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Gut microbiome composition may be an indicator of
preclinical Alzheimer’s disease
Aura L. Ferreiro1,2,3, JooHee Choi1, Jian Ryou1, Erin P. Newcomer1,2, Regina Thompson4,
Rebecca M. Bollinger5, Carla Hall-Moore6, I. Malