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Abstract: Epidemiological observations, experimental studies and clinical data show that obesity
is associated with a higher risk of developing different types of cancer; however, proof of a cause–
effect relationship that meets the causality criteria is still lacking. Several data suggest that the
adipose organ could be the protagonist in this crosstalk. In particular, the adipose tissue (AT)
alterations occurring in obesity parallel some tumour behaviours, such as their theoretically unlimited
expandability, infiltration capacity, angiogenesis regulation, local and systemic inflammation and
changes to the immunometabolism and secretome. Moreover, AT and cancer share similar morpho-
functional units which regulate tissue expansion: the adiponiche and tumour-niche, respectively.
Through direct and indirect interactions involving different cellular types and molecular mechanisms,
the obesity-altered adiponiche contributes to cancer development, progression, metastasis and
chemoresistance. Moreover, modifications to the gut microbiome and circadian rhythm disruption
also play important roles. Clinical studies clearly demonstrate that weight loss is associated with
a decreased risk of developing obesity-related cancers, matching the reverse-causality criteria and
providing a causality correlation between the two variables. Here, we provide an overview of the
methodological, epidemiological and pathophysiological aspects, with a special focus on clinical
implications for cancer risk and prognosis and potential therapeutic interventions.
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1. Causality Criteria in the Relationship between Obesity and Cancer

By itself, any statistical method cannot constitute proof that an association between two
phenomena is based on a cause–effect relationship. A statistical association between two
variables merely implies that knowing the value of one variable provides information about
the value of the other, but it does not necessarily imply that one causes the other. In fact,
the test must follow a method accepted in the scientific world; that is, verifying compliance
with precise criteria of causality. Scientists have felt the need to establish rules to support
cause–effect relationships, mostly in infectious diseases, with the Henle–Koch and Evans
postulates [1] and the John Stuart Mill principles. The causality criteria, first elaborated
by the English statistician Sir Austin Bradford Hill (1965) in a large study concerning the
effect of smoking on humans [2], are now accepted by the scientific community and are
based on frameworks used to assess whether an observed association is likely to be causal.
Even if the most recent counterfactual approaches consider confounders and the collider
bias (two possible issues that may lead to a non-causal association), a theory based on
counterfactual outcomes is not the only approach available for reasoning about causes in
epidemiology. A shared opinion is needed to adopt a pluralistic approach to causation
and to collect different types of evidence in order to draw conclusions of a causal nature,
particularly regarding complex exposures such as social context or climate change [3]. In
this context, we face the challenge of obesity increasing throughout the world as an example
of a complex variable that requires multilevel framing of the underlying causal processes,
with structures extending from genetics to the environment.
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According to the World Health Organization (WHO), overweight and obesity are
defined as abnormal or excessive fat accumulation that may impair health [4]. The World
Obesity Federation takes the position that obesity is a chronic, relapsing, progressive disease
process [5]. Epidemiological studies have shown that obesity is associated with an increased
risk of cancer, another chronic disease that is characterised by progression, relapse and a
multifactorial origin. Although the mechanisms underlying this relationship are not fully
understood, it is believed that in genetically predisposed individuals and in the presence
of environmental permissive factors, obesity accelerates the development of cancer. The
pathophysiological mechanisms underlying the development of several cancers in obesity
are complex and incompletely understood. The expansion of the fat mass and its qualitative
changes, collectively called adiposopathy [6], reflect a prototypical systemic metabolic and
inflammatory disorder affecting many organs throughout the body. As described for the
development of non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis
(NASH), the development of cancer in obesity is a result of multiple parallel hits [7] in which
inflammation, fibrosis, the release of cytokines and adipokines, the gut microbiome, various
dietary components, peripheral lipotoxicity, hormonal changes such as hyperinsulinemia,
an increase in growth factors, the action of steroids and their tissue activity and several
genetic and epigenetic modifications are critical drivers (Supplementary Material).

In order to establish a causal nature of the association between obesity and cancer,
a process of causal inference must be performed, and the potential reversibility of the
outcome due to the effect of therapeutic intervention on the exposure must be verified.
While obesity may meet the criteria for a causal factor in the classic framework, if the
interventions performed to achieve weight loss that are being compared are not explicitly
specified (e.g., lifestyle, diet, hormones, genetic predisposition, etc.) there may be a violation
of the consistency of counterfactual potential outcomes, which is a necessary condition
for meaningful causal inference [8]. In fact, different methods of treating obesity may lead
to different counterfactual mortality outcomes even if they lead to similar weight loss in
each person. Therefore, the association between obesity and mortality offers little insight
for preventive action. One alternative is to focus on the contrast between individuals who
are randomly assigned to dietary modification versus those who are not, or the contrast
between communities randomised to the taxation of sugary drinks versus those who are not
taxed. The findings from such experiments would provide direct, actionable information
about the effects of interventions against obesity. An observational study comparing people
with and without obesity provides only indirect evidence and lacks a formally testable
causal relation in the absence of further specification.

Given these premises, many resources were recently created to monitor the constantly
growing amount of data regarding the association between potential risk factors and
different types of cancer. One of the most important databases is the Continuous Update
Project (CUP) of the American Institute for Cancer Research (AICR), which is a continually
updated review of research that captures data from new scientific studies, randomised
control trials and cohort studies from around the world as they are published for 17
different types of cancer [9]. Selecting “Body Fatness & Weight Gain” as risk factor, the key
findings are that being overweight or obese throughout adulthood increases the risk of 14
different types of cancer: endometrial and ovarian cancer, oesophageal adenocarcinoma,
gastric cancer (cardia), postmenopausal breast cancer, liver and colorectal cancer, kidney
cancer, gallbladder, pancreatic and advanced prostate cancer, and mouth, pharynx and
larynx cancer. In the present manuscript, we also considered thyroid cancer, multiple
myeloma and lung cancer, which were not included in the CUP analysis but are relevant to
understand the conflicting relationship between cancer and obesity (Figure 1).
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Figure 1. The role of Adipose Organ in the relationship between Obesity and Cancer. Experimental
data indicate that, in addition to genetic, environmental, diet and lifestyle factors, the adipose organ is
a key player in the relationship between obesity and cancer in humans. The 17 different cancer types
we considered in the present review are represented by circles of different size and colour, based
on their association with obesity. Positive associations are indicated by red circles (higher degree)
or purple circles (lower degree); negatives association are indicated by blue circles. The degree of
association was determined using information from the Continuous Update Project (CUP) database
“https://www.aicr.org/research/the-continuous-update-project” (accessed on 24 January 2023), the
National Institute of Health website “https://www.cancer.gov/about-cancer/causes-prevention/
risk/obesity/obesity-fact-sheet” (accessed on 24 January 2023) and specific literature (see the main
text). Given these associations, we wonder whether weight loss interventions (through bariatric
surgery, pharmacotherapy, diet and/or exercise) could revert patients to the healthy condition both
for obesity and cancer diseases. However, this has not been fully demonstrated, suggesting that the
effects of obesity on cancer depend on multiple exogenous and endogenous factors. Further studies
will be necessary to assess whether obesity has a causal effect and obesity therapy a reversible effect
on cancer development.

