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In recent decades, the epicardial adipose tissue (EAT) has been at the forefront of

scientific research because of its diverse role in the pathogenesis of

cardiovascular diseases (CVDs). EAT lies between the myocardium and the

visceral pericardium. The same microcirculation exists both in the epicardial fat

and the myocardium. Under physiological circumstances, EAT serves as cushion

and protects coronary arteries and myocardium from violent distortion and

impact. In addition, EAT acts as an energy lipid source, thermoregulator, and

endocrine organ. Under pathological conditions, EAT dysfunction promotes

various CVDs progression in several ways. It seems that various secretions of

the epicardial fat are responsible for myocardial metabolic disturbances and,

finally, leads to CVDs. Therefore, EAT might be an early predictor of CVDs.

Furthermore, different non-invasive imaging techniques have been proposed to

identify and assess EAT as an important parameter to stratify the CVD risk. We

also present the potential therapeutic possibilities aiming at modifying the

function of EAT. This paper aims to provide overview of the potential role of

EAT in CVDs, discuss different imaging techniques to assess EAT, and provide

potential therapeutic options for EAT. Hence, EAT may represent as a potential

predictor and a novel therapeutic target for management of CVDs in the future.
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1 Introduction

Cardiovascular disease (CVD) is a considerable health

condition that affects millions of individuals all over the world.

To date, many risk factors are associated with the increasing

incidence of CVDs. Among them, obesity has gained wide

scientific interest. Obesity is closely associated with many other

cardiovascular disease risk factors such as hypertension,

dyslipidemia, metabolic syndrome, and diabetes mellitus. It is

well-established that increased adiposity releases plenty of

inflammatory cytokines that lead to a low-grade inflammatory

microenvironment, endothelial dysfunction, and oxidative stress,

and finally results in several CVDs (1, 2). The epicardial adipose

tissue (EAT) is the visceral fat that deposits between the visceral

pericardium and the myocardium and has direct contact with the

myocardium and coronary artery (3). It usually presents as a white

adipose tissue, but it also displays brown or beige fat-like features

(4). Physiologically, EAT serves as thermoregulator and provides

energy to the myocardium. Furthermore, EAT displays as an

endocrine organ with metabolic activities and secretes bioactive

molecules that affect the heart and coronary arteries via paracrine or

vasocrine effects (5, 6). In recent years, evidence has shown that

EAT is associated with CVDs. Therefore, different non-invasive

imaging techniques have been proposed to identify and assess EAT

to evaluate the risk of CVDs.

There are mainly three non-invasive imaging techniques that are

used to evaluate EAT. First, echocardiography is used to evaluate EAT,

which measures two-dimensional EAT thickness. It is an inexpensive,

readily available, fairly accurate, and reproducible technique. Cardiac

computed tomography (CCT) and cardiac magnetic resonance (CMR)

imaging allow for three-dimensional EAT estimation. The former has

higher space resolution and reproducibility for fat quantification, but it

has limitations of radiation exposure and complex manual

segmentation. However, the latter has no radiation exposure, but it is

limited by space resolution, reproducibility, and higher cost. CMR is

also difficult to perform in obese patients.

In this review, we summarize anatomical, physiological, and

pathophysiological characteristics of EAT and focus on the

potential role of EAT in CVDs and discuss different imaging

techniques to assess EAT. In recent years, several papers have
Frontiers in Endocrinology 02
shown that EAT measurement via non-invasive imaging

techniques serves as an important diagnostic tool to assess

cardiovascular risks. Therefore, EAT may be a potential

biomarker to monitor CVDs and their complications.
2 Epicardial adipose tissue: anatomy
and physiology

2.1 Anatomy

The adipose tissue surrounding the heart can be divided into

EAT, pericardial adipose tissue, paracardial adipose tissue, and

perivascular adipose tissue (Figure 1). EAT lies between the

myocardium and visceral pericardium and is made up of

adipocytes, ganglia, nerves, and inflammatory, stromovascular,

and immune cell (6). The pericardial adipose tissue (PAT)

consists of epicardial and paracardial fat depots (7). The EAT and

PAT are the entire pericardial fat. They have different embryological

origins but share similar morphological features. EAT is derived

from the splanchnopleuric mesoderm, and PAT is derived from the

thoracic mesoderm (7).

