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A B S T R A C T   

Treatment of people with type 2 diabetes mellitus (T2D) and obesity should include glycemic control and sus-
tained weight loss. However, organ protection and/or risk reduction for co-morbidities have also emerged as 
important goals. Here, we define this combined treatment approach as ‘weight loss plus’ and describe it as a 
metabolic concept where prolonged periods of energy consumption is central to outcomes. We suggest there are 
currently two drug classes – sodium-glucose cotransporter-2 inhibitors (SGLT2i) and glucagon-like peptide-1 
(GLP-1)–glucagon dual agonists – that can facilitate this ‘weight loss plus’ approach. We describe evidence 
supporting that both classes address the underlying pathophysiology of T2D and facilitate normalization of 
metabolism through increased periods with a catabolic type of energy consumption, which effect other organ 
systems and may facilitate long-term cardio-renal benefits. These benefits have been demonstrated in trials of 
SGLT2is, and appear, to some degree, to be independent of glycemia and substantial weight loss. The combined 
effect of caloric restriction and metabolic correction facilitated by SGLT2i and GLP-1–glucagon dual agonists can 
be conceptualized as mimicking dietary restriction and physical activity, a phenomenon not previously observed 
with drugs whose benefits predominantly arise from absolute weight loss, and which may be key to achieving a 
‘weight loss plus’ approach to treatment.   

1. Introduction 

Type 2 diabetes mellitus (T2D) is a chronic, complex disease that is 
often comorbid with obesity [1]. Moreover, obesity, specifically a body- 
mass index ≥30 kg/m2, is a known critical risk factor for development of 
T2D [2]. Up to 90% of adults with T2D can be classified as having 
overweight or obesity, and people with obesity are 7-times more likely 
to develop T2D than those without obesity [3]. As such, weight man-
agement is an essential part of T2D control, with weight loss having 
beneficial effects on glycemic control [4] and potentially preventing the 
progression to overt T2D in at-risk individuals with obesity [5]. 

Obesity is an adiposity-based chronic metabolic disorder of energy 
homeostasis, and there are many proposed drivers for its development, 
including genetics, epigenetics, and the gut microbiome [6]. In addition, 
there are behavioral, environmental, developmental and hormonal 
factors that may promote increased energy intake and decreased energy 
expenditure, promoting a sustained net positive energy balance and 
exacerbating the effect of genetic variants linked to body weight [7]. 

Metabolic adaption to obesity over time can also mean that the body 
adapts to a higher body weight, and then actively works to maintain this 
higher weight through counter-regulatory mechanisms that promote 
weight regain [8–10]. This can make maintenance of weight loss diffi-
cult to achieve, as the body responds to weight loss by decreasing 
metabolism or increasing appetite, to maintain resting energy expen-
diture. As such, the use of pharmacotherapies and surgical approaches 
that reduce body weight over a longer duration may help people with 
obesity to maintain weight loss in the longer term. 

Treatment guidelines for T2D from the American Diabetes Associa-
tion (ADA) recommend that people with obesity or overweight may gain 
a benefit from modest (~3–7% of baseline weight) as well as large 
(>10% of baseline weight) magnitudes of weight loss to support the 
treatment of T2D [11]. The following strategies, in a shared decision- 
making model, are suggested: nutrition changes, physical activity, 
behavioral counselling, pharmacologic therapy, medical devices, and 
bariatric surgery [11]. These guidelines further clarify that among 
people with T2D and overweight/obesity, modest and sustained weight 
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loss improves glycemia, blood pressure, lipids, and/or other obesity- 
related conditions, and may reduce the need for additional medica-
tions to control these risk factors. Aside from addressing glucose- and 
weight-control, the guidelines also highlight the importance of consid-
ering other co-morbidities of T2D, such as cardio-renal and hepatic 
disorders, and state that clinicians should be striving to achieve long- 
term improvements in overall health and patient well-being for the 
reduction and prevention of complications [12]. For example, the joint 
treatment algorithm from the ADA and the European Association for the 
Study of Diabetes suggests specific treatments for patients at higher risk 
for cardio-renal complications, including cardiovascular disease, heart 
failure and chronic kidney disease [1,12]. 