The association between overweight/obesity and cancer risk, however, is not always
consistent: for example, overweight and obesity prior to menopause decreases the risk of
premenopausal breast cancer, and during the period of 18–30 years of age, it decreases
the risk of pre- and postmenopausal breast cancer [10]. Furthermore, increasing evidence
has been observed in different studies that the overweight condition may be a protective
factor for overall survival after neoadjuvant therapy and surgical resection in oesophageal
cancer [11]; after the immunotherapy treatment of renal cell carcinoma (RCC) [12]; for
overall survival, disease-free survival and cancer-specific survival in colorectal cancer
(CRC) [13] and for a better prognosis in other types of cancer [14–19]. A systematic review
and a meta-analysis of 203 studies considering 6.3 million cancer patients showed that
obesity was associated with higher overall mortality in breast, CRC and endometrial
cancer [20]. The data were compared with patients without obesity. Furthermore, studies
indicate that obesity may worsen several aspects for cancer survivors, including their
quality of life, cancer recurrence, cancer progression, prognosis and risk of second primary
cancers [20,21]. On the other hand, patients with obesity and lung cancer, RCC or melanoma
had better survival outcomes when compared with patients without obesity and with the
same cancer [20].

The fact that obesity is associated with a more favourable prognosis despite being
a risk factor for many types of cancer is a well-known phenomenon called “the obesity
paradox”, and it highlights the need to evaluate the clinical relevance of host factors, such
as body size and composition or adipose tissue quality, and their potential contribution to
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https://www.cancer.gov/about-cancer/causes-prevention/risk/obesity/obesity-fact-sheet
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tumour biology, prognosis and treatment selection [22]. This paradox may be explained by
the limitations of Body Mass Index (BMI), a simplistic index defined as a person’s weight
in kilograms divided by the square of their height in metres, which is commonly used to
classify overweight (>25 kg/m2) and obesity (>30 kg/m2) in adults. Indeed, BMI does not
take into account age, hormonal profile, inflammatory status or adipose tissue distribution
and quality [23]; the latter is a more reliable factor that has been independently associated
with insulin resistance and dyslipidemia and has been proven to be the main determinant of
most pathophysiological mechanisms linking obesity to obesity-related diseases, including
cancer [24]. Moreover, other confounding variables (e.g., smoking; alcohol consumption;
other comorbidities), reverse causation (weight change as a consequence rather than a cause
of cancer) and collider biases may be reasons why the paradox is observed in different
studies, although they may only partially explain how the direction of a true association
can be reversed and may not fully account for it [25].

2. Obesity and Cancer Risk: Epidemiology and Controversial Evidence

The increase in the risk of cancer in obesity has been well-established for many
years [26], and in an American study, 14% of cancer deaths in men and 20% in women
were attributed to obesity [27]. An association between BMI and an increased incidence
of cancer has been demonstrated [28,29], and a meta-analysis by the International Agency
for Research on Cancer (IARC) working group concluded that the absence of excess body
fatness lowers the risk of most cancers [30]. Obesity is characterised by a state of low-
grade inflammation that is a common factor for many chronic diseases, including cancer.
Furthermore, the role of inflammatory and metabolic biomarkers goes beyond the crude
measure of BMI as a predictor of cancer mortality risk [31]. In fact, recent studies have
suggested that normal-weight individuals with metabolic dysregulation and metabolically
unhealthy patients with obesity presented an increased risk of cancer [32–34]. On the
other hand, it has been well-established that obesity may guarantee a better performance
status in patients with cancer and could improve their prognosis, as previously mentioned.
Moreover, recent studies based on Mendelian randomization (MR), a method that employs
genetic variants to remove biases due to confounding and reverse causation to estimate the
direct and indirect effects of the exposure on an outcome [35,36], suggested that in contrast
to the positive association in conventional observational studies, BMI may even show
inverse associations with some types of cancer (e.g., early life obesity with postmenopausal
breast cancer [37]). In addition, MR analysis further established the causality of obesity
with colorectal cancer, endometrial cancer, ovarian cancer, oesophageal adenocarcinoma,
kidney cancer and pancreatic cancer, but highlighted obesity’s inverse relationship with
other types of cancer that are not related to obesity. Furthermore, MR studies did not
confirm a positive association between obesity and gallbladder cancer, gastric cardia cancer
and multiple myeloma [38]. In this review, we aim to consider 17 different histotypes of
cancers in order to discuss this ambivalence (Figure 1 and Table 1).
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Table 1. Obesity and cancer risk. Epidemiological studies showed that different sites or types of
cancers displayed a higher (in red) or lower (in purple) positive or a negative (in blue) association
with obesity (see Figure 1). RR: relative risk; HR: Hazard Ratio; CI: confidence index; BMI: body mass
index, GERD: gastroesophageal reflux disease; M: male; F: female; MAFLD: metabolic-associated
fatty liver disease; PSA: prostate-specific antigen. (Appendix A).

Cancer
Site or Type

RR for Cancer
Incidence (CI)

RR of Mortality
or HR (CI) Further Features

Controversial
Matters with

Obesity

Association with
Obesity References

Endometrial
cancer

2.89 (2.62–3.18) *
1.59 (1.50–1.68) §

BMI 35–39.99
Kg/m2:
2.77 (1.83–4.18)
BMI ≥ 40 Kg/m2:
6.25 (3.75–10.42) ◦

Worse outcome Higher degree [27,28,39–41]

Ovarian cancer 1.14 (1.03–1.27) *
1.03 (0.99–1.08) §

BMI 35–39.99
Kg/m2:
1.51 (1.12–2.02) ◦

Association with
visceral
adiposity

Higher degree [28,42,43]

Esophageal
adenocarcinoma
and stomach
cancer (gastric
cardia)

M: 1.52 (1.33–1.74)
§

F: 1.51 (1.31–1.74)
§

Hazard Ratio 1.08
(0.77–1.52) ˆ

Most important
risk factor: GERD;
association with
visceral adiposity

Better survival Higher degree [11,20,28,44]

Postmenopausal
Breast cancer

1.40 (1.31–1.49) *
1.12 (1.08–1.16) §

BMI 35–39.99
Kg/m2:
1.70 (1.33–2.17)
BMI ≥ 40 Kg/m2:
2.12 (1.41–3.19) ◦

The inflammation
combined with a
higher aromatase
activity increases
estrogen
production and
insulin-resistance

Protective effect
of BMI during
premenopausal
period

Higher degree [28,40,45–50]

Liver cancer
(Hepatocelllular
carcinoma)

M: 1.24 (0.95–1.62)
§

F: 1.07 (0.55–2.08)
§

BMI 35–39.99
Kg/m2:
M: 4.52 (2.94–6.94)
F: 1.68 (0.93–3.05)
◦

Develop from
MAFLD

Higher degree [27,29,51–55]

Kidney cancer
(renal cell
carcinoma)

M: 1.24 (1.15–1.34)
§

F: 1.34 (1.25–1.43)
§

BMI 35–39.99
Kg/m2:
M: 1.70 (0.99–2.92)
F: 1.70 (0.94–3.05)
◦

M: association
with increased
levels of BMI,
blood pressure,
glucose and
triglycerides
F: association
with BMI

Better survival Higher degree [28,29,56,57]

Colorectal cancer M: 1.24 (1.20–1.28)
§

F: 1.09 (1.05–1.13)
§

BMI 35–39.99
Kg/m2:
M: 1.84 (1.39–2.41)
F: 1.36 (1.06–1.74)
◦

Best outcome Higher degree [13,27–29,58,59]

Gallbladder
cancer

M: 1.09 (0.99–1.21)
§

F:1.59 (1.02–2.47)
§

BMI 30–34.99
kg/m2:
M: 1.76 (1.06–2.94)
F: 2.13 (1.56–2.90)
◦

Obesity increases
the risk of
gallstones

Higher degree
[27,29,60]

Pancreatic cancer M: 1.16
(1.05–1.28)§

F: 1.10
(1.02–1.09)§

BMI 30–34.99
kg/m2:
M: 1.49 (0.99–2.22)
F: 1.41 (1.01–1.99)
BMI ≥ 40 Kg/m2:
F: 2.76 (1.74–4.36)
◦

Higher degree
[28,29,61]
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Table 1. Cont.

