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Abstract: A close relationship exists between the intestinal microbiota and the circadian rhythm,
which is mainly regulated by the central-biological-clock system and the peripheral-biological-clock
system. At the same time, the intestinal flora also reflects a certain rhythmic oscillation. A poor diet
and sedentary lifestyle will lead to immune and metabolic diseases. A large number of studies have
shown that the human body can be influenced in its immune regulation, energy metabolism and
expression of biological-clock genes through diet, including fasting, and exercise, with intestinal
flora as the vector, thereby reducing the incidence rates of diseases. This article mainly discusses the
effects of diet and exercise on the intestinal flora and the immune and metabolic systems from the
perspective of the circadian rhythm, which provides a more effective way to prevent immune and
metabolic diseases by modulating intestinal microbiota.
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1. Introduction

The gut microbiota are mutually restricted and interdependent according to a certain
proportion, showing a dynamic ecological balance as a whole. Intestinal flora can be
divided into symbiotic bacteria, conditional pathogenic bacteria and pathogenic bacteria.
As the main body of intestinal flora, they have a relatively fixed and stable state and reside
in the intestine to jointly maintain the homeostasis of the body [1,2]. Research shows that
the composition of intestinal flora changes with dietary intake, and the types of bacteria
vary among people of different ages [3,4]. The composition of intestinal flora is also affected
by host genetics [5], antibiotic use [6], lifestyle [7] and concomitant diseases [8,9].

Circadian rhythms refer to the continuous changes in the life activities of organisms
with a cycle of about 24 h. Among them, the circadian oscillator is the central mechanism
driving the circadian rhythm, which can keep the biological rhythm relatively consistent
with the circadian rhythm. The generation of circadian rhythm is mainly regulated by
the hypothalamic suprachiasmatic nucleus (SCN) and the biological-clock gene in the
peripheral tissues [10]. In mammals, the circadian-rhythm axis is composed of the retina,
SCN and pineal gland. Their interactions can produce and regulate physiological and
behavioral rhythms in the organism. Among them, the SCN, also known as the circadian-
rhythm pacemaker, plays a dominant role in the circadian rhythm, which can control the
physiological and behavioral rhythms of the organism. At the same time, the peripheral-
biological-clock system (mainly including muscle, adipose tissue, liver and intestine) also
participates in regulating the circadian rhythm [11]. The biological-clock gene refers to the
gene that can control the biological rhythm of organisms. It does not only regulate the sleep
cycle and cognitive function of mammals, but also regulates most of their circadian-rhythm
cycles in physiological conditions [12].

A large number of studies have shown that the patterns of exercise and diet have a
certain degree of impact on intestinal flora, as well as on the immune system and metabolic
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system of the human body. Depending on the different metabolic states of the host (nor-
mal individuals [13], diabetes [14], obesity [15], hypertension [16], anxiety and cognitive
impairment [17]), exercise can have different positive effects on the intestinal flora to pro-
mote host health. Studies have shown that the circadian-rhythm oscillation between the
activity of the immune system and the function of the immune system is consistent, and
that an imbalance in the biological clock will lead to the abnormal response of the immune
system. The circadian rhythm plays an important role in the physiological metabolism
of the body, and the activity of the intestinal flora also participates in the metabolic pro-
cess of its host [18,19]. In addition to effective weight loss, fasting can also reduce blood
pressure, blood lipid level, improve brain health, enhance immunity, improve intestinal
health and enhance circadian rhythm [20]. Fasting can reduce fat deposition, improve
glucose tolerance and insulin sensitivity, as well as significantly improve the hyperglycemia
and pancreatic island function of early diabetes patients, and can also have preventive
and therapeutic effects on type 2 diabetes. In addition, fasting can also extend the life of
mice [21], improve insulin sensitivity, and reduce fasting blood glucose and total cholesterol
without losing weight [22]. This paper discusses the effects of diet and exercise on intestinal
flora and the immune and metabolic systems from the perspective of circadian rhythm,
so as to provide an effective way for the prevention of immune and metabolic diseases
(Figure 1).
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2. The Relationship between Circadian Rhythm and Gut Microbiota