It is, therefore, apparent that the optimal approach to the treatment 
of people with both T2D and obesity should include glycemic control 
and some degree of sustained weight loss, in combination with risk 
reduction for associated complications and organ protection, including 
the heart, kidneys, liver and pancreas. In this review, we define this 
treatment approach as ‘weight loss plus’ and describe it as a metabolic 
concept where the nature of energy release from cells, and increased 
time in a catabolic like metabolic state, are central to outcomes. ‘Weight 
loss plus’ is different from the more traditional ‘absolute weight loss’ 
concept, where an individual targets a specific number of kilograms or 
proportion of baseline body weight lost, without taking into account if 
the body is in a catabolic or anabolic state. Experience from weight loss 
trials suggest that targeting absolute weight loss will ultimately result in 
a physiological state of anabolic weight gain. In this state, despite ab-
solute body weight being less than at the beginning of treatment, an 
individual will very likely start regaining body weight soon after 
reaching their weight loss nadir [13,14]. 

In the next section we describe the current guidance on therapeutics 
available for weight control in people with T2D, before focusing on two 
classes of drugs – sodium–glucose cotransporter-2 inhibitors (SGLT2i) 
and glucagon-like peptide-1 (GLP-1)–glucagon dual agonists – which we 
suggest are capable of facilitating the ‘weight loss plus’ approach. 

2. Current management for weight control in people with T2D 

For most people with T2D who have overweight or obesity, the ADA 
recommends an initial approach integrating nutrition, physical activity 
and behavioral therapy, targeting a ≥5% maintained weight loss [11]. 
Although this approach can improve glycemic control in some people, 
these interventions can be demanding to manage, meaning longer-term 
maintenance of weight loss can be challenging. Therefore, if an in-
dividual’s glycemia is inadequately controlled on lifestyle interventions, 
additional pharmacotherapies such as GLP-1 receptor agonists and 
SGLT2is are recommended for people with T2D who might also benefit 
from weight reduction [12]. 

GLP-1 receptor agonists are known to suppress appetite, reduce food 
consumption, and ultimately promote weight loss. Their mechanism of 
action has been extensively described in the literature, and is therefore 
not the focus of this review. SGLT2is reduce the rate of glucose (and 
sodium) reabsorption in the kidneys, leading to glucosuria (calorie loss) 
and overall lower blood glucose levels, thereby improving glycemic 
control and reducing weight. SGLT2is work independently of insulin and 
are unaffected by the function of β cells or mechanisms of insulin 
resistance [15]. The effects of SGLT2is are discussed in more detail in the 
next section. 

In addition to pharmacotherapies for T2D, there are also pharma-
cotherapies for obesity that may be used for people with T2D and 
obesity. The current FDA-approved pharmacotherapies are: phenter-
mine/topiramate [16], naltrexone/bupropion [17], orlistat [18], lir-
aglutide [19] and semaglutide once-weekly [20]. These therapies act 
through a number of mechanisms, including suppressing appetite and/ 
or energy use, affecting satiety, or reducing gastrointestinal absorption/ 
delaying gastric emptying [16–20]. At present it is unknown if these 
mechanisms can result in the long-term benefits associated with the 