EAT makes up 20% of the cardiac mass and covers 80% of the

cardiac surface under normal physiological condition. It is non-

homogeneously distributed around the heart (6, 8). EAT is mostly

localized at the cardiac base and apex, in the atrioventricular and

interventricular grooves, and around the coronary arteries. It is

thicker around the right ventricle than around the left ventricle. In

general, EAT can be differentiated into peri-coronary and peri-

myocardial EAT. The former is located directly around or on the

coronary artery adventitia; the latter is located just over the

myocardium and is in direct contact with the myocardium (9).

Vascular supply by coronary arteries in EAT forms part of the

perivascular adventitia (10). It is thought to play a protective

mechanical role against the tension and twist of an arterial pulse

(11, 12). The increased EAT might result in cardiac disorders with

increased arrhythmogenicity (13). It is hypothesized that EAT

increases fatty infiltrates in the proximity of myocytes that leads

to structural remodeling and abnormal impulse generation, which

contributes to cardiac arrhythmias (13).
FIGURE 1

The anatomy of epicardial adipose tissue.
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2.2 Physiology

2.2.1 Physical protective barrier and energy
fat source

The epicardial fat surrounds the coronary arteries and

myocardium; hence, EAT is considered to act as a buffering system

in normal physiological conditions. It protects the heart and coronary

arteries from mechanical deformation and facilitates vascular

remodeling (14). In addition, EAT has thermogenic function that

protects the heart from hypothermia. The increased thermogenic

potential is due to brown adipocytes in EAT. Since EAT is more

lipolytic than other adipose tissue depots, it releases abundant free fatty

acids (FFAs) during high energy demand period, which is the main

source of energy for the myocardium (14–16). In addition, EAT is

present close to the myocardium and acts as a buffer to protect the

heart from exposure to excessively high FFAs and lipotoxicity (17, 18).

2.2.2 Adipose tissue properties
Based on embryological, histological, and functional aspects,

adipose tissue can be divided into two major groups: white and

brown adipose tissue. The former has relatively few mitochondria

and a single big lipid droplet, while the latter has multiple small lipid

droplets and abundant mitochondria (19). EAT is basically a white

adipose tissue but also has brown and beige fat-like features. It

releases many mediators through expressing thermogenic genes

related to brown and beige adipose tissues, such as tumor necrosis

factor alpha (TNF-a), interleukin (IL)-1b, IL-1 receptor antagonist,

IL-6, IL-8, IL-10, C-reactive protein (CRP), and plasminogen active

inhibitor 1 (20). These factors may be involved in the communication

between EAT andmyocardial tissue through endocrine effect because

they share the same capillary circulation (19). It is reported that EAT

is twice as metabolically active as normal white adipose tissue, which

is related to lipolysis and free fatty acid release. In addition, EAT has

an increased capacity to release free fatty acids into the blood

circulation and decreased glucose consumption compared to other

adipose tissues (18). It also alters the bioavailability of adipokines and

leads to adipocyte hypertrophy, tissue hypoxia, inflammation, and

oxidative stress (7, 21). Brown fat generates heat in response to cold

temperature and autonomic nervous system activation. Like brown

fat, EAT also protects the myocardium from hypothermia.

2.2.3 Endocrine organ
Besides acting as energy depot, EAT also serves as an endocrine

organ that regulates the heart homeostasis. There are two classical

interaction mechanisms between the myocardium and the EAT:

vasocrine and paracrine. On the one hand, adipokines and FFAs, as

vasocrine signaling molecules, are released from EAT that enters the

vasa vasorum directly and are transported downstream into the

arterial wall. On the other hand, EAT-derived adipokines diffuse in

interstitial fluid that cross the vascular wall (adventitia, media, and

intima), and finally interact with vasa vasorum, endothelia, and

vascular smooth muscle cells of the coronary arteries (18, 22).

