an in vitro model of differentiated human multipotent adipose-
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derived stem cells (hMADSs), T3 treatment induced UCP-1 expression and mitochondrial
biogenesis accompanied by the induction of PGC-1 (peroxisome proliferator-activated
receptor-γ coactivator-1α) and NRF1 (nuclear respiratory factor 1). Such impacts of T3 on
UCP-1 induction were dependent on TRs [98]. Moreover, in obese individuals, a reduction
of the browning process in WAT was observed. Matesanz et al. demonstrated that the
expression of the MAPK kinase 6 (MKK6) is increased in the WAT of obese individuals and
reported that in knockout animals, the deletion of MKK6 increases T3-stimulated UCP1
expression in adipocytes, thereby enhancing their thermogenic capacity [99]. Another
study by Miriane de Oliveira et al. showed that, in addition to improving UCP1 expres-
sion, T3 treatment improved lipid profile, oxidative stress, and DNA damage in human
subcutaneous preadipocytes [100]. Activating BAT or “browning” of the WAT is therefore
considered a promising therapeutic approach for treating obesity and metabolic disorders.
In addition, very recently, Ma et al. have demonstrated that systemic administration of
T3 affects both inguinal white adipose tissue (iWAT) and whole-body metabolism. They
showed that TRβ is the major TR isoform that mediates the T3 action on multiple metabolic
pathways in iWAT, including glucose uptake and usage, de novo fatty acid synthesis, and
both UCP1-dependent and -independent thermogenesis [101].
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Figure 2. Thermogenic control of brown adipocytes by UCP1. Sympathetic neurons release synap-
tic norepinephrine that binds to β-adrenergic receptors, stimulating the production of cAMP by
adenylate cyclase. The sympathetic signal activates transcription factors and coactivators involved in
the regulation of DIO 2. Both adrenergic signaling and TRs regulate UCP1 expression. Lipases break
down triglycerides into free fatty acids, which are then transported to mitochondria and activate
UCP1. UCP1 uncouples ATP production from respiration, causing an increase in mitochondrial
activity and generating heat. The figure was created with Biorender.com.

9. 3,5-Diiodo-L-thyronine (T2) and Its Multiple Biological Effects on AT
9.1. 3,5-Diiodo-L-thyronine (T2), a Thyroid Hormone Derivative with Potent Metabolic Effects

Recently, evidence has emerged that some TH metabolites, previously considered
inactive products of thyroid hormone metabolism, possess biological activities which
include 3,5-T2, a compound that has been a focal point of our previous studies [102,103].
This metabolite manifests some effects of TH within one hour of administration, and
mitochondria are considered a direct target of 3,5-T2 [104,105]. It has been reported that
T2 has T3-like effects in the absence of thyrotoxic side effects, at least when used at low
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concentrations [106–109]. According to several studies, 3,5-T2 exerts significant biological
effects in a variety of tissues, such as the liver, skeletal muscle, heart, and AT [102,110,111].
In hypothyroid rats, the administration of 3,5-T2 increased the resting metabolic rate [112],
cold tolerance [113], and the ability to use lipids as metabolic substrates [114]. It has
also been observed that chronic administration of 3,5-T2 to rats fed an HFD prevented
body weight gain, liver adiposity, hypercholesterolemia, and hypertriglyceridemia, while
concomitantly preserving muscle glucose uptake and insulin sensitivity [115–118]. In
addition, in vivo studies show that 3,5-T2 exerts metabolically favorable effects on AT.

9.2. The Effect of 3,5-Diiodo-L-thyronine (T2) on BAT

Similarly to T3, 3,5-T2 affects BAT thermogenesis. It improves survival in the cold
of hypothyroid rats, increases the oxidative potential of the cell directly binding to cy-
tochrome c oxidase (COX), and induces an increase in mitochondrial biogenesis [119].
A study conducted by Lombardi et al. found that the intraperitoneal administration of
3,5-T2 to hypothyroid rats housed at thermoneutrality reversed the “white-like” appear-
ance of brown adipocytes in such animals and increased the proportion of multilocular
versus unilocular cells in such animals. In addition, 3,5-T2 decreases the diameter of lipid
droplets (LDs) and increases mitochondrial content, indicating activation of the BAT [120].
3,5-T2 also increases the cellular number of nerve fibers, suggesting that such a part of the
thermogenic effect induced by this iodothyronine in BAT is due to sympathetic nervous sys-
tem (SNS) activation. Moreover, in T2-treated animals, BAT vascularization was higher due
to sympathetic activation, since adrenergic stimulation induces VEGF production [120,121].