The circadian rhythm of intestinal flora is closely related to the biological clock, which
is an important mechanism to link individual physiological rhythms with external light
and other factors [23]. The biological clock also has a universal influence on the regulation
of body homeostasis. Its main function is to synchronize energy metabolism and behavior
rhythm [24]. In the natural state, the biological clock receives the periodic signals of the
external environment, regulates its own oscillating system through a feedback loop com-
posed of biological-clock genes and their coded proteins, and keeps various life activities
of the body synchronized with the environmental cycle [25]. The central-biological-clock
system of mammals is located in the SCN, which is the “pacemaker” of the circadian
rhythm. As the main pacemaker of the circadian rhythm, the SCN controls the rhythmic
activities of the whole body. The oscillation of the clock autonomy is mainly generated by
the “Transcription Translation Feedback Loop (TTFL)”, which is composed of a series of
clock genes with a CLOCK-BMAL1 heterodimer as the core in the central-biological-clock
system and the peripheral-biological-clock system [26,27].

The central-biological-clock system’s main function is to coordinate the physiological
activities of the peripheral tissues. It keeps the peripheral-biological-clock system stable
through a variety of nerve and humoral signals, thus enabling the body to adapt to the
needs of the external environment. As a consequence, the intestinal flora belonging to the
peripheral-biological-clock system will change due to changes in the central biological clock
of the host. On the contrary, the imbalance of intestinal flora will affect the central biological
clock to some extent, as well as the immune and nutritional-metabolism functions of the
intestinal physiological state.

The disturbance of the host circadian rhythm will lead to the same consequences for
intestinal flora, which will directly affect the intestinal immune and nutritional-metabolism
functions. It was found that the expression profiles of nuclear receptors and biological-clock
genes in the cecum and colon epithelial cells of GF mice were different from those of normal
epithelial cells. The homeostasis of intestinal-microflora metabolites and the rhythmic
expression of Per2 and Bmal1 genes in the hepatocytes of mice fed with a high-fat diet
were affected [28]. Through the knockout test of mouse biological-clock genes Per1 and
Per2, it was found that the disturbance of the host biological clock would indeed cause
changes in the flora, thus indicating that changes in the circadian rhythm of intestinal
flora would indeed be regulated by biological-clock genes [29]. By comparing the mRNA
expression levels of Occludin and Claudin-1 in the bodies of wild-type mice and mice
with the loss-of-function mutation of a key clock gene Per2, as well as the differences in
colonic permeability, it was found that the intestinal epithelial barrier in mice with central-
biological-clock disorder was destroyed, and the intestinal permeability was increased,
which indirectly indicated that the biological-clock disorder could cause the disorder of
intestinal flora [30]. Intestinal flora also plays a role in regulating the circadian rhythm of
the host. Studies have proved that Histone Deacetylase 3 (HDAC3) is the key substance in
intestinal flora that plays a role in regulating the circadian rhythm of the small intestine [31].

The peripheral-biological-clock system of mammals is mainly located in regions of the
brain other than the SCN and in most cells and tissues of the whole body. The peripheral
biological clock has its own biological rhythm, but it is also regulated by the central
biological clock. Therefore, its physiological function is regulated by the clock gene’s
expression and regulation of downstream clock-control genes. Studies have shown that
there is a certain relationship between the intestinal flora and the peripheral biological
clocks of different organs. The intestinal flora is closely related to the circadian rhythm of
intestinal mucosal immunity in structure and function. When mice were fed with mixed
antibiotics, the gene expression profile of the colonic epithelial cells changed significantly,
indicating that the imbalance in the intestinal flora really caused changes in intestinal-
related functions [32]. By detecting the expression profiles of nuclear-receptor and clock
genes in the cecum and colon epithelial cells of mice treated with antibiotics, we found
that their expressions were different from those in normal intestinal epithelial cells, which
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shows that intestinal flora participated in regulating the expression of nuclear-receptor and
clock genes in intestinal epithelial cells [33]. The disorder of the intestinal biological clock
may lead to the destruction of intestinal-mucosal-barrier function and inflammation, and
cause imbalance in the intestinal flora.