Cancer
Site or Type

RR for Cancer
Incidence (CI)

RR of Mortality
or HR (CI) Further Features

Controversial
Matters with

Obesity

Association with
Obesity References

Prostate cancer 1.03 (1.00–1.07) § BMI 35–39.99
Kg/m2:
1.34 (0.98–1.83) ◦

High BMI was
positively related
with
non-metastatic
high-grade cancer

Inverse
association
between BMI and
PSA

Lower degree [27,28,62,63]

Thyroid cancer M: 1.33
(1.04–1.70)§

F: 1.14 (1.06–1.23)
§

Lack of studies Associated with
both general and
visceral adiposity

Inverse
association with
medullary
thyroid cancer

Lower degree [28,64–66]

Multiple
myeloma

M: 1.11 (1.05–1.18)
§

F: 1.11 (1.07–1.15)
§

BMI 30–34.99
kg/m2:
M: 1.71 (0.93–3.14)
F: 1.44 (0.91–2.28)
◦

Worst outcome Lower degree [28,30,67]

Mouth, pharynx
and larynx cancer

0.81 (0.74–0.89) §

0.94 (0.57–1.56)◦

Adjusted for sex

HR 0.59
(0.33–1.05) ˆ

Data were not
adjusted for
smok-
ing/drinking
alcohol

Negative
association

[20,68–70]

Non-small-cell
lung cancer

Lack of studies
with this specific
histotype

Lung in general:
HR 0.86
(0.76–0.98) ˆ

Positive
prognostic factor,
higher survival,
metformin use

Negative
association

[20,71–76]

* With a 10 kg/m2 increase in BMI; § With a 5 kg/m2 increase in BMI; ◦ RR of mortality compared with patients
with a normal weight; ˆ HR greater than 1 associated with a worse outcome among patients with obesity versus
those without.

3. The Adipose Organ and Cancer: General Aspects and Specific Mechanisms

The adipose organ is composed of several AT depots with a specific anatomical local-
isation, distinct expression and secretion profiles and peculiar metabolic and endocrine
functions [77]. Particularly, the adipose organ consists of white, brown and beige adipocytes,
which play different roles in energy storage, consumption and thermogenesis, contributing
to whole-body metabolism [78]. Several studies highlighted the presence of other cell
types embedded in the AT, such as adipogenic precursors and mature endothelial, immune
and nervous system cells, which have significant relevance in regulating adipose organ
growth [79]. Our group recently described the AT stem cell niche (called the “adiponiche”)
in the context of obesity and metabolic diseases. The term niche refers to the anatomical
and functional unit that regulates stem cell homeostasis and behaviour. We recapitulated
evidence supporting the hypothesis that adipose stromal/stem cells (ASCs) are regulated
by both cell-to-cell interactions and their microenvironment in order to support physi-
ological AT growth and to maintain an energy balance in relation to the environmental
conditions, such as the availability of nutrients, temperature changes and physical activity.
Each element of the adiponiche can become dysfunctional, contributing to the development
of obesity and metabolic complications correlated with many pathological alterations de-
scribed in the AT of patients with obesity [80]. A number of direct and indirect mechanisms
have been proposed to explain the role of obesity in cancer development, progression,
invasiveness and chemoresistance. Many studies focused on the crosstalk between per-
itumoral AT and cancer cells, while others investigated the systemic impact of fat mass
expansion, particularly with respect to circulatory factors (e.g, adipokines, cytokines, lipids,
etc.) and hyperinsulinemia, leading to the creation of a cancer-permissive milieu [81–85].
Interestingly, AT modifications occurring in obesity display some similarities with the
behaviour of solid tumours [86]. These similarities include: the theoretically unlimited
expandability, the capacity to infiltrate other tissues and to induce angiogenesis, the local
and systemic inflammatory process and changes in the immune system, the induction of
DNA damage and resistance to apoptosis and the ability to influence the function of several
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distant organs due to the secretion of hormones and miRNAs. The adipose organ and
cancer also share some elementary morphofunctional tissue aspects, such as the presence of
a tissue niche. In the present review, we centre on the main general processes and specific
molecular mechanisms involving cells of the obesity-altered adiponiche in the context
of so-called “adiposopathy” [87,88], underlining innovative issues and the results of our
recent research. (Figures 2 and 3)
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Figure 2. The impact of the obesity-altered adiponiche on carcinogenesis. Weight gain leads to
obesity and metabolic disorders whose hallmark is adipose tissue (AT) dysfunction (adiposopa-
thy), which may increase the risk of cancer. Main biological mechanisms of crosstalk between
obesity-altered cells of the adiponiche and tumour cells are reported in grey boxes. As depicted in
the figure, AT expansion and dysfunction lead to multiple effects represented by the altered secre-
tion of adipocyte-derived lipids and cytokines—upregulation of leptin, FFAs, lipids and oestrogen;
hypoxia—the upregulation of VEGF and HIF-1α; inflammation and fibrosis—increased production of
pro-inflammatory cytokines, such as TNF-α (activation of (NF)-κB signalling pathway) and IL-6 (stim-
ulation of JAK/STAT3 pathway); ROS production and mitochondrial dysfunction—the upregulation
of PI3K, MAPK, PPARγ, and C/EBPβ and calcium increase; changes in immunometabolism—an
increase in M1-polarised ATMs and T cells and a decrease in eosinophils and Tregs. These described
mechanisms have important implications in the development of cancer, contributing to cell survival,
growth and proliferation, metabolic reprogramming, angiogenesis, cell invasion and metastasis.
Moreover, weight loss restores the AT phenotype to its state in normal-weight subjects, characterised
by an increased oxygen supply and mitochondrial functionality, the release of anti-inflammatory
cytokines, and reduced oxidative stress, inflammation and fibrosis. Considering that this reverted
condition can be associated with patients’ metabolic improvement and the recovery of a healthy con-
dition, a future aim is to assess whether weight loss can provide similar benefits across cancer patients
by reverting their malignant condition. FFAs: free fatty acids; VEGF: vascular endothelial growth
factor; HIF-1α: hypoxia-inducible factor 1α; TNF-α: tumour necrosis factor α; (NF)-κB: nuclear factor
κB; IL-6: interleukin 6; JAK: Janus kinase; STAT3: signal transducer and activator of transcription 3;
ECM: extracellular matrix; PI3K: phosphatidylinositol-3-kinase; MAPK: mitogen-activated protein
kinase; PPARγ: peroxisome proliferator-activated receptor γ; C/EBPβ: CCAAT/enhancer binding
protein β; ATMs: adipose tissue macrophages; Tregs: regulatory T cells.



Biomedicines 2023, 11, 1319 8 of 25

Biomedicines 2023, 11, x FOR PEER REVIEW 10 of 25 
 

angiogenesis and leptin signalling remains higher in comparison with patients with a bet-
ter prognosis, suggesting that peritumoral adipose tissue may promote characteristics of 
the microenvironment that sustain the progression and chemoresistance of the tumour 
[122]. These data indicate that contiguous visceral adipose tissue may directly affect tu-
mour invasiveness through the action of leptin, and recent additional results support the 
hypothesis that adipose-specific secreted metabolites influence cancer progression and 
metabolism in a depot-specific manner (personal, unpublished data) (Figure 3).  