However, extracellular vesicles, containing cytokines and

microRNAs have been confirmed as new communication modes

(23). FFAs are the main energy source of the heart. EAT secretes

vasoactive products that regulate coronary arterial tone to facilitate
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the FFA influx. In addition, fatty acid binding protein-4, expressed

by EAT, may participate in the intracellular transport of FFAs from

EAT into the myocardium (24).
3 Cardiac imaging of EAT

3.1 Echocardiography

The advantages of echocardiography to measure EAT thickness

include low cost and more convenient, accessible, and reproducible

(Table 1). However, there are few limitations. It is operator dependent.

EAT is located in some areas of the heart that cannot be visualized with

the ultrasound. In addition, obese patients have poor acoustic window.

Although EAT thickness is considered as a useful diagnostic tool, the

normal value of EAT is still undetermined. Iacobellis et al. (25, 26)

reported a transthoracic echocardiographic method of evaluating EAT

thickness on the free wall of the right ventricle from both parasternal

long- and short-axis views. They choose the right ventricle to measure

EAT because it is considered as the thickest absolute epicardial fat layer

(27), and parasternal long- and short-axis views allow the most

accurate measurement of EAT on the right ventricle with optimal

cursor beam orientation. In addition, they reported an average

epicardial fat thickness of 7 mm in men and 6.5 mm in women for

standard clinical references (28). Another study that enrolled 459

patients with Grade I and II essential hypertension demonstrated

that patients with EAT thickness >7 mm exhibited higher left

ventricular mass index, diastolic dysfunction, and increased carotid

stiffness and intima-media thickness (29). In addition, Islas et al.

reported that acute myocardial infarction patients with EAT >4 mm

have worse left ventricular systolic function and have large infarct size.

EAT >4 mm is an independent predictor of major adverse

cardiovascular events at 5-year follow-up (30).

In addition, Parisi et al. presented a novel method to measure EAT

thickness at the level of the fold of Rindfleisch, a pericardial recess where

the parietal pericardium does not exert a mechanical compression on

visceral fat (31). Moreover, echo-EAT thickness showed a significant

correlation with the CMR-EAT thickness, both measured at the

Rindfleisch fold. Although echocardiography is convenient and

reproducible, it cannot reflect the variability in EAT thickness or

EAT volume accurately. Multidetector CT and cardiac MRI can

provide a more accurate and volumetric quantification of EAT.
3.2 Cardiac computed tomography

CCT is another imaging modality used to measure EAT.

Although CCT has high spatial resolution and provides three-

dimensional view of the heart, it is costly and requires radiation

exposure (Table 1). Currently, coronary CT angiography (CTA)

provides an optimal method that enables the characterization of

morphological changes in the pericoronary adipose tissue (PCAT)

and simultaneous assessment of coronary atherosclerosis (32). CT

attenuation of the adipose tissue reflects morphological

derangements of adipocytes that are exposed to the effects of local

vascular inflammation. EAT volume and density are considered as
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independent markers of adverse cardiometabolic risk that can be

measured by CCT (33, 34). Additionally, increased EAT volume is a

predictor of CVDs that include obstructive coronary stenosis,

myocardial ischemia, and coronary syndromes (33, 35–37).

However, the upper cutoff CT value of normal EAT remains

undermined. Dey et al. reviewed literatures that reported different

inclusion criteria with CT value varying between 125.0 and 139.4

cm3 for men and 119.0–125.0 cm3 for women (38). In addition,

EAT density or attenuation has also been associated with CVDs. It

is reported that EAT attenuation is associated with coronary artery

calcification, acute myocardial infarction, and coronary adverse

events (34, 39–41). PCAT is considered as a metric of local

vascular inflammation. The widely accepted definition of PCAT

by coronary CTA is voxels ranging from −190 to −30 Hounsfield

units, with volume of interest that extends to an orthogonal distance

equivalent to the diameter of the target vessel (42). Antonopoulos

et al. presented a method to detect coronary inflammation by

characterizing the changes in PCAT CT attenuation (43). They

have demonstrated that the average attenuation of EAT is inversely

related to adipogenic gene expression and adipocyte size in a large

cohort of patients who have undergone cardiac surgery.