Intestinal flora is also related to the biological-clock system of the liver. Both the
intestine and the liver originate from the primitive intestine in the embryonic stage, and
later develop into two complex and mature metabolic organs [34]. By analyzing the gene
expression of liver samples, the mRNA expression pattern of the biological-clock gene
in the liver of infertile mice was significantly different from that of SPF mice [35]. This
shows that the loss of intestinal microbiota will change the expression of the liver biological-
clock gene, which suggests that the change in the intestinal microbiota may cause the
liver-biological-clock and metabolic-function disorder.

3. The Relationship between Exercise and Gut Microbiota

Intestinal microbiota is considered as the cornerstone to maintain the health of the
human host. It not only determines the effectiveness of obtaining nutrition and energy
from food, but also can produce a large number of metabolites to regulate the metabolism
of the host. The intestinal microbiota can improve the bioavailability of amino acids and
optimize the decomposition, absorption and metabolism of protein. In a human study
involving excellent football players, it was found that the intestinal microbiota diversity
index was positively correlated with protein intake [36]. Studies show that exercise is
closely related to the circadian rhythm, and the benefits of exercise methods under different
conditions are also different. The circadian rhythm of mice is changed when the mice are
tested with wheel exercise under no light conditions. In addition, the time of exercise also
involves the regulation of the physiological clock. Regular exercise will affect the circadian
rhythm of skeletal muscle and lung, but it has little effect on the SCN [37]. Exercise not
only enhances the expression of core-clock gene Per2, but also promotes the rhythmic
movement of muscle cell Per2 phases [38]. In addition, research shows that exercise is not
only an important factor in regulating the human body’s peripheral rhythm, but also that
exercise ability is affected by the time of day. Relevant studies have found that, even if the
environmental conditions and time arrangements are biased relative to the athletes’ training,
the neuromuscular function, maximum oxygen uptake and grip strength are highest in the
afternoon [39]. In addition, the exercise cycle seems to have a special impact on exercise
ability. Compared with the random timing of exercise, fixed-time maximum equal-length
autonomous-joint-contraction training can better improve the anaerobic exercise ability of
skeletal muscle, that is, the maximum explosive force of muscle [40].

3.1. Possible Triggers of Cognitive Decline in the Process of Brain Aging

The skeleton is the basis of the human body’s shape, and also the main attachment
points for skeletal muscle and an important part of the sports system. A large number of
studies have proved that the intestinal flora has an important impact on bone metabolism
using GF mice, antibiotic intervention, probiotic supplementation and other experiments,
which have suggested that intestinal flora may be the main regulator of bone mass [41].
Relevant research results indicate that the stimulation effect of intestinal flora on bone
anabolism may be mediated by insulin-like growth factor 1 (IGF-1) [42].

As the largest organ of the human body, skeletal muscle accounts for about 40% of
body weight and is the direct functional tissue for completing exercise. Many studies have
shown that the intestinal flora is related to skeletal-muscle metabolism and muscle-fiber
type, and is mainly responsible for body movement, metabolism and the secretion of
muscle factors to regulate other organs [43]. Short-chain fatty acids (SCFAs) are one of the
important metabolites of intestinal flora. As signal molecules, they can affect a series of
activities of the host, and they are also a key factor in regulating the physiological function
of skeletal muscle [44]. When comparing the skeletal muscles of GF mice and SPF mice, it
was found that GF mice had skeletal-muscle atrophy, and the transplantation of intestinal
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flora could significantly improve the degree of muscle atrophy in GF mice and improve
the quality of their skeletal muscle. Supplementing SCFAs can partially alleviate skeletal-
muscle injury, which proves that intestinal flora plays an important role in improving the
quality of skeletal muscle in mice, and has the potential to treat skeletal-muscle injury [45].