 
Figure 3. Obesity-altered adiponiche and tumour development: some novel proposed mechanisms 
in mature adipocytes and precursor cells. The adiponiche alterations present in patients with obesity 
could influence tumour biology and progression in different ways. We recently showed some path-
ways activated in mature adipocytes and in precursor cells that could be relevant in patients with 
obesity and cancer. In particular, in hypertrophic adipocytes (yellow cell on the left), CK2 potenti-
ates insulin signalling and glucose uptake through the stimulation of PI3K/AKT pathway, GLUT4 
translocation and PTEN inhibition. In addition, CK2 contributes also to IL-6, INF-γ and TNF-α sig-
nal transduction cascades, potentiating JAK/STAT and IKK/(NF)-кB signalling pathways, respec-
tively. Moreover, CK2 is involved in regulating the production of adipokines in large adipocytes, 
leading to the downregulation of adiponectin and the upregulation of leptin. We showed that in the 
peritumoral AT of patients with EAC, leptin activates different signalling pathways in stromal stem 
cells (pink cell on the right). In particular, the activation of JAK2/STAT3, PI3K/AKT/mTOR and 
Ras/Raf/MEK/ERK leads to the increased expression of factors involved in stemness (CD34, NSTM 
and OCT-4), the epithelial-to-mesenchymal transition (α-SMA), neo-angiogenesis (VEGF) and neo-
lymphangiogenesis (VEGF-C). CK2: casein kinase 2; PI3K: phosphatidylinositol-3-kinase; AKT: pro-
tein kinase B; GLUT4: glucose transporter type 4; PTEN: phosphatase and tensin homolog; IL-6: 
interleukin 6; INF-γ: interferon γ; TNF-α: tumour necrosis factor α; JAK: Janus kinase; STAT: signal 
transducer and activator of transcription; IKK: IκB kinase; (NF)-κB: nuclear factor κB; mTOR: mam-
malian target of rapamycin; Ras: rat sarcoma; Raf: rapidly accelerated fibrosarcoma; MEK: mitogen-
activated protein kinase; ERK: extracellular signal-regulated kinase; CD34: cluster of differentiation 
34; NSTM: nucleostemin; OCT-4: octamer-binding transcription factor 4; EMT: epithelial-to-mesen-
chymal transition; α-SMA: alpha-smooth muscle actin; VEGF: vascular endothelial growth factor; 
VEGF-C: vascular endothelial growth factor C. 

3.5. The Protein Kinase CK2 
As previously described, adipocyte-derived lipids play a role in cancer development 

through the involvement of pro-survival protein kinases that contribute to the regulation 
of aberrant lipid metabolism in malignant cells. In this context, casein kinase 2 (CK2) plays 
a pivotal role, regulating intracellular processes linked to lipid accumulation and 

Figure 3. Obesity-altered adiponiche and tumour development: some novel proposed mechanisms
in mature adipocytes and precursor cells. The adiponiche alterations present in patients with obesity
could influence tumour biology and progression in different ways. We recently showed some path-
ways activated in mature adipocytes and in precursor cells that could be relevant in patients with
obesity and cancer. In particular, in hypertrophic adipocytes (yellow cell on the left), CK2 potenti-
ates insulin signalling and glucose uptake through the stimulation of PI3K/AKT pathway, GLUT4
translocation and PTEN inhibition. In addition, CK2 contributes also to IL-6, INF-γ and TNF-α
signal transduction cascades, potentiating JAK/STAT and IKK/(NF)-кB signalling pathways, respec-
tively. Moreover, CK2 is involved in regulating the production of adipokines in large adipocytes,
leading to the downregulation of adiponectin and the upregulation of leptin. We showed that in
the peritumoral AT of patients with EAC, leptin activates different signalling pathways in stromal
stem cells (pink cell on the right). In particular, the activation of JAK2/STAT3, PI3K/AKT/mTOR
and Ras/Raf/MEK/ERK leads to the increased expression of factors involved in stemness (CD34,
NSTM and OCT-4), the epithelial-to-mesenchymal transition (α-SMA), neo-angiogenesis (VEGF)
and neo-lymphangiogenesis (VEGF-C). CK2: casein kinase 2; PI3K: phosphatidylinositol-3-kinase;
AKT: protein kinase B; GLUT4: glucose transporter type 4; PTEN: phosphatase and tensin ho-
molog; IL-6: interleukin 6; INF-γ: interferon γ; TNF-α: tumour necrosis factor α; JAK: Janus kinase;
STAT: signal transducer and activator of transcription; IKK: IκB kinase; (NF)-κB: nuclear factor κB;
mTOR: mammalian target of rapamycin; Ras: rat sarcoma; Raf: rapidly accelerated fibrosarcoma;
MEK: mitogen-activated protein kinase; ERK: extracellular signal-regulated kinase; CD34: cluster
of differentiation 34; NSTM: nucleostemin; OCT-4: octamer-binding transcription factor 4; EMT:
epithelial-to-mesenchymal transition; α-SMA: alpha-smooth muscle actin; VEGF: vascular endothelial
growth factor; VEGF-C: vascular endothelial growth factor C.

3.1. Hypoxia

Obesity is characterised by rapid AT expansion. However, the capillary networks fail
to match their growth with the rapid expansion of AT depots and are instead reported
to undergo rarefaction upon obesity [89,90]. This effect results in regions in which the
vascular supply is insufficient, producing areas of hypoxia that mimic the ones present in
growing tumours (Figure 2). For this reason, defining how obesity affects vascular function
is relevant to understanding the adipose organ–cancer relationship. In both obesity and
cancer, hypoxia triggers the induction of pro-angiogenic factors such as vascular endothelial
growth factor (VEGF) and hypoxia-inducible factor 1α (HIF-1α). For example, HIF-1 plays
key roles in many crucial aspects of breast cancer biology, including angiogenesis, stem cell



Biomedicines 2023, 11, 1319 9 of 25

maintenance, metabolic reprogramming, the epithelial-to-mesenchymal transition (EMT),
invasion, metastasis and resistance to radiation therapy and chemotherapy [91]. However,
the angiogenic stimulus is unable to sufficiently compensate and reverse AT hypoxia
(the blood vessels function poorly; thus, low oxygen levels persist), leading to a chronic
condition that contributes to adipocyte death and eventually supports the infiltration of
macrophages [87].

3.2. Inflammation, Fibrosis and Senescence

The previously described hypoxia induces the dysfunctional AT to release pro-inflammatory
cytokines, which promote the development of low-grade chronic inflammation and enhance
fibrosis, two key processes involved in carcinogenesis [92]. In particular, tumour necrosis
factor α (TNF-α) leads to the activation of the nuclear factor (NF)-κB, with the subsequent
upregulation of several negative regulators of apoptosis, promoting cell survival and cancer
progression; interleukin 6 (IL-6) activates the Janus kinase (JAK)/signal transducer and the
activator of transcription 3 (STAT3) pathway, leading to cell survival and proliferation [93]. This
obesity-induced inflammation disrupts the immunometabolism, the bidirectional interaction
between the immune system and the whole-body metabolism [94,95]. This could contribute to
the development of cancer [96]. Other components include matrix metalloproteinases (MMPs),
which are associated with adipocyte differentiation, cancer cell invasion and metastasis, immune
cells and pro-inflammatory M1-polarised AT macrophages (ATMs), reduced levels of regulatory
T cells (Tregs) and M2-polarised anti-inflammatory ATMs (Figure 2). In the lean state, AT T
helper 2 (TH2) cells, Tregs, eosinophils and M2-like resident macrophages predominate,
with Tregs that secrete interleukin 10 (IL-10) stimulating, in turn, the secretion of IL-10
from resident M2-like macrophages. Eosinophils secrete interleukin 4 (IL-4) and interleukin
13 (IL-13), further contributing to the anti-inflammatory, insulin-sensitive phenotype. In
obesity-induced inflammation, monocytes respond to chemotactic signals, transmigrate
into the adipose tissues and become polarised into the highly pro-inflammatory, M1-like
state. Once recruited, these M1-like ATMs secrete pro-inflammatory cytokines that work
in a paracrine fashion. The eosinophil content declines, and there is a shift in adipose
tissue T cell populations, with a decrease in the content of Tregs and an increase in CD4+
T helper 1 (TH1) and CD8+ effector T cells, which secrete pro-inflammatory cytokines.
B cell numbers also increase and activate T cells, which potentiate M1-like macrophage
polarisation, inflammation and insulin resistance [97]. Specifically, M1-polarised ATMs
contribute to extracellular matrix (ECM) remodelling in obese tissues due to the accumula-
tion of collagen type 6 (COL6α3), which is a fibrotic ECM protein involved in AT stiffness
and metabolic dysfunction. A COL6α3 cleavage product, endothrophin, worsens fibrosis
and inflammation, thus contributing to changes in the activities of M1-polarized ATMs.
In particular, the latter begin to display a blunted phagocytotic capacity and develop a
senescence-associated secretory phenotype (SASP) [98] that acts in a paracrine and au-
tocrine manner to spread and strengthen senescence-inducing signals to neighbouring
adipose tissue cells [99–102]. These macrophages surround dying and dead adipocytes,
organising pathologically in crown-like structures (CLSs) which are involved, again, in
the overproduction of pro-inflammatory cytokines [103]. This state of unresolved chronic
inflammation, with an accumulation of SAPS and the formation of CLSs, is considered a
central driver of pathological tissue remodelling, the development of adipose tissue fibrosis,
metabolic dysfunction and cancer [104].