Nowadays, although manual segmentation of EAT quantification

is the method of choice, it is operator dependent, time consuming, and

not suitable for routine clinical practice. Thus, artificial intelligence that

includes machine and deep learning received more attention to obtain

fast, automatic, and reliable measures of EAT by CCT.
3.3 Cardiac magnetic resonance

CMR is now considered as the gold standard for measuring

visceral adipose tissue (44–46). CMR provides excellent

visualization of visceral and parietal pericardia. Cardiac imaging

is not affected in patients with excess subcutaneous fat. It enables

easy assessment and volumetric quantification of EAT. Although

there is no use of radiation and contrast agents, CMR is expensive
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and time consuming. It is also difficult to perform in patients with

claustrophobia (Table 1). Additionally, CMR can differentiate

cardiac fat into EAT and paracardial fat.

MRI provides explicit parameters about EAT volume and mass

by using the spin-echo sequence technique (2, 47). Manual

contouring of EAT area at end-diastole during cardiac cycles

provides precise quantification of EAT volume (47). A 3D-Dixon

sequence (an electrocardiography triggered and respiratory

navigator gated 3D-gradient echo pulse sequence was used for

cardiac Dixon imaging) has been shown to be a reliable method

for EAT quantification in studies (48). Dixon method separates fat

and water signal via voxel intensity differences present between in-

and opposed-phase MR images (48). Rami Homsi et al. (49)

enrolled 34 healthy volunteers (22 men; BMI range, 14–42 kg/m

(2); age range, 21–79 years) and measured parameters of pericardial

and epicardial adipose volume (PAV, EAV) using a 3D-Dixon-

based CMR approach. They found that the average EAV was 77.0±

55.3 ml, and PAV was 158.0 ± 126.4 ml; both were highly

correlated. Therefore, they proposed a 3D-Dixon-based method

that allows accurate measurement of cardiac fat volume and

provides a valuable tool for cardiovascular risk stratification.

Moreover, CMR measures EAV, left ventricular compliance,

pulse wave velocity, and other indicators simultaneously, which can

evaluate aortic stiffness, myocardial strain, and fibrosis (50, 51). A

combined measurement by CMRmay support the evaluation of risk

and prognosis of CVDs.
4 Epicardial adipose tissue: a new
biomarker for cardiovascular disease
risk assessment

Evidence strongly supports the role of structural and functional

changes of EAT in the pathogenesis of various cardiovascular

diseases (Figure 2).
TABLE 1 Comparison among the main imaging techniques for the evaluation of EAT.

Imaging techniques Echocardiography Computed tomography imaging Magnetic resonance imaging

Availability readily available not readily available not readily available

Invasive non-invasive minimally invasive minimally invasive

Cost low medium high

Radiation no yes no

Operator-dependent yes no no

Definition low high medium

Scan time quick quick long

Patient limitation severely obese allergic to contrast media claustrophobia

Attenuation quantification no yes no

EAT thickness assessment yes yes yes

EAT volume assessment No yes yes

Coronary artery calcification No yes no
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4.1 Atherosclerosis