It was found that long-distance endurance running caused significant changes in
the abundance of some microbiota and 40 kinds of fecal metabolites in the intestinal
environment, among which the difference between the metabolites of organic acids and of
nucleic acids was the largest [46]. Intestinal microbiota provides essential metabolites for
skeletal-muscle mitochondria, and can regulate key transcription coactivators, transcription
factors and enzymes involved in mitochondrial biogenesis [47]. Among them, SCFAs, the
final products of the microbial degradation of intestinal carbohydrates, constitute the link
between food, intestinal microorganisms and host material energy metabolism. Exercise
can also improve the circadian-rhythm disorder of skeletal muscle, in which the remodeling
of skeletal muscle is a key component of the organism’s response to environmental changes.
Exercise can lead to changes in muscle structure, circadian rhythm, and physiological
and behavioral fluctuations. The duration is about 24 h, which is maintained by the core-
clock mechanism. Exercise-induced remodeling and circadian rhythm depend on the
transcriptional regulation of key genes [48]. Exercise intervention will affect the molecular-
clock mechanism of human skeletal muscle, including a significant increase in Bmal1 gene
expression and Per2 protein expression in skeletal muscle [49]. In human studies, the
rhythmic gene expression of Rev-erbα/β, Sirt1 and Nampt was found in primary cells
extracted from endurance-training athletes, while it was not found in the primary cells
of sedentary people [50], which indicated that exercise can improve the disorder of the
circadian rhythm of skeletal muscle to a certain extent. Studies have shown that early-
morning training promotes the advance of the circadian-rhythm phase, while night training
induces the delay of the circadian-rhythm phase [51,52]. In the study of nocturnal rodents,
it was also found that wheel or treadmill exercise would change the expression of the
core-clock gene of skeletal muscle, which might affect the circadian rhythm [53]. In a long-
term experiment of autonomously rotating mice, it was found that the peak transcriptional
expression of genes related to circadian-rhythm regulation in mice showed an increasing
trend [54]. In addition, the elderly can relieve the circadian-rhythm disorder caused by
aging by persisting in aerobic exercise for more than half an hour every day [55]. It can be
seen from the above studies that exercise can regulate the core-clock mechanism in skeletal
muscle, and exercise time can change the phase of the circadian rhythm, thus relieving
disorder of the circadian rhythm of skeletal muscle.

3.2. Intestinal Microbiota and Exercise Ability

Intestinal flora is not only one of the mediating factors of sports health effects, but it
also participates in the occurrence of sports stress response and sports fatigue, affecting the
body’s sports ability [56,57]. It was observed that for sterile mice of a Parkinson’s model,
their motor dysfunction symptoms were lighter than those with the normal flora, but the
motor-dysfunction symptoms were significantly aggravated after the transplantation of
the flora of Parkinson’s disease patients, indicating that the intestinal flora participated in
regulating the motor dysfunction caused by Parkinson’s disease [58]. Hsu et al. proved for
the first time that there was a potential relationship between intestinal flora and exercise
ability, and their study found that SPF mice and mice colonized with fragile Bacteroides
had longer endurance-swimming times than GF mice [59]. Later, Denou et al. obtained
similar results [60]. Consequently, it can be concluded that intestinal flora has a potential
application value in delaying exercise fatigue and improving exercise ability (Figure 2).