In this context, inflammasomes (the cytosolic multiprotein oligomeric components
of the innate immune system), play an important role in cancer development, showing
tumour-promoting actions [105]. The inflammasomes, which are activated by fatty acids
and high glucose levels, induce the secretion of the inflammatory cytokines IL-1β and
IL-18 and control adipocyte differentiation and insulin sensitivity [106], leading to the
infiltration of more immune cells and resulting in the generation and maintenance of an
inflammatory microenvironment surrounding the cancer cells. It has been suggested that
inflammasomes promote proliferation and the invasion of colon cancer cells through the



Biomedicines 2023, 11, 1319 10 of 25

activation of IL-1β [107], emphasising their potential crucial role in the link between obesity,
inflammation and carcinogenesis. This disruption of the homeostatic balance between pro-
and anti-inflammatory cellular mediators in adipose tissue is a basis for the development
of metabolic disorders and may have important implications for cancer metastasis [108].

3.3. ROS Production and Mitochondrial Alterations

The inflammation-related mechanisms that occur in obesity may increase the produc-
tion of ROS and, in turn, excess ROS may lead to mitochondrial dysfunction (Figure 2). The
production of ROS in the mitochondria depends on the physiological or pathological condi-
tions of the cells. In particular, in adipose precursor cells, the redox-sensitive signalling
molecules phosphatidylinositol-3-kinase (PI3K) and mitogen-activated protein kinases
(MAPK) take part in the insulin-signalling pathway, whereas peroxisome proliferator-
activated receptor γ (PPARγ) and CCAAT/enhancer binding protein β (C/EBPβ) are
fundamental regulators of adipogenesis. Obesity-related oxidative stress is associated
with an elevated expression of these molecules in pre-adipocytes, leading to the altered
signal transduction and dysregulation of adipocyte differentiation. Moreover, when the
generation of ROS increases, several constituents of the respiratory chain and Krebs cycle
enzymes may lose activity, thus leading to mitochondrial dysfunction linked to altered
adipogenesis, glucose and lipid metabolisms, adiponectin production and an elevated rate
of apoptosis. These alterations, associated with mitochondrial dysfunction and elevated
levels of ROS, also induce the endoplasmic reticulum (ER) stress that results in modifica-
tions of the activity of the ER calcium ATPase and the subsequent disequilibrium in calcium
homeostasis [109]. These conditions, as part of oxidative stress and chronic inflammation,
may also create a microenvironment favourable to tumour development in obesity [110].

3.4. Altered Secretion of Adipocyte-Derived Factors

Adipocytes are the most important components of adipose tissue and are also the
conductors of microenvironmental evolution during obesity. These cells can affect tu-
mour growth at multiple levels through paracrine, autocrine and endocrine factors such as
adipokines, extracellular matrix (ECM) components, hormonal factors (e.g., via the action of
aromatase, resulting in increased oestrogen levels in the microenvironment), growth factors
and inflammatory cytokines, and the direct supply of rate-limiting metabolites released by
the adipocytes, such as free fatty acids (FFAs) [111]. In particular, the most important role
in tumorigenesis is played by adipokines, which can affect tumour biology by regulating
insulin resistance and inflammation. For example, adiponectin, which promotes adipose
tissue microenvironment homeostasis, acts locally on adipocytes to regulate glucose uptake,
adipogenesis and lipid storage, whereas leptin, which promotes adipose tissue microenvi-
ronment dysfunction, regulates adipocyte lipolysis, producing adipocyte-derived lipids
that are transferred to tumour cells to induce metabolic reprogramming, growth and inva-
sion [87]. Both these adipokines play roles in the tumorigenesis of different cancer types.
In postmenopausal breast cancer, increased leptin synthesis by breast AT contributes to
the upregulation of pro-inflammatory cytokines as well as cyclooxygenase-2 (COX-2) and
prostaglandin E2 (PGE2). These factors potentiate the expression of aromatase in breast adi-
pose stromal cells, a central enzyme in the production of oestrogens, particularly oestradiol,
which is increased as a result [112]. Considering the essential role of these hormones in the
normal development of the mammary gland, several studies associated cytokine-induced
aromatase upregulation with breast cancer growth and progression [113]. This relation-
ship is supported by the successful results obtained after treating patients with aromatase
inhibitors (Ais). Indeed, most clinical studies proved that blocking aromatase activity
greatly reduces the amount of oestrogen in the body, reducing breast cancer recurrence
compared with standard Tamoxifen therapy [114]. In animal studies, the loss of adiponectin
enhances the development of colitis-associated colorectal cancer [115], and diet-induced
obesity elevates colonic TNF-α in mice [116]. TNF-α and IL-6 are induced by leptin, which
stimulated the formation of lipid droplets and increased cell proliferation in intestinal
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epithelial cells in an in vitro study [117]. Leptin and adiponectin have also been linked to
the presence of Barrett’s oesophagus and its progression to EAC [118]. In the development
of RCC, data suggest that while the adiponectin released from perinephric adipose tissue
may impact RCC aggressiveness via the alteration of the tumour microenvironment, the
levels of adiponectin in the perinephric-fat-conditioned medium appear to not be consider-
ably related to the aggressiveness of RCC [119]. In multiple myeloma, adipocyte-secreted
Angiotensin II (ANG-II) directly stimulates acetyl-CoA synthetase 2 (ACSS2) in myeloma
cells, contributing to obesity-induced myelomatous tumorigenesis, and the inhibition of
the ANG-II-ACSS2 axis prevents obesity-induced tumour growth [120].