Atherosclerosis is characterized by deposition of immune cells

and cholesterol in the subendothelial space of arteries. As EAT is

a metabolically endocrine tissue with abundant proinflammatory

cytokines, it is considered to be associated with atherosclerosis. It

is reported that EAT leads to CVDs by involving in the

mechanism of inflammation, insulin resistance, and oxidative

stress. C1q TNF-related protein 3 (CTRP3) is an adipokine

with anti-inflammatory and cardioprotective properties. It has

also been demonstrated to activate nuclear factor kappa B (NF-

kB) signaling and PI3K/Akt/eNOS pathway to attenuate obesity-

related inflammation responses and insulin resistance and thus

regresses atherosclerosis (52, 53). A study involving 34 patients

with elective post-coronary artery by-pass graft (post-CABG)

showed that EAT with lower CTRP3 mRNA level is closely

associated with coronary atherosclerosis and cardiac dysfunction

(54). IL-1b and angiopoietin-like-4 (an inhibitor of lipoprotein

lipase secreted by adipose tissue) were highly expressed in EAT

patients with coronary artery diseases (55). Adipocyte oxidative

stress, characterized by the imbalance of ROS and redox

signaling, is related to metabolic CVDs. It has been

demonstrated that EAT can produce more ROS compared to

subcutaneous adipose tissue because it has higher expression of

NADPH components gp91phox and p47 phox (56). The

hyperglycemia and insulin resistance accelerate adipocyte

oxidative stress (57–59). A recent study showed that patients

with severe coronary atherosclerosis, glucose and insulin

metabolic disorder, and serum adiponectin reduction are

significantly linked with higher oxidative stress in EAT

adipocytes (60). In addition, EAT thickness was related with

endothelial dysfunction (61), and it was concluded that EAT may

predict the early reversible stages of atherosclerosis. The data

from different studies showed that increased EAT volume is

involved in high-risk coronary plaque formation. In addition,
Frontiers in Endocrinology 05
patients with high-risk coronary plaque have quantitatively higher

EAT volume (35, 62). A prospective cohort study found that EAT

and plasma IL-8 level are associated with elevated coronary artery

calcium score, which is an independent predictor of coronary

atherosclerosis (63).

EAT functions as an endocrine organ. Recent studies have

focused on the signaling molecules released by EAT. A novel

mechanism for EAT-induced CVDs is the secretion of exosomes

that contain non-coding RNAs, especially microRNAs (miRNAs),

which are subsequently absorbed by endothelial cells or

cardiomyocytes (64–66). A previous study verified that

increased has-miRNA-34a is associated with coronary artery

diseases (67). A recent micro- and lncRNA microarrays

followed by GO-KEGG functional enrichment analysis

demonstrated a sex-dependent unique mi/lncRNAs. They are

involved in inflammation, adipogenesis, and cardiomyocyte

apoptosis. They are also modified in human epicardial fat in

both patients with and without coronary artery disease. Examples

include has-miR-320 family, hsa-miR-21, hsa-24-3p, hsa-miR-

378, and hsa-miR-33 (68).
4.2 Arrhythmias

Atrial fibrillation (AF), the most common arrhythmia, is the

major cause of ischemic stroke, heart failure, and cardiovascular

mortality. Atrial electrophysiological and structural remodeling is

the underlying mechanism of AF, which is characterized by

myocardial fibrosis, and the underlying mechanism is

heterogeneous (69). The mechanism of arrhythmias includes

adipocyte infiltration, pro-fibrotic, and pro-inflammatory

paracrine effects, oxidative stress, and other pathways (69–71). A

study in 215 acute embolic stroke patients showed that increased

periatrial EAT thickness on the left side is associated with AF (72).

In patients with AF who have undergone pulmonary vein
FIGURE 2

The increased EAT contributes to the onset and the poor prognosis of cardiovascular diseases. CVDs, cardiovascular diseases; EAT, epicardial
adipose tissue; ROS, reactive oxygen species.
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isolation, EAT volume is associated with AF recurrence (73). In

another study, most of the persistent AF patients who are not

anticoagulated and with increased periatrial EAT thickness were

also associated with an increased risk of cardiovascular events

(74). Julia and colleagues found that patients with lone AF have

larger volume and higher attenuation of EAT compared with

patients without cardiac arrhythmias (75). Moreover, non-

uniformity of EAT radiomic gray level is the only independent

predictor of post-ablation AF recurrence within 12 months follow-

up (75).