During strenuous exercise, the body redistributes blood from the visceral circulation
to respiratory and muscle tissues, and prolonged insufficient blood supply can easily cause
vomiting, abdominal pain and diarrhea [61]. Exhaustive exercises can significantly affect
the level of lipid metabolism and lipid peroxidation, and abnormal lipid metabolism is the
main factor inducing coronary heart disease. It has been reported that exhaustive exercise
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can change the diversity and micro-ecological structure of intestinal flora. Stable bacterial
population structure may be one of the important conditions for maintaining health and
stable sports performance during exhaustive exercise [62].
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4. Immune System and Gut Microbiota

At present, microbial preparations such as bacterial products, bacterial toxins, probi-
otics, etc., have been used in the reconstruction of immune tolerance in clinical practice [63].
Intestinal flora has been proved to promote tolerance to autoantigens, regulate intestinal
movement and secretion, maintain the integrity of intestinal mucosal barrier and maintain
the normal activities of the immune system [64]. The existence of intestinal mucosa can
separate the internal and external environment of the human body, form an “intestinal
barrier structure”, prevent the passage of antigens, toxins and microorganisms, and ensure
the immune tolerance of the body to food antigens and intestinal flora [65]. SCFAs have
functions of anti-inflammation, regulating the disorder of glucose and lipid metabolism,
and improving therapeutic effects on tumors [66]. SCFAs are generally produced by the
fermentation of dietary fiber, including acetate, propionate and butyrate, among which
butyrate is the main energy source of colon cells and is related to reducing the risk of
colorectal cancer [67].

The circadian-rhythm disorder caused by shift work can affect the expression of serum
cytokines in SD rats, which provides a theoretical basis for circadian-rhythm disorder
affecting the immune system function of the body. Macrophages, neutrophils and NK cells
are relatively more studied in the innate immune system.

Macrophages, as immune cells, also have a molecular biological clock. The phagocyto-
sis of macrophages and their expressions of cytokines and chemokines all show obvious
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circadian rhythm. One study found that the phagocytosis of macrophages changed with the
time of a day. Under the light/dark cycle (LD), the phagocytosis of peritoneal macrophages
obtained from mice in the late light period was stronger than that in other time periods
in the course of a day [68]. Another study found that the level of cytokines expressed by
macrophages after being stimulated by endotoxins showed a significant circadian rhythm.
Tumor necrosis factor being secreted by macrophages cultured in vitro at different time
points after being stimulated with tumor necrosis factor α (TNF-α) and IL-6 has an obvious
circadian rhythm [69]. Studies on the biological-clock gene of macrophages have shown
that the expression patterns of the biological-clock gene Bmal1 in their cells is similar to
that in SCN and peripheral-biological-clock tissues.

Neutrophils mainly migrate to injured tissues in the early stage of inflammation, and
they participate in phagocytosis and secrete anti-inflammatory cytokines. Neutrophils
do not only play an immune role in bacterial and fungal infections, but also in many
autoimmune diseases. More and more studies have shown that the function change of
neutrophils is related to time. Under the LD cycle, the level of neutrophils in the peripheral
cycle shows a low-amplitude oscillation throughout the day, and it reaches the peak at
the beginning of the quiescent period [70]. It is worth noting that the reduced activity
of neutrophils will lead to serious infectious diseases, and inappropriate activation of
neutrophils will also produce various autoimmune and inflammatory diseases. It has also
been found that the migration of neutrophils can be indirectly regulated by controlling the
expression of endothelial chemokines and adhesion molecules through the activation of
β-adrenaline receptors [71].

NK cells are the key component of innate immunity, which can resist fungal, bacterial
and viral infections. Studies have shown that NK cytotoxicity will show the characteristics
of circadian rhythm, and the cytotoxicity is the greatest in the dark period. The research
on the mechanism and physiology of NK-cell rhythm has increased significantly in recent
years. Splenic NK cells have a functional molecular-clock mechanism and its core-clock
gene follows the 24 h oscillation law of the circadian rhythm [72]. The cytolytic activity of
NK cells has a circadian rhythm, and the expression of cytolytic factors and cytokines also
presents a 24 h oscillation law.