‘weight-loss plus’ approach introduced in the previous section. 
A non-pharmacological option shown to be an effective long-term 

treatment for people with T2D and obesity is metabolic (or bariatric) 
surgery, where the capacity of the individual’s stomach pouch is 
reduced with or without bypass of the proximal duodenum [11]. Due to 
the magnitude and rapidity of improvements in hyperglycemia and 
glucose homeostasis observed with metabolic surgery (which was an 
approach traditionally reserved for people with T2D and severe obesity), 
it is now recommended by the ADA for some patients with T2D and less 
severe obesity who have not achieved durable weight loss with other 
pharmacological treatments [11]. In people who have received meta-
bolic surgery, improvements in insulin sensitivity have been observed 
within days/weeks of surgery, long before significant weight loss occurs 
[21–24]. In a study of people with obesity who underwent metabolic 
surgery, a significant increase in insulin clearance was observed within 
1 week, alongside improvements in adipokine secretion [21]. Further-
more, hepatic insulin sensitivity was improved within 12 days of surgery 
[21]. Conversely, it has been shown that intrahepatic fat content does 
not respond as quickly, with reductions only observed over 1 month 
after surgery [25]. These data suggest that significant health benefits 
from metabolic surgery in people with T2D occur as a result of ongoing 
caloric restriction – and its subsequent catabolic effects on multiple 
metabolic pathways – rather than absolute weight loss [21]. 

3. The diverse effects of SGLT2 inhibition 

3.1. Effect on metabolism in relation to weight loss 

The glucosuria caused by SGLT2i has been suggested to mimic 
caloric restriction, with several studies showing an effect on metabolism, 
including a reduction in insulin resistance and a paradoxical increase in 
hepatic glucose production via a compensatory increase in glucagon 
secretion [26–29]. A study of the SGLT2i, dapagliflozin, in 18 people 
with T2D found that after 2 weeks of treatment, hepatic endogenous 
glucose production increased, and was accompanied by an increase in 
fasting plasma glucagon concentration [27]. Two randomized 
controlled trials of dapagliflozin found increased insulin-mediated 
whole body glucose uptake and increased endogenous glucose produc-
tion indicating improved muscle insulin sensitivity, in addition to an 
increased acute insulin response to glucose [27,28]. Another study of 
dapagliflozin in people with T2D found that after 5 weeks there were 
major adjustments in metabolism, including increased fat oxidation, 
improved hepatic and adipose insulin sensitivity and improved 24-hour 
energy metabolism [30]. Increased endogenous glucose production, 
decreased tissue glucose disposal and a shift in fuel utilization towards 
fatty substrates has also been observed with empagliflozin, another 
member of the SGLT2i class [26]. 

These effects may result from glucosuria caused by SGLT2i promot-
ing nutrient-deprivation signaling and restoring mitochondrial health 
and renewal, increasing nutrient oxidation and oxidative phosphoryla-
tion, and reducing the cytosolic accumulation of deleterious glucose and 
lipid by-products [31–33]. These changes in metabolic signaling path-
ways resemble those experienced in an individual after a prolonged fast. 
It may be that this ‘normalization of metabolism’, and potentially a shift 
towards ketone bodies as the metabolic substrate for the brain, heart and 
kidneys [31,34], helps facilitate the ‘weight loss plus’ benefits outlined 
in the previous section. This change in metabolic condition may also 
reflect that the glucosuria caused by SGLT2i drives consistent overnight 
periods of increased catabolism, thereby enabling the body to revert to 
diurnal metabolic rhythms, which may be disrupted in people with 
obesity [31]. An overview of the potential mechanism of benefit is 
provided (Fig. 1) [31–34], which suggests that periods of catabolism 
may eventually change mitochondrial morphology from a fission to a 
sustained fusion state. 

Taken together, these data support the concept that SGLT2i provide 
ongoing caloric restriction and subsequent catabolic effects via multiple 
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metabolic pathways. Similar to the previously described findings that 
the significant improvements in glucose control observed with bariatric 
surgery are mainly due to early metabolic processes – as opposed to 
absolute weight loss [21] – there is also evidence that this is the case 
with SGLT2i. In a post-hoc regression analysis in people with T2D 
receiving dapagliflozin, the attained absolute weight loss (~2 kg) only 
contributed to 6% of the observed reduction in HbA1c [35]. 