EAT was found to be significantly higher in the patients with

nephrotic syndrome and in patients with ECG showing the atrial

depolarization and ventricular repolarization (76). Another study

demonstrated that EAT volume exerts reverse relationship with heart

rate recovery that indicates the potential adverse effects of EAT on

cardiac autonomic function (77). It may result from the pathogenic

effect of local inflammatory cytokines secreted from nearby visceral

fats. As an endocrine organ, EAT influences adjacent myocardium by

secreting a series of bioactive molecules, such as exosomes carrying

circular RNAs (circRNAs), and regulates atrial electrical and

structural remodeling. Zheng and colleagues identified differently

expressed circRNA in EAT via RNA sequencing, such as

hsa_circRNA_000932 and hsa_circ_0078619, which may work as

endogenous RNAs to capture various miRNAs miR-103a-2-5p and

miR-199a-5p, and subsequently regulate the expression of

cardiovascular disorders-related protein-coding genes (78).
4.3 Aortic stenosis

With the global epidemiological increase in elderly population,

AS becomes a challenging disease, representing an important cause

of morbidity, hospitalization, and death in aged population.

Generally, AS is considered as the result of a complex process,

driven by inflammation and involving multifactorial pathological

mechanisms promoting valvular calcification and valvular bone

deposition (79). Importantly, obesity-related chronic systemic

inflammation is associated with a significant increase in the

amount of EAT, the cardiac visceral fat, which is considered a

transducer of the adverse effects of systemic inflammation and

metabolic disorders on the heart (80). As EAT can mediate the

deleterious effects of systemic inflammation on the myocardium, it

may contribute to the pathogenesis of calcific AS. Parisi et al.

hypothesized that EAT may participate in the inflammatory

burden of aortic stenosis (81). Mahabadi et al. found that EAT

thickness, quantified using transthoracic echocardiography, was

significantly associated with severe aortic stenosis, independent of

traditional risk factors (82). Moreover, Arangalagea et al. showed

that EAT volume was independently associated with LV mass in a

prospective cohort of patients with aortic stenosis (83). These

results support the hypothesis of a potent proinflammatory

activation of EAT in patients with AS and suggest the

involvement of cardiac visceral fat in inflammatory and

atherogenic phenomena occurring in the AV and promoting its

degeneration and calcification (79, 81).
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4.4 Thromboembolism

The relationship between AF and thromboembolism is well

established. Recently, preliminary investigations demonstrate the

possible relationship between EAT and AF-related thromboembolism.

In a recent study in AF patients who developed stroke, EAT volume was

significantly increased. Hence, total EAT is considered as an

independent predictor of higher risk of stroke occurrence after AF

diagnosis (84). In addition, EAT thickness was higher in non-valvular

AF patients compared to healthy subjects. EAT thickness was also

related with the CHA2DS2−VASc score in patients with non-valvular

AF (85). A multicenter study in Korea enrolled 3,464 individuals and

showed that larger peri-atrial EAT volumewas independently associated

with post-ablation embolic stroke regardless of AF recurrence and

CHA2DS2-VASc score (86). Patients with post-ablation embolic

stroke had a greater prevalence of prior thromboembolism, lower

creatinine clearance, larger left atrial diameter, frequent AF

recurrence, and abundant total and peri-atrial EAT (86).

However, another study showed that EAT thickness was

directly related with CHA2DS2-VASc scores in patients with

sinus rhythm (87). A single-center retrospective study enrolled

202 patients and showed that a thickened EAT was associated

with low left atrial appendage flow velocity and had increased risk of

thromboembolic phenomena in the presence of AF (88). The

mechanism of correlation between EAT and embolic stroke might

be explained by EAT-mediated atrial cardiomyopathy, which is

characterized by LA enlargement, increased wall stiffness,

hypercontractility, endothelial dysfunction, and impaired

reservoir function that lead to atrial prothrombotic milieu (84, 86,

89, 90).
4.5 Heart failure

EAT is associated with risk factors for HF, such as obesity,

metabolic syndrome, hypertension, and diabetes. Numerous studies

focused on the relationship between EAT and HF. A study enrolled

72 type-2 diabetes subjects with normal cardiac function and

verified that subjects with higher EAT thickness showed a lower

cardiac workload, worse cardiopulmonary function and subclinical

cardiac systolic dysfunction after maximal cardiopulmonary

exercise test with similar duration of exercise (91). Another study

found that HF patients have higher EAT than the control group.