Under the LD cycle and steady-state conditions, the expression level of the core-clock
gene in B cells was detected, and it was found that there was a molecular-clock mechanism
in B cells. Similarly, CD4+T cells purified from human blood at different time points in the
first day showed the existence of the core-clock gene [73]. In human blood samples, the
number of T cells generally increased at night, decreased in the morning, and maintained a
low level during the day [74]. The concentration of cortisol and catecholamine in plasma
showed obvious diurnal oscillation, which showed that the diurnal concentration was the
highest and the nocturnal concentration was the lowest. It has been found that peripheral-
blood cortisol and catecholamine regulated the rhythmic change in the number of T-cell
subsets through the concentration difference in different time periods [75]. The number of
primitive T cells and CD4+T and CD8+T cell subsets had the lowest diurnal rhythm, while
the number of effector CD8+T cell subsets reached the peak during the day [73].

5. Metabolism and Gut Microbiota

The biological clock can change intestinal permeability. A mutant host biological-clock
gene caused an increase in intestinal mucosal permeability, which led to an imbalance in
the intestinal flora, and finally aggravated the lipid metabolism disorder and increased the
incidence of fatty liver [76]. The mice were given a high-fat and high-sugar diet and the
day and night were reversed. Gene detection of their colon biological clock and 16R rRNA
sequencing of their feces showed that circadian rhythm changes in Per2 expression and
composition and structure changes in their intestinal flora were found, respectively [77].
The clock gene Bmal1 has anti-inflammatory effects, so the absence of the clock gene Bmal1
will lead to changes in the flora phenotype [78]. The change in feeding rhythm will interfere
with the flora, which will reduce the content of Bacteroides in the flora and increase the
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content of Firmicutes, which will increase the incidence of obesity [76]. The clock gene
Bmal1 can play an anti-inflammatory role in mice. When Bmal1 is absent, the composition
and structure of the flora will change to an inflammatory phenotype. The increase in
bacteria such as Rikenellaceae and Clostridiaceae is closely related to the occurrence and
development of ulcerative colitis and Crohn’s disease [78]. All the above results indicate
that the change of the host biological clock will lead to imbalance in the flora, thus causing
a variety of metabolic diseases. In addition, the disorder of the circadian rhythm of the
intestinal flora will change the transcript collection of the host biological-clock gene, destroy
the stability of amino acids, polyamines and other metabolites in the serum, and affect
the detoxification function of the liver, which directly indicates that the disorder of the
intestinal flora leads to the change in the expression of the liver biological-clock gene, and
then leads to the disorder of the liver biological clock and the destruction of the metabolic
function. In conclusion, the interaction between flora rhythm and host rhythm plays an
important role in the immune system.

Studies have found that intestinal flora can participate in lipid metabolism by regulat-
ing the expression of the host Nfil3 gene under physiological conditions. The Nfil3 gene is
an important link between flora and circadian rhythm and host metabolism [79]. Metabo-
lites of Gram-negative bacteria (flagellated) can activate dendritic cells (DCs) through
Toll-like receptor (TLR) and downstream MyD88 pathways. DCs secrete interleukin-23
(IL-23) to make congenital lymphocyte 3 (ILC3) secrete IL-22, and finally act on intestinal
epithelial cells to activate the STAT3 pathway in cells. Activated STAT3 inhibits clock-gene
transcription receptor Rev-erbα. The expression of Nfil3 is up-regulated, which promotes
the metabolism and storage of lipid substances. On the contrary, when the stability of
intestinal flora is destroyed, the biological rhythm of the host will be changed, and the
expression of Nfil3 will be down-regulated, and thus the lipid metabolism will be dis-
turbed [80]. As a result, the intestinal flora signal is transmitted to the host epithelial cells
through the DC-ILC3-STAT3 pathway, thus determining the key pathway that the intestinal
flora and its host affect metabolism by regulating biological rhythm.

6. Intermittent Fasting and Intestinal Flora

Intermittent fasting (IF), also known as time-limited diet, is a popular dietary inter-
vention method, mainly for the purpose of prolonging the fasting time, which does not
affect the food structure gradually formed with the growth in individual life. At present, IF
schemes have mainly two types which have been applied to rodents, namely, daily fasting
(DF) and alternate-day fasting (ADF). For daily fasting, the duration of fasting varies from
12 to 20 h. There is a time window of 16 h for fasting and the following 8 h for eating (16:8),
or the proportion of 20 h for fasting and the following 4 h for eating (20:4), or other times.
In alternate-day fasting, including 24 h fasting (no calorie intake) and subsequent 24 h
eating (free food and water consumption), the choice of fasting frequency is different. For
example, the 5:2 strategy is to mix two-day fasting with five-day non-restrictive eating, as
well as other eating frequencies [81].

Animal and human studies have shown that many of the health benefits of IF are not
only a reduction in the production of free radicals or weight loss, but also that it triggers
evolutionarily conservative and adaptive cellular responses that are integrated into the
organs in a way that improves glucose regulation, increases compression resistance and
inhibits inflammation [82,83]. During fasting, cells will enhance their defenses against
oxidative and metabolic stress, and activate the pathways to remove or repair damaged
molecules [84]. One study shows that when rats start an ADF program from a young age,
their average life span can be extended by up to 80%. However, the degree of influence of
caloric restriction on a healthy life span and total life span varies, and it may be affected by
gender, diet, age and genetic factors [85].

Studies have shown that fasting and caloric control can change intestinal flora, increase
insulin sensitivity, reduce the expression of inflammatory factors related to lipid metabolism,
and thus prevent metabolic diseases [86,87]. On the contrary, intestinal flora can enhance
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the intake of food energy, improve the synthesis of fatty acids, and promote the deposition
of fat droplets in the liver and adipose tissue to cause obesity symptoms [88]. In addition, a
research method based on sequence analysis showed that there is a significant difference
between the intestinal flora of fasting and non-fasting individuals [89]. For instance, a
diet program of fasting every other day can significantly increase the OTU abundance
of Firmicutes in the feces of male C57BL/6N mice, while reducing the abundance of
most other phyla [22]. After a fasting intervention in female C57BL/6J mice, the fecal
samples of these mice showed an increase in the abundance of Lactobacillus, Bacteroides
and Prevaliaceae [90]. In addition, under an IF-treatment scheme for diabetes mice, the
enrichment of Lactobacillus and reduction of Akkermannia was seen [91].

Relevant studies have shown that the overnight-fasting treatment can significantly
reshape the intestinal microbial community of mice, and increase beneficial metabolites of
microorganisms, thereby improving cognitive function. After 28 days of intermittent fasting
in diabetes mice, it was found that a behavioral disorder could be improved through the
metabolites of the microflora–brain axis: fasting enhanced the expression of mitochondrial-
biogenesis and energy-metabolism genes in the hippocampus, reconstructed the intestinal
microflora and improved the microbial metabolites related to cognitive function [92].

IF can improve obesity, insulin resistance, dyslipidemia, hypertension and inflammation [93].
In mouse models, studies have shown that IF can enhance cognition in many fields, includ-
ing spatial memory, associative memory and working memory [94]. In addition, IF also can
improve cognitive impairment caused by diabetes [92]. IF can improve many indexes of
animals and humans, including blood pressure, high-density lipoprotein and low-density
lipoprotein, cholesterol, TG, glucose, insulin level and insulin resistance [95]. IF can reduce
the markers of systemic inflammation and oxidative stress related to atherosclerosis [96].
In addition, IF can also promote the production of tauroursodeoxycholate (TUDCA), the
metabolites of intestinal microorganisms, by remodeling the intestinal flora of diabetes mice,
thereby promoting the activation of TGR5, the receptor of TUDCA, and down-regulating
the TNF-α mRNA expression of β-lactamase protects the retina of diabetes-model mice [91].
In a randomized trial to examine the effect of ADF on patients with non-alcoholic fatty liver
disease (NAFLD), the results showed that ADF was a safe and tolerable diet for NAFLD
patients, and it would reduce weight, fat content, total cholesterol and triglycerides [97].
Therefore, exploring the influence of different fasting methods on intestinal flora has a
positive role in the prevention and treatment of obesity.

Intestinal flora ferments plant polysaccharides to produce SCFAs, which can also
promote the maturation of the host immune system and fight against infection. Intestinal
flora can directly or indirectly regulate the development of the intestinal mucosal immune-
system components [98]. Intestinal flora and metabolites can interfere with intestinal
epithelial cells to affect dendritic cells and macrophages through the epigenetic mechanism
driven by the intestinal flora. Metabolites of the intestinal flora can induce the production
of T regulatory cells and participate in mucosal tolerance. Intestinal flora can also induce B
cells to mature, change their immunoglobulin subtypes, promote the activation of basophils
and mast cells through immunoglobulin E instead of immunoglobulin A, and produce
optimized intestinal flora. The intestinal flora is a key component of the digestive system,
which can decompose complex carbohydrates and proteins, and to a lesser extent, can
decompose the fat in the lower gastrointestinal tract. This process will produce a large
number of microbial metabolites, which can play a role in the local or whole body after
being absorbed into the blood stream. The rhythmic occupation of niches by certain species
of microorganisms may be the cause of this metagenome fluctuation, and these niches can
respond to the feeding or starvation stage. In addition, research also shows that mice with
Per1 and Per2 gene knockout can promote the recovery of the circadian rhythm of the
intestinal flora by restoring the feeding rhythm [99]. The results showed that the rhythmic
fluctuations of some bacterial populations in obese mice caused by dietary problems
could be restored by limited-time feeding. The functions of different microorganisms
are related to the rhythm of eating. It is mainly because the eating rhythm can regulate
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the changes in the utilization of nutrients. The cell development, energy absorption and
response functions after DNA damage of microorganisms mainly occur in the period when
nutrients can be digested and absorbed, and the detoxification function mainly occurs in
the non-eating period.

In mammals, the food signal is the most effective biological-clock timing signal other
than the light signal in the environment. The regulation of the eating rhythm can induce the
expression of the biological-clock gene in intestinal tissue, leaving it out of the control of the
central SCN. That is to say, the host’s eating signal can participate in the formation of the
circadian rhythm of the intestinal flora independently of the control of the central rhythm,
and rhythmic eating can lead to the occurrence of a rhythmic oscillation of microbial
flora [100]. The pattern and content of diet are considered to be the most important driving
factors for shaping intestinal flora in a short time. In the long run, diet is also the most
effective and healthy way to regulate intestinal flora.

7. Conclusions

Interventions in diet and exercise can effectively regulate imbalances in the circadian
rhythm or the intestinal flora. Healthy and reasonable eating habits can help the intestinal
tract to maintain a balance with the circadian rhythm, especially to control the rhythmic
fluctuations of specific bacteria that cause obesity. The combination of regular physical
exercise and a healthy diet can promote the generation of beneficial metabolites in the
intestine, maintain the stability of the intestinal environment, repair the intestinal barrier,
and then help prevent and treat diseases. However, the research on the mechanisms of
the related flora and the effects of exercise and fasting is still relatively limited, and it is
necessary to combine the two to conduct a systematic study on the body. Dietary survey
methods can be used to intervene and monitor diet, and questionnaire surveys, activity-
recorder measurements and mechanism analysis can be used to monitor exercise, in order
to study the impact of daily diet and exercise in a more comprehensive manner. Therefore,
we should formulate treatment plans corresponding to the patient population through
interventions in diet and exercise, so as to provide a theoretical basis for later treatment of
various immune, metabolic and gastrointestinal diseases.
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