9.3. The Effect of 3,5-Diiodo-L-thyronine (T2) on “Browning”

Interestingly, it has been demonstrated that 3,5-T2 can induce browning sWAT of rats
housed at thermoneutrality [122]. The ability of 3,5-T2 to affect thermogenesis may also be
related to changes in adipocyte morphology and functionality. A browning process has
also been reported in a section of anterior sWAT of HFD-T2 rats in which several white
adipocytes changed their phenotype. As a result of this transformation, the adipocyte
acquires a multilocular phenotype as opposed to a conventional unilocular phenotype,
displaying immunoreactivity for UCP1. This process involves different pathways, including
microRNAs (e.g., miR-133a and miR-196a) and irisin [122].

9.4. The Effect of 3,5-Diiodo-L-thyronine (T2) on vWAT

Changes in AT mass and adipocyte volume are known to provoke broad metabolic
consequences [123]. Recently, the effects of 3,5-T2 on vWAT of HFD rats have also been
studied by proteomic analysis. Silvestri et al. demonstrated that 3,5-T2 promoted visceral
adipose lipolysis through hormone-sensitive lipase (HSL) activation when administered si-
multaneously to rats treated with HFD (within 1 day after administration), while long-term
treatment with 3,5-T2 affected adipocyte morphology (measurable after only 2 weeks and
persistent to treatment), tissue vascularization, and the protein profile. In fact, 4 weeks of
3,5-T2 administration prevented HFD-induced hypertrophy and improved vVAT vascular-
ization, suggesting that this iodothyronine may have proangiogenic properties contributing
to its insulin-sensitizing properties [124]. Even more recently, an anti-inflammatory effect
exerted by 3,5-T2 on vWAT of rats fed a long-lasting HFD (14 weeks) has been shown by Pe-
tito et al. Furthermore, they demonstrated that 3,5-T2 was able to induce a switch from M1
macrophages to M2 macrophages. In addition, the decrease in cluster of differentiation 45
(CD45) and cluster of differentiation 3 (CD3) expression levels and the increase in forkhead
box P3 (Foxp3) levels indicate that 3,5-T2 suppresses lymphocyte recruitment. This study
also showed that in HFD-T2 rats, the serum levels of irisin were increased, suggesting
that this myokine could be a mechanism by which 3,5-T2 affects the inflammatory state.
Additionally, to the best of our knowledge, this study reports for the first time that 3,5-T2
administration reduces the hypoxic environment induced by HFD and counteracts the
DNA damage induced by oxidative stress occurring in overweight animals [125]. Most
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studies on 3,5-T2 effects have been conducted on animal models; therefore, the physio-
logical effects of this metabolite on humans are still unclear, in particular, as regards the
potential benefits in terms of obesity and related diseases based on the limited number of
experiments performed [126]. Overall, considering the potentially beneficial effects, these
results could support further studies to demonstrate the efficacy of 3,5-T2 as a therapeutic
agent. The figure below illustrates a schematic representation of the effects exerted by
3,5-T2 on AT (Figure 3).
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Figure 3. (A) In hypothyroid rats housed at thermoneutrality, 3,5-T2 increases multilocular versus
unilocular cells, decreases LD diameter, and increases mitochondrial content, indicating BAT ac-
tivation. Diiodothyronine also increases the cellular number of nerve fibers and vascularization,
suggesting that part of the thermogenic effect induced by 3,5-T2 in BAT is due to SNS activation.
(B) Browning process in a section of anterior sWAT of HFD-T2 rats in which several white adipocytes
undergo phenotypic change. The adipocyte acquires a multilocular phenotype as an alternative to
the conventional unilocular phenotype, with high levels of UCP1. This process involves different
pathways, including microRNAs (e.g., miR-133a and miR-196a) and irisin. (C) Schematic representa-
tion of the effects exerted on adipocytes in vWAT by HFD for 14 weeks and by HFD for 14 weeks and
3,5-T2 administered daily during the last 4 weeks (HFD-T2). In vWAT from overweight rats, hypoxia
induces the synthesis of several angiogenic factors (e.g., VEGF-A) and the expression of inflammatory
cytokines (e.g., TNF-α, IL-6). Accordingly, a vicious circle is established in which the activation of
angiogenesis first determines a further increase in adipocyte volume, thus enhancing an increase in
the inflammatory state of the AT. In overweight rats treated with 3,5-T2, the inflammatory state is
reverted. Diiodothyronine can reduce hypoxia, angiogenesis, and inflammatory agents. The figure
was created with Biorender.com.