Hence, EAT can be considered as a prognostic predictor of HF with

preserved ejection fraction (HFpEF) (92). In a prospective

multinational PROMIS-HfpEF cohort, increased EAT has been

shown to be associated with cardiac structural alterations,

adiposity, inflammation, lower insulin sensitivity, and endothelial

dysfunction related to HFpEF pathology (93). In addition, a

proteomic analysis of EAT from 2,416 HFpEF patients found that

EAT proteins such as CD36, POSTN, and TRAP1 were

differentially expressed in HFpEF (94). In another study,

increased EAT thickness was found closely related with brachial–

ankle pulse-wave velocity in HFpEF patients and indicated that
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thicker EAT may be independently associated with arterial

stiffness (95).

Interestingly, in a multicenter cohort study, EAT thickness was

found to be greater in patients with HFpEF than HFrEF/HFmrEF.

In addition, the EAT thickness is associated with reduced left atrial

and left ventricle function in HFpEF, but with better function in

HFrEF/HFmrEF (96). Similar results were also found in post-

ablation AF patients (97). However, in patients with non-

ischemic cardiomyopathy, EAT volume was found to be greater

in the LV reverse remodeling group than in the non-remodeling

group, which suggests that EAT volume is an independent predictor

of LV reverse remodeling in patients with non-ischemic

cardiomyopathy (98). Findings by Hao and colleagues indicate

that EAT mediates cardiomyocyte apoptosis after acute

myocardial infarction through secretion of complement factor D

and activation of poly ADP-ribosepolymerase-1 (99), which may

subsequently result in heart failure. A recent study in mice model

with preserved ejection fraction found that inflammasome-

mediated pyroptosis pathway was activated in the EAT.

Moreover, suppression of pyroptosis-related protein gasdermin D

in cultured EAT could lower cardiomyocyte inflammation and

autophagy (100).
4.6 COVID-19-related cardiac syndrome

The coronavirus disease 2019 (COVID-19) pandemic has

spread worldwide with more than 6 million deaths recorded

globally (101). Besides pneumonia, myocardial injury is a typical

COVID-19-related complication and is present in 20%–30% of

patients that contributed to 40% of deaths (102). Patients with

larger EAT seem to get higher cardiac risk in COVID-19 patients

(103, 104), with worse outcomes (105). Moreover, the type of

adipose tissue and its distribution seems to play a crucial role in
Frontiers in Endocrinology 07
COVID-19 severity (101). It is well-known that EAT has direct

anatomical and functional contiguity with the myocardium, and

these two tissues share the same microcirculation, which support

the pathophysiology of COVID-19-related cardiac injury.

Therefore, clinical studies and practice on COVID-19-related

CVDs have focused on cardiac adipose tissue. Recent studies have

shown that in patients with COVID-19, higher EAT volume and

lower EAT density may be independent predictors of an

unfavorable disease prognosis, including cardiovascular

complications and death (104, 106, 107). It is reported that EAT

is like a highly inflammatory region with dense macrophage

infiltrates and highly enriched proinflammatory cytokines, which

are overexpressed in COVID-19 patients with CVDs that facilitates

viral spread and augments immune response (18, 108, 109).