3.2. Effect on ectopic fat and the liver in relation to weight loss 

Studies have shown that weight loss with SGLT2i is associated with 
changes in body composition and loss of total body fat mass, including 
reductions in both visceral and subcutaneous adipose tissue [36,37]. 
Excess energy storage at visceral sites results in increased ectopic fat, a 
crucial risk factor for T2D which is also implicated in liver damage [38]. 
This occurs because ectopic fat within the liver can cause liposomes in 
hepatocytes to increase in size, and the resulting pathogenic state is 
described as non-alcoholic fatty liver disease (NAFLD) [39]. If not 
identified early or if ineffectively monitored or managed, NAFLD can 
progress to non-alcoholic steatohepatitis (NASH) and further adverse 
liver-related outcomes including mortality [40]. 

There is a strong bidirectional association between T2D and NAFLD, 
with a meta-analysis of 24 studies involving 35,599 people with T2D 
finding that 20,264 patients also had NAFLD; the resulting pooled 
prevalence was 60% [41]. This bidirectional relationship between T2D 
and NAFLD is complex and is well described in the literature. In brief, 
NAFLD may promote the insulin resistance that drives T2D, while T2D 
can contribute to fat accumulation, inflammation, and subsequent 
deterioration in liver function – this apparent relationship can propagate 
a patient’s morbidity [42,43]. Ectopic fat in the liver is also a risk factor 
for other morbidities such as heart failure and other cardiovascular 
disorders, further highlighting the extensive impact that ectopic fat 

accumulation, and the importance of weight loss, on multiple organ 
systems beyond T2D [44,45]. 

3.3. Effect on the cardio-renal system and organ protection in relation to 
weight loss 

While SGLT2i have been shown to improve glycemic control and 
reduce body weight, they have also demonstrated a number of other 
cardio-renal and organ protective effects, which appear (at least to some 
degree) to be independent of glycemia and weight loss. 

Cardio-renal benefits have been described across several outcome 
studies and real-world reports [46–57]. In the DECLARE-TIMI58 trial of 
people with T2D who had, or were at risk for, atherosclerotic cardio-
vascular disease, dapagliflozin was associated with a significantly lower 
rate of cardiovascular death or hospitalization for heart failure (4.9% vs 
5.8%; HR: 0.83 [95% CI: 0.73–0.95]; p = 0.005) and a numerically 
lower rate of renal events (4.3% vs 5.6%) compared with placebo [46]. 
Similar findings were observed in the EMPA-REG OUTCOME trial, 
which evaluated empagliflozin in patients with T2D who were at high 
risk for cardiovascular events [47]. Empagliflozin reduced the risk for a 
composite of death from cardiovascular causes, nonfatal myocardial 
infarction, or nonfatal stroke by 14% compared with placebo (10.5% vs 
12.1%; HR: 0.86 [95% CI: 0.74, 0.99]; p = 0.04) and also reduced the 
risk for hospitalization for heart failure (2.7% vs 4.1%; HR: 0.65 [95% 
CI: 0.50, 0.85]; p = 0.002) [47] Slower kidney disease progression and 
lower rates of clinically relevant renal events were also observed with 
empagliflozin compared with placebo [48]. These improved cardiac 
outcomes were also observed when assessed in patients with heart 
failure in the DAPA-HF trial of dapagliflozin and in the EMPEROR- 
Reduced and -Preserved trials of empagliflozin [49–51]. Improved 
renal outcomes were also observed with dapagliflozin in the DAPA-CKD 
study and with empagliflozin in the EMPA-KIDNEY study, in people with 