Our previously published data showed that in patients affected by EAC, peritumoral
AT displays an increased adipocyte size, augmented production of leptin, an increased
expression of angiogenesis, lymphangiogenesis and inflammation markers, and the up-
regulation of genes involved in stemness and EMT. This dysfunctional AT was associated
with lymph node invasion [121] and chemoresistance [122] and was not observed in a
fat depot distant from the tumour of the same patient. In particular, during the carcino-
genesis process, peritumoral AT progressively increases the expression of leptin, CD31,
VEGF, VEGF-C, CD45, CD34, nucleostemin (NSTM), octamer-binding transcription factor 4
(OCT-4) and alpha-smooth muscle actin (α-SMA) under the stimulation of tumour-derived
factors or AT-secreted adipokines such as leptin. In the presence of neoadjuvant therapy,
some of these effects decrease in peritumoral AT; however, in patients with a poor re-
sponse to treatment, the expression of factors involved in stemness, EMT, neo-angiogenesis
and leptin signalling remains higher in comparison with patients with a better prognosis,
suggesting that peritumoral adipose tissue may promote characteristics of the microenvi-
ronment that sustain the progression and chemoresistance of the tumour [122]. These data
indicate that contiguous visceral adipose tissue may directly affect tumour invasiveness
through the action of leptin, and recent additional results support the hypothesis that
adipose-specific secreted metabolites influence cancer progression and metabolism in a
depot-specific manner (personal, unpublished data) (Figure 3).

3.5. The Protein Kinase CK2

As previously described, adipocyte-derived lipids play a role in cancer development
through the involvement of pro-survival protein kinases that contribute to the regulation
of aberrant lipid metabolism in malignant cells. In this context, casein kinase 2 (CK2)
plays a pivotal role, regulating intracellular processes linked to lipid accumulation and
mobilisation in normal tissues as well as in disease states, particularly cancer [123]. This
Ser/Thr protein kinase acts in a wide spectrum of signal transduction pathways whose
dysregulation leads to malignancy, such as anti-apoptotic signals, cell survival, growth
and proliferation, angiogenesis, DNA repair, cell migration and invasiveness [124]. Mul-
tiple studies demonstrated that CK2 is usually overexpressed in cancer, leading to the
upregulation of oncogenic molecules such as protein-kinase B (AKT), Wnt and extracellular
signal-regulated kinase (ERK) and to the downregulation of tumour suppressor molecules
(such as Notch and Ikaros) [125]. The degree to which CK2 potentiates each signal depends
on its expression/activity level, and its targeting may represent a general strategy for
treating neoplasia in different contexts. Our group and another recently demonstrated that
CK2 also plays relevant roles in the adipose organ, as it is upregulated in the AT of patients
with obesity, supporting both adipocyte hypertrophy/hyperplasia and adipogenesis, which
are essential for the AT expansion [123,126]. It was demonstrated that CK2 is preferen-
tially activated in white adipocytes [127], is crucial for adipogenic differentiation [128],
positively modulates the insulin-stimulated glucose uptake of adipocytes [126] and is
hyperactivated in the lipomatous tissue of patients with multiple symmetric lipomatosis,
a rare disorder characterised by the growth of non-encapsulated masses of subcutaneous
AT [129]. In addition, in the context of adipose tissue undergoing excessive lipid accumu-
lation and chronic low-grade inflammation, there is evidence of crosstalk between CK2
and adipokines (leptin and adiponectin) and between CK2 and cytokines (as interferon-γ,
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IFN-γ and IL-6) [123]. Lastly, CK2 is involved in the ASC signalling pathway mediated by
adiponectin, contributing to adiponiche regulation [130] (Figure 3).

3.6. The Adipose Tissue Stromal Stem Cells

In addition to the pro-tumorigenic paracrine and/or endocrine effects of inflammatory
factors from dysfunctional adipose tissue, several studies have shown that ASCs actually
infiltrate cancer lesions and actively contribute to a cancer-promoting microenvironment
via paracrine and contact-dependent effects [85]. We observed an increased number of
ASCs and a decreased number of capillaries in patients with obesity compared to lean
subjects in both subcutaneous and in visceral AT [90]. Similar results were described
in animal models of obesity, and an increased frequency of ASCs was detected in the
circulation of patients with obesity and colorectal cancer [131,132]. These data suggest that
an increased number of AT-resident and circulating ASCs altered in their biological features
by the obesity environment could affect tumour growth, acting on cancer cell proliferation
and angiogenesis within the tumour, metastasis and drug resistance [133]. In particular,
several in vitro studies showed that ASCs isolated from the AT of patients with obesity
displayed an altered gene expression profile resulting in the production of high levels of
tumorigenic factors, including leptin, inflammatory cytokines, adhesion molecules, growth
factors, ECM components and remodelling proteins [133,134]. Obesity-altered ASCs have
an increased potential to spread cancer cells and become an integral constituent of the
tumour microenvironment (TME). It is important to note that ASCs can be mobilised and
recruited to the tumour from both local and distal AT depots. In this context, ASCs play a
central role in tumorigenesis via their secretome and by interacting with tumour cells and
immune system cells in various cancer types, such as postmenopausal breast, colorectal,
prostate, ovarian, multiple myeloma, cervical, bladder and gastrointestinal cancers [133].
Interestingly, a parallel exists between matrix remodelling in obesity and cancer. Many ECM
proteins upregulated in AT during obesity are linked with inflammation, the recruiting
and conditioning of immune cells and with the promotion of cancer stemness [135–137].
ASCs produce a large amount of ECM molecules which can alter TME stiffness, promoting
myofibroblast differentiation via mechano-trasduction [133]. Furthermore, the tumour
represents a non-healing wound in which immune cells directly influence tumorigenicity
and cancer development. In this context, the immunomodulatory properties of ASCs could
be integral to cancer progression [138]. Additionally, ASCs enhance the migration of cancer
cells, increasing the number of metastases, and influence angiogenesis in different tumour
models [133]. Lastly, in preclinical models, obesity also increases the capacity of ASCs
to differentiate into cancer/carcinoma-associated fibroblasts (CAFs), which are present
in more invasive tumours, enhancing cancer cell proliferation, invasion and metastasis.
The origin of CAFs is heterogeneous, varies between different tumour histotypes and is
critical in determining the degree of CAF malignancy [139]. Recent studies have shown that
mature adipocytes, particularly obesity-altered adipocytes, can also de-differentiate and
acquire a myofibroblast/fibroblast phenotype [137]. Furthermore, cancer cells themselves
“educate” ASCs through secreted factors and exosomes carrying specific miRNA and
lncRNA, promoting their differentiation to CAF, reprogramming their cellular metabolism
and influencing their migratory capability [139].

All these observations suggest that by acting through similar mechanisms, obesity-
altered ASCs could be partially responsible for the dysfunction of both the AT niche and
tumour niche in patients with obesity and cancer. This point must be carefully taken into
account to evaluate the effectiveness and safety of using of ASCs for the treatment of
diseases, particularly cancers, and in regenerative medicine [140].

4. The Involvement of Microbiota Dysregulation

The human gut microbiota is a complex ecosystem composed of approximately 1014
microorganisms (bacteria, archaea and eukarya) that colonise the gastrointestinal (GI)
tract and produce metabolites, such as short-chain fatty acids (SCFAs), which are crucial



Biomedicines 2023, 11, 1319 13 of 25

for GI health. Changes in the composition of the gut microbiota (gut dysbiosis) affect
the human body’s energy and immune homeostasis, playing an important role in the
development of obesity and related diseases, such as cancer [141,142]. The role of gut
dysbiosis in obesity has been demonstrated well in mice, and it has been observed that
the transplantation of wild-type or obese microbiota into germ-free mice results in a
normalised or increased body weight, respectively, in the transplanted animals. Moreover,
changes in the abundance of different microbial phyla have been reported in mouse models
after the administration of a high-fat diet (HFD), suggesting that dietary patterns can
also change the microbial composition, further augmenting a propensity towards excess
bodyweight [143]. Specifically, in obesity, the SCFAs produced by bacteria are decreased,
thus reducing their previously described protective role based on G protein signalling [144].
Indeed, the effects of SCFA supplementation on the expression of the G protein receptor
(GPR) and the gut microbiota composition may further result in body weight reduction by
enhancing triglyceride hydrolysis and FFA oxidation in the adipose tissue, promoting beige
adipogenesis and mitochondrial biogenesis and inhibiting chronic inflammation [145].