COVID-19-related cardiac injury is characterized by decreased

angiotensin-converting enzyme 2 (ACE2) and entry ligand

receptor, with pathogenetic role (20, 108). Previous studies

indicated that ACE2 deficiency mediates myocardial inflammation,

and ACE2 reduction is associated with EAT inflammation (110). In

addition, ACE2 downregulation leads to the proinflammatory

polarization of M1 macrophages in EAT and results in the

dysregulation of the inflammatory response, which is highly

observed in COVID-19. Moreover, ICU patients with a higher EAT

volume had a higher risk of developing pulmonary embolism

compared to those with lower EAT volume (111). Therefore, EAT

plays a role in COVID-19-related CVDs and has potential to become

a clinically measurable and modifiable therapeutic target.
5 Therapeutic options in EAT

We have discussed that EAT is an independent risk factor and

has potential to become a therapeutic target for CVDs. Hence,

studies have focused on reducing EAT (Figure 3).
FIGURE 3

Therapeutic options affecting the epicardial adipose tissue.
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5.1 Lifestyle intervention

EAT is exacerbated by several unhealthy life styles, such as

sedentary life, weight gain, and an unbalanced diet (112, 113).

Lifestyle intervention based on dietary control and regular physical

activity is an essential “first-line” strategy for the clinical management

of obesity. Physical exercise and strict diet control reduce visceral fat,

including EAT, and improve cardiac function (114, 115). A recent

study showed that bad childhood experience is associated with

increased EAT in children with depression and reduced physical

exercise (116). Studies have indicated that regular physical activity is

an effective non-invasive strategy for reducing EAT that may provide

beneficial effects on the cardiovascular system (113, 117, 118). Several

studies showed that aerobic exercise decreases EAT thickness

significantly in obese men (118, 119). Another study from India

showed that the 12-week regular Taekwondo training reduces the

EAT thickness significantly in elderly women with hypertension

(120). Another study from Turkey enrolled 74 obese women and

found that long-term, sustained weight loss reduces epicardial fat

thickness significantly as assessed by echocardiography, which can be

used as an indicator of metabolic profile for weight reduction in obese

women (121). Moreover, the decrease in epicardial fat thickness was

significantly higher in patients who reversed their metabolic

syndrome diagnosis with weight loss than in those whose metabolic

syndrome status was unchanged. Iacobellis et al. reported significant

reduction in epicardial fat in severely obese patients after 6 months of

low-calorie diet (122). However, a systematic review and meta-

analysis conducted by Rabkin and Campbell (123) showed that diet

and bariatric surgery markedly reduced EAT, but this was not

achieved with exercise. Moreover, a reduction in body mass

index was significantly associated with reduced EAT by diet-

based interventions.
5.2 Medical treatment

The impact of medical treatment on EAT is worth investigating.

The use of statin is associated with decreased adipokine release from

visceral EAT.

Parisi et al. (124) reported that statin therapy was significantly

associated with lower EAT thickness and with lower levels of EAT-

secreted inflammatory mediators. Of note, there was a significant

correlation between EAT thickness and its proinflammatory status.

Among lipid-lowering agents, atorvastatin has more significant

effect than simvastatin and ezetimibe (125). Other studies also

demonstrated that statins reduce EAT volume (124, 126).

Additionally, antidiabetic drugs such as GLP-1A (127, 128),

metformin (129, 130), and SGLT2 inhibitors (131, 132) were also

proved to reduce EAT. For individuals with severe obesity, bariatric

surgery is the most reliable treatment. It is well-known that different

depots of adipose tissue and visceral fat change after bariatric

surgery. Weight loss following bariatric surgery is associated with

EAT reduction (133). Hunt et al. reported that severely obese

subjects have lower EAT during a 14-year follow-up after

bariatric surgery (134).
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6 Conclusion

The cardiovascular system is widely affected by EAT. The

expansion and remodeling of EAT contributes to vascular

dysfunction and CVDs significantly. The evolving field of non-

invasive imaging technique-based EAT composition analysis

showed great potential for the stratification of CVD risk.

Therefore, it is critical to identify strategies that are capable of

reducing cardiovascular risk by modulating EAT mass, distribution,

and function. At present, there is growing interest regarding EAT.

In the future, the assessment of EATmay become part of the clinical

practice to help clinicians identify patients at great risk of

developing CVDs and to provide information on their clinical

and therapeutic prognosis.
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