10. Thyroid Hormone Metabolites and Synthetic Analogs That Act on Adipose Tissue

Other natural metabolites that exert action on adipose tissue are thyronamines (TAMs).
The TAMs are natural TH hormone derivatives without the carboxyl group on the alanine
side chain. Nine TAMs have been described, with differences in iodine atom placement
or number, but only 3-iodothyronamine (3-T1AM) and thyronamine (T0AM) have been
identified in vivo [127]. 3-T1AM is found in T3 target tissues and the thyroid. However, the
physiological or pathological significance of such tissues is still unknown [128]. T1AM ad-
ministration in vivo has significant transcriptional effects, evident specifically in AT rather
than in the liver. These effects may contribute to a reduction in fat mass and an increase
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in lipid metabolism [129]. Using brown adipocytes (BAs) isolated from rat BAT stromal
fraction, Manuela Gencarelli et al. found that treating the cells with T1AM (M+T1AM)
decreased cell lipid content, activated lipolysis, and shifted the cells into a catabolic state.
According to these findings, BA long-term exposure to T1AM may ameliorate IR and
obesity-related clinical conditions [130]. The subsequent oxidative deamination of iodothy-
ronamines leads to the formation of iodothyroacetic acid derivatives [131]. Some of these
metabolites, such as triiodothyroacetic acid (Triac) and tetraidothyroacetic acid (Tetrac),
have been found to exert biological effects. Triac has a higher affinity for TRβ1 than T3
in various cell types including brown adipocytes [132]. An investigation performed on
rats revealed that the T3 metabolite triiodothyracetic acid, at low doses, induced ectopic
expression of UCP1 in abdominal WAT [133]. In addition to the naturally occurring metabo-
lites, there are TH analogs that affect specific tissues by binding to the TR isoform in a
specific manner. The most studied analog of THs that exhibits the beneficial metabolic
properties of T3 is 3,5-dimethyl-4[(40-hydroxy-30-isopropylbenzyl)-phenoxy] acetic acid
(GC-1). GC-1 has a high affinity for TRs and is selective in the binding and activation of
TRβ over TRα [134]. Many studies have demonstrated the beneficial effects, mainly on
dyslipidemia and obesity, with no unfavorable effects on the heart [135,136]. It has been
shown that chronic administration of GC-1 to ob/ob mice resulted in marked browning of
the subcutaneous WAT [137]. Noteworthy are the metabolic effects of GC-1 and mediation
by WAT browning rather than an increase in BAT function, as revealed by the reduced
expression of the UCP1 gene and the UCP1 protein [138]. Additionally, Lin et al. showed
that chronic administration of GC-1 to obese mice markedly increased the browning of
sWAT [138]. To date, little is known regarding the physiological perspective. Further
research is required to comprehend the effect of such metabolites on AT physiology.