Fig. 1. Proposed metabolic mechanism of benefit with SGLT2 inhibition [31–34]. ATP = adenosine triphosphate; BOHB = β-hydroxybutrate; FFA = free fatty acid; 
mTOR = mammalian target of rapamycin; SGLT2 = sodium–glucose cotransporter-2. 
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chronic kidney disease (with or without T2D) [52,53]. Beneficial car-
diorenal outcomes have also been seen using real-world data, with the 
CVD-REAL study of 309,056 people with T2D who had been newly 
prescribed an SGLT2i or an alternative glucose-lowering drug finding 
significantly lower rates of hospitalization for heart failure (HR: 0.61 
[95% CI: 0.51–0.73]), death (HR: 0.49 [95% CI: 0.41–0.57]), and hos-
pitalization for heart failure or death (HR: 0.54 [95% CI: 0.48–0.60]) 
with the use of SGLT2i (p<0.001 for all) [54]. 

At present, we cannot confidently or quantitatively separate the 
contribution of weight loss with SGLT2i from other concurrent benefi-
cial effects on disease drivers. However, we do know that the benefits 
observed in the above-mentioned cardio-renal studies occurred in 
conjunction with the modest amount of weight loss that is characteristic 
of SGLT2 inhibition. For example, in DAPA-HF, patients treated with 
dapagliflozin experienced a relatively modest mean weight loss of ~0.9 
kg over the study period [49]. These cardio-renal benefits may some-
what relate to the osmotic diuresis associated with SGLT2i treatment, 
but we suggest that they also relate to ongoing catabolic effects on 
metabolism. Indeed, modest weight loss (resulting in improved insulin 
sensitivity and decreased sympathetic nervous system activity) has been 
shown to normalize blood pressure, without individuals reaching a pre- 
described ‘ideal’ weight [58]. However, maintenance of weight-loss has 
been shown to be of key importance with respect to these outcomes. For 
example, in a study of post-bariatric surgery patients, it was demon-
strated that a given weight regain in the later part of the study had 
almost twice as large an absolute impact on final blood pressure as: i) the 
same degree of weight loss in the beginning of the study, or ii) a cor-
responding difference in absolute weight at inclusion in the study [59]. 

Taken together, these studies provide evidence that a large weight 
loss is not required to achieve a beneficial effect on cardio-renal out-
comes, and supports the ‘weight loss plus’ approach that pharmaco-
therapies that offer modest sustained weight loss can improve cardio- 
renal outcomes and in turn provide long-term organ protection. 

4. GLP-1–glucagon dual agonism may also facilitate a ‘weight 
loss plus’ approach 

Various combination approaches, with co-agonism of multiple 
gastric hormone signaling axes, are currently being evaluated for the 
treatment of people with T2D and obesity or other metabolic disorders. 
GLP-1 and glucose-dependent insulinotropic polypeptide (GIP) dual 
agonism is now approved for the treatment of T2D, and early-phase 
trials of GLP-1, glucagon and GIP receptor tri-agonism and GLP-1 and 
glucagon dual agonism have also been performed [60]. In the remainder 
of this section we will focus on the dual agonism of the GLP-1 and 
glucagon axes. 

GLP-1 modulates glucose homeostasis through stimulation and 
suppression of insulin and glucagon release, respectively, which result in 
suppressive effects on appetite and food consumption, and are also 
partially responsible for the feeling of postprandial satiety [61]. As 
glucagon receptor activation drives hepatic glucose production and 
lipolysis and increases energy expenditure [60,62], combining this 
approach with GLP-1 receptor agonism may offer a two-pronged 
approach for caloric restriction. The benefit of this type of dual ago-
nism has been shown by the effect of oxyntomodulin, an endogenously 
secreted dual agonist of the GLP-1 and glucagon receptors, the secretion 
of which increases after metabolic surgery and is thought to contribute 
to subsequent weight loss and improved glycemic control [63]. 
Furthermore, a systematic review and meta-analysis of the GLP- 
1–glucagon dual agonist, cotadutide, has demonstrated that in people 
with T2D significant improvements in body weight, HbA1c, glucose area 
under the curve and fasting plasma glucose were observed versus pla-
cebo [64]. 