Several studies associated gastrointestinal cancers (such as colon, liver and pancreatic
cancers) with intestinal microbiota and dysbiosis [31,146,147]. In particular, microbiome-
derived peptides modulate immune cell activity, and the leakage of lipopolysaccharides
(LPSs) activates TLR4 and nuclear factor-kB (NF-kB), leading to inflammatory-induced
carcinogenesis in the colon and the liver [147,148]. For example, in the development of HCC,
obesity-induced insulin resistance amplifies de novo lipogenesis and increases FFA flux,
which also derives from an altered gut microbiome, leading to mitochondrial dysfunction
with oxidative stress, ER stress and activating the unfolded protein response, all resulting
in hepatic inflammation. In addition, small bowel permeability can be enhanced through
the consequent raised circulating levels of molecules, which contribute to the activation
of the inflammasome. Furthermore, bacterial products such as LPSs induce the release
of cytokines from Kupffer cells [149]. These factors all contribute to a cycle of hepatocyte
damage and regeneration which create a pro-tumorigenic microenvironment [150].

5. Circadian Rhythms in Obesity and Cancer Progression

We wanted to explore the role of circadian rhythm imbalance, which has been identi-
fied as a risk factor for the development of obesity (for example, in shift workers). Circadian
clocks are cell-autonomous timing systems that generate an approximately 24 h periodic
rhythm, i.e., the circadian rhythm. Disturbances of this rhythm caused by sleep deprivation
or eating at night are closely associated with the development of sleep and mood disorders,
obesity, diabetes and cancers [151]. Recent findings provide evidence that exposure to
artificial light at night, which is emitted by residential areas, road illumination and non-stop
economic activities, represents a remarkable risk factor for weight gain, overweight and
obesity and cancer [152]. Many studies in humans have shown that obesity associates with
disturbances in biological rhythms, such as those governing sleep and food intake. It has
been shown that people with obesity have delayed bedtimes and altered sleep duration
compared to healthy people, due to the disruption of the plasma melatonin circadian
rhythm and night eating syndrome, which is characterised by nocturnal hyperphagia and
morning anorexia. In brief, obesity is involved not only in the malfunction of the metabolic
system but also in the disturbance of biological rhythms [153]. Furthermore, several studies
showed that disrupted circadian rhythmicity can impact the pathogenesis of cancer due
to the dysregulation of the crosstalk between the circadian clock machinery and the cell
cycle, DNA repair, apoptosis, senescence, autophagy and other oncogenic and immune
pathways. These alterations lead to uncontrolled proliferation, escape from apoptosis,
metastatic spread, immune evasion, enhanced angiogenesis and anticancer drug resistance,
which are all hallmarks of cancer [151]. Although there are few data regarding the impact
of the circadian rhythm on obesity-associated tumours, recent studies have reported that
circadian disruption affects breast cancer development and the spread of metastases, which
occur more commonly during the sleep cycle [154]. Interestingly, it was demonstrated
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that alterations to biological rhythms promoted tissue metastasis, especially distal lymph
node metastasis, further causing a decrease in survival [155]. Particularly, in both patients
and mouse models, circulating tumour cells (CTCs) disseminated during sleep displayed
a greater metastatic ability compared to those circulating during the active-phase due to
a marked upregulation of mitotic genes exclusively during the rest phase. Moreover, it
was shown that key circadian rhythm hormones (melatonin, testosterone and glucocorti-
coids) dictate the generation dynamics of CTCs, and insulin directly promotes tumour cell
proliferation in a time-dependent manner. These data suggest the importance of consider-
ing timing for both biological sample collection and for the administration of therapy in
oncological patients [154].

6. Effects of Adipose Tissue on Cancer Cachexia

Cancer-associated cachexia is a complex syndrome, involving multiple organs and
tissues, that is characterised by the specific loss of AT and skeletal muscle mass and is
associated with decreased survival and a poor response to chemotherapy [156]. Recent
findings showed that white, brown and intermediate beige AT are deeply involved in
a dynamic reprogramming of the energy metabolism during cachexia [157]. Both the
macroenvironment and microenvironment contribute to the inflammatory process that
characterizes cancer-associated cachexia [158], and the adipose organ plays a critical role by
increasing lipid catabolism and mobilization concomitantly with a decreased lipid uptake
through lipoprotein lipase and reduced rates of lipogenesis [159]. This dramatic decrease in
white adipose depots is combined with adipocyte browning and the stimulation of UCP1,
which, in turn, increases thermogenesis and high energy expenditure [160].

Moreover, in cancer cachexia, the release of pro-inflammatory cytokines and morpho-
logical and structural modifications resulting in ECM rearrangement and fibrosis have been
demonstrated in AT [161]. These conditions parallel a status of muscle mass dysfunction
and atrophy, with a concomitant infiltration of lipid droplets derived from AT lipolysis,
that further impairs muscle tissue structure and strength [162]. These alterations have also
been observed in sarcopenic obesity [163], and although the role of AT in cancer-associated
cachexia has been thoroughly discussed [164], its role is still controversial. On one hand,
it seems that metabolic dysfunction, inflammation and insulin resistance (all hallmarks
of obesity) accelerate the wasting of fat and lean mass and worsen the prognosis of pa-
tients [165–167], thus suggesting that obesity therapy could also counteract the onset of
cancer-associated cachexia. Conversely, it has been suggested that the remodelling of AT,
in terms of an increased macrophage abundance (stimulated by hypoxia [168]) or in terms
of the attenuation of browning (stimulated by immune-metabolic dysfunction [169]), may
play a protective role against cancer-associated cachexia and increase patient survival.

7. Effects of Obesity Treatment on Cancer Incidence and Prevention

Since obesity represents a potential risk factor for the development of cancer, strategies
that aim to treat obesity could potentially be useful for limiting the spread of cancer. If the
reversal of exposure (obesity) decreases the incidence of outcome (cancer), it can be specu-
lated that causation underlies their relationship (see Figure 1). A meta-analysis reported
a sufficient strength of evidence for a cancer-preventive effect of the avoidance of weight
gain on numerous types of cancer [30]. Lifestyle modifications (diet and physical activity),
pharmacotherapy and bariatric surgery are the three main therapeutic interventions for
treating overweight and obesity, thus reducing the risk of cardiovascular disease (CVD), the
incidence of type 2 diabetes (T2DM) and the risk of all-cause mortality [170–172]. Obesity
may have a causal and reversible effect on cancer risk; however, when comparing the
cancer-related mortality after weight loss, the results are controversial. In this regard, some
observational studies have provided consistent evidence that individuals who have lost
weight have a lower risk of breast [173] and endometrial [174] cancer compared to patients
who did not lose weight. Regarding prostate cancer, men who maintained more than
11 pounds of weight loss over a 10-year period had a decreased risk of non-metastatic,
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high-grade prostate cancer [175]. However, while a high BMI was positively associated
with non-metastatic, high-grade prostate cancer, it was simultaneously inversely associated
with the risk of developing low-grade disease. The “Look AHEAD”, a large, randomised
trial on the effects of lifestyle intervention on cancer outcomes, assigned patients with over-
weight/obesity and T2DM to an intensive lifestyle intervention (ILI), targeting a weight
loss of 7%, or to “support and education” for T2DM (DSE) [176]. Obesity-related incident
cancer was similar between the two subgroups (ILI, n = 158 vs. DSE, n = 185, hazard ratio,
0.84; 95% CI: 0.68–1.04; p = 0.10). Indeed, cancer-specific mortality was ILI, n = 80 vs. DSE,
n = 85 (hazard ratio, 0.92; 95% CI: 0.68–1.25; p = 0.59). A limitation of the Look AHEAD
trial was the presence of only patients with T2DM. It would be a challenge to perform
future trials investigating the effects of weight loss on cancer risk by specific cancer site
and subtype, in patients with obesity but without T2DM and while correcting the data for
sex, age, race and ethnicity.

While diet or certain unhealthy foods have been shown to be more associated with a
higher cancer risk [177], weight loss through dietary interventions such as caloric restriction,
a ketogenic diet or time-restricted eating (a type of intermittent fasting, which involves
consuming all calories within a consistent 8–12 h daily window based on the normal
circadian rhythm of eating) showed beneficial metabolic effects and decreased the risk of
cancer [178,179].

Currently, bariatric surgery is the most effective treatment for obesity, guaranteeing
weight loss of up to approximately 35% of the body weight, with maintenance over many
years [172,180]. The short- and long-term effectiveness of bariatric surgery are due to both
the caloric restriction and the modification of different metabolic regulators acting at the GI
and central levels [181]. Among these mechanisms, it has been demonstrated that bariatric
surgery induces important changes in the species of gut microbiota [31]. Despite the fact
that some large studies have proven the association between bariatric-surgery-induced
weight loss and a reduced incidence of obesity-related cancer [182–184], few studies are
available regarding the effect of weight loss on cancer-related mortality [185,186], and some
results are discordant. For example, retrospective studies have suggested that bariatric
surgery is significantly associated with a decreased incidence of cancer in women but
not in men [180,187], or in men but not in women [188] or not significantly associated, as
observed in CRC [189]. Conversely, a prospective study demonstrated a time-dependent
increase in the risk of CRC 10 years or more after bariatric surgery [190]. According to some
authors, the beneficial effects of bariatric surgery were strongest for female obesity-related
tumours compared to males, especially in the postmenopausal subgroup. This positive
outcome in females is likely to be associated with a substantial decrease in the production
of sex hormones and bioavailability, inducing a decrease in hormone-sensitive breast and
endometrial cancers after surgery [191]. A meta-analysis showed a 60% reduction in the risk
of developing endometrial cancer among patients undergoing bariatric surgery compared
with women who had not [192]. An observational study comparing patients who received
surgery to a control group who did not displayed that the cancer incidence declined only
for obesity-related malignancies (i.e., postmenopausal breast, oesophagus, colorectal, liver
and pancreas), even if mortality dropped for all cancer types [193].

A recent retrospective, observational, matched cohort study in adult patients with
obesity who underwent bariatric surgery or received typical care (Surgical Procedures
and Long-term Effectiveness in Neoplastic Disease Incidence and Death, SPLENDID)
showed a significantly lower incidence of obesity-associated cancer and cancer-related
mortality in the bariatric surgery subgroup [194]. Despite the entity of weight loss being
associated with a reduced obesity-related cancer mortality in a dose-dependent manner,
the analysis had several limitations and, in the absence of randomised studies (despite
corrections in statistical models and sensitivity), it is not possible to assess whether the
patients undergoing bariatric surgery have different characteristics (e.g., social, economic
and cultural conditions) in comparison with the control group or whether the lifestyle
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changes that surgical candidates were required to make could independently contribute to
risk reduction.

8. Concluding Remarks: Is There Evidence of a Cause–Effect Relationship?

Epidemiological data strongly associate overweight and obesity with an increased
risk of developing several types of cancer. Experimental data indicate that the adipose
organ is the key player in the relationship between obesity and cancer in humans. Among
several cellular processes and molecular mechanisms summarized in the present review,
we would like to underline the activation of the cellular senescence program recently
observed in different cell types (progenitors and mature adipocyte and immune cells) of
the obesity-altered adiponiche. Moreover, our group and others demonstrated a central
role of CK2 in AT, obesity and adipogenesis, and we provided additional insights on the
role of leptin, which results in increased peritumoral AT, in cancer progression and chemo-
resistance. Lastly, considering the experimental data and clinical evaluations, we suggested
that systemic alterations due to the dysregulation of the microbiota and circadian rhythm
could play a relevant role in both obesity and in cancer progression. Clinical data suggest
that weight loss itself, especially when it results in a substantial visceral fat mass loss rather
than procedure-specific mechanisms, is the main determinant of cancer risk reduction in
patients with obesity. However, if the basis of this association is an undisputable cause–
effect relationship, the intervention of reverting the features of obesity alone should be
sufficient to reduce the incidence of cancer in patients recovering from obesity to the value
observed in the normal-weight population, thus demonstrating the reversibility of the
process (see Figure 1). However, this is not always the case, suggesting that the effects of
obesity on cancer risk may differ by molecular tumour subtype, sex, age, the presence of
comorbidities and other factors.

In this context, many of the studies considered in the present manuscript did not
perform a comprehensive clinical evaluation of the obesity disease by accurately assessing
body fatness and composition, staging and gender specificity and taking into account
metabolic and cardiovascular alterations. The limitation of the use of the BMI only to
classify patients with obesity appears to be increasingly evident and must be overcome.
For example, rather than simply categorising patients based on anthropometric measures,
the Edmonton Obesity Staging System (EOSS) provides a five-stage classification of obesity
via assessing the presence and severity of risk factors, comorbidities and functional and
psychological limitations [195]. The EOSS is based on the evaluation of medical history,
clinical and functional measurements and simple, routine diagnostic investigations that
are easily and widely available. However, it still lacks a strong independent predictor of
all-cause mortality due to the flexibility in determining functional impairment. Recently, we
suggested an improvement of this staging system that considers cardiorespiratory fitness
(CRF), which is measured by exercise testing patients [196]. Nevertheless, the measurement
of obesity and metabolic impairment is still primarily based on BMI classes, and a great
deal of effort is urgently needed from clinicians to address this shortcoming.

In the meantime, recent computational approaches have been developed in the emerg-
ing field of digital pathology in order to explain the cell-to-cell interaction within the
TME [197]: for example, an agent-based model of the dynamics involved in the immune
response has proved to be useful for the in silico study of the tumour behaviour in the
context of the obesity-induced alteration of the immune response in peritumoral AT [198].
These methods are powerful tools for capturing a deeper degree of heterogeneity and
specific characteristics of the tumour microenvironment that are unique for each patient
and depend on their genome, microbiome, disease history, lifestyle and environment. These
characteristics may be difficult to retrieve in experiments and clinical trials, especially the
temporal dynamics of spatial heterogeneity; therefore, these agent-based computational
models are suited to tackling this challenge.

Future randomised studies should be designed to test the effects of weight loss by
specific cancer site and molecular subtype, in patients matched for sex, age, race and
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ethnicity and in specific subgroups of patients with different degrees of metabolic com-
plications to determine whether weight loss provides similar benefits across individual
cancers and population subcategories [21]. Furthermore, clinical data should be integrated,
whenever possible, with a parallel molecular and cellular analysis of the adipose organ
of each patient and compared with substantial metabolic parameters. A more accurate
integration of such findings by scientists and clinicians, combined with the assessment of
clinically valuable ranges and cut-offs of reliable measurements of obesity, will be the only
method for assessing whether obesity has a causal—and plausibly reversible—effect on
cancer development.
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Appendix A

Figures, figure legends and the text of the manuscript were produced following the
European Practical and Patient-Centred Guidelines for Adult Obesity Management in
Primary Care [199] in order to avoid the stigmatisation of patients with obesity or any
feeling of embarrassment. The “Person-First-Language” standard was used for respectfully
addressing people with chronic diseases, rather than labelling them by their illness. The
management of patients with obesity can be ameliorated by decreasing negative attitudes
and by taking actions to create an empathic, non-judgmental environment.
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