11. Conclusions

The remodeling of AT is a complex but well-orchestrated mechanism that allows
adaptation to external environmental changes. A deeper understanding is required to better
understand the remodeling of AT towards the development of therapeutic approaches in
obesity-induced metabolic disorders. The THs and certain derivatives have been found
to influence relevant metabolic/physiological pathways in AT. In addition, in the last
decades, numerous studies have highlighted the positive effect of such compounds on the
etiology and progression of obesity-linked metabolic disorders. Our investigations offer
insight into their potential use as therapeutic agents to counteract diseases such as obesity,
hypercholesterolemia, hypertriglyceridemia, and IR.
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Abbreviations

3,3′,5-T3 3,3′,5-Triiodothyronine
3,5,3′,5′-T4 3,5,3′,5′-Tetraiodo-L-thyronine
3,5-T2 3,5-Diiodo-L-thyronine
3-T1AM 3-Iodothyronamine
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AMPK 5’ AMP-activated protein kinase
APC Adipocyte progenitor cell
AT Adipose tissue
ATM Adipose tissue-activated macrophages
BAT 5′D-II Type II 5′ deiodinase
BAT Brown adipose tissue
BeAT Beige adipose tissue
cAMP Cyclic adenosine monophosphate
cBAT Cervical brown adipose tissue
Ccl2 Chemokine (C-C motif) ligand 2
CD3 Cluster of differentiation 3
CD45 Cluster of differentiation 45
CD68 Cluster of differentiation 68
COX Cytochrome c oxidase
CVD Cardiovascular disease
D1 Type I deiodinase
D2 Type II deiodinase
D3 Type III deiodinase
DIO2 Type II iodothyronine deiodinase
ECM Extracellular matrix
eWAT Epidydimal white adipose tissue
F4/80 EGF-like module-containing mucin-like hormone receptor-like 1
FGF2 Fibroblast growth factor-2
Foxp3 Forkhead box P3
GC-1 (3,5-Dimethyl-4[(40-hydroxy-30-isopropylbenzyl)-phenoxy] acetic acid)
HFD High-fat diet
HIF1α Hypoxia-inducible factor 1 α

hMADS Differentiated human multipotent adipose-derived stem cell
HPT Hypothalamic–pituitary–thyroid axis
HSL Hormone-sensitive lipase
iBAT Interscapular brown adipose tissue
IFN-c Interferon-c
IGF-I Insulin-like growth factor-I
IL-10 Interleukin-10
IL-13 Interleukin-13
IL-17 Interleukin-17
IL1-β Interleukin 1-β
IL-4 Interleukin-4
IL-6 Interleukin-6
IL-8 Interleukin-8
IR Insulin resistance
iWAT Inguinal white adipose tissue
LDs Lipid droplets
MAPK Mitogen-activated protein kinase
mBAT Mediastinal brown adipose tissue
MCP-1 Monocyte chemoattractant protein-1
MKK6 Mitogen-activated protein kinase kinase 6
MQC Mitochondrial quality control
Myf5- Myogenic factor 5-
Myf5+ Myogenic factor 5+
Myh11 Myosin-heavy chain 11
NAFLD Non-alcoholic fatty liver disease
NE Norepinephrine
NRF1 Nuclear Respiratory Factor 1
NST Non-shivering thermogenesis
pBAT perirenal brown adipose tissue
PGC1α Peroxisome proliferator-activated receptor-γ coactivator-1α
PPARγ Peroxisome proliferator-activated receptor γ
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PRDM16 PR domain containing 16
rT3 3,3′,5′-Triiodothyronine
RXR Retinoic acid receptor
sBAT Subscapular brown adipose tissue
SNS Sympathetic nervous system
sWAT Subcutaneous white adipose tissue
T0AM Thyronamine
T2DM Type 2 diabetes
TAMs Thyronamines
Tetrac Tetraidothyroacetic acid
TH Thyroid hormone
TNF-α Tumor necrosis factor α
TR Thyroid hormone receptor
TRE Thyroid-hormone response element
Triac Triiodothyroacetic acid
TRα Thyroid hormone receptor α
TRβ Thyroid hormone receptor β
TSH Thyroid stimulating hormone
UCP1 Uncoupling protein 1
VEGF-A Vascular endothelial growth factor-A
vWAT Visceral adipose tissue
WAT White adipose tissue
β-AR β-Adrenergic receptor
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