However, we suggest that the benefits of GLP-1–glucagon dual ago-
nism could potentially go beyond quantitative decreases in glycemia and 
weight, and that similar to the SGLT2 inhibition described in the 

previous section, normalization of metabolism may be achieved with 
this dual agonism that may in turn facilitate ‘weight loss plus’ benefits in 
people with T2D [64,65]. We propose that this is achieved by appetite 
suppression conferred by GLP-1 mimicking a caloric restriction diet, in 
combination with glucagon increasing liver glycogen usage and stimu-
lating lipolysis and hepatic ketogenesis, driving liver fat loss in a similar 
manner to that observed with physical activity [62,66–68]. As such, 
people with T2D who undergo GLP-1–glucagon dual agonism, may 
experience changes and benefits as if they were in effect undergoing 
caloric restriction and physical activity. 

In a study of cotadutide in people with T2D and overweight/obesity, 
significant and sustained weight loss was observed over 41 days, with 
patients experiencing a reduction in subcutaneous and visceral adipose 
tissues [69]. Furthermore, cotadutide promoted a significant reduction 
in liver fat over the short study period, which surpassed what would 
have been expected through absolute body weight loss alone [69] In a 
longer 54-week study of cotadutide in people with T2D and overweight/ 
obesity, cotadutide significantly decreased HbA1c and body weight 
compared with placebo [70]. Interestingly, cotadutide had similar ef-
fects on glycemic control to the GLP-1 mono-agonist, liraglutide, but was 
associated with significantly larger improvements in aspartate and 
alanine transaminase levels and with a trend for larger improvements in 
triglycerides [70]. Indeed, for a given amount of weight loss, cotadutide 
led to removal of glycogen and liver fat to an extent that was not 
observed with liraglutide [70,71]. Data from a phase II study in people 
with T2D and chronic kidney disease also suggest a benefit with cota-
dutide on urinary albumin-to-creatinine ratios, with a reduction in 
albuminuria that again was more pronounced than would be expected 
with GLP-1 mono-agonism [72]. Preclinical data also suggest that 
cotadutide can increase mitochondrial turnover and improve mito-
chondrial oxidative capacity through direct stimulation of glucagon 
receptor signaling [73]. 

Collectively, these data highlight the potential of targeting GLP- 
1–glucagon dual agonism in people with T2D to provide benefits beyond 
improvements in glycemic control and body weight reductions. Until 
longer-term cardiovascular outcomes data are available, however, we 
can only speculate if GLP-1–glucagon dual agonists will have protective 
effects on other organ systems, as has been observed with SGLT2 
inhibition. 

5. Conclusion 

Weight loss is essential in the management of people with T2D and 
overweight/obesity and guidelines recommend at least moderate weight 
loss, with use of pharmacotherapies suggested for those with comor-
bidity risk factors. Importantly, it is now widely accepted that the goal of 
T2D treatment should not solely be glucose control and weight loss, but 
instead should be centered on sustained improvements in long-term 
outcomes, organ protection, and extending the years of quality-of-life 
benefits that accompany such improvements. We propose that this 
‘weight loss plus’ approach can be realized by addressing the underlying 
pathophysiology of T2D and targeting normalization of metabolism. We 
have described how the modification of catabolism that occurs with 
SGLT2i appears to drive other metabolic processes, such as lipolysis and 
ketogenesis in the liver, which ultimately have effects on other organ 
systems and can facilitate organ protection and long-term cardio-renal 
benefits. Furthermore, we suggest that these metabolic processes will 
also be central to organ protection in future trials with GLP-1–glucagon 
dual agonists. The mechanism of action of these therapies has the po-
tential to keep the body in a catabolic or exercise-like state over longer 
periods of time, a phenomenon that has not been observed with drugs 
whose benefits predominantly arise from absolute weight loss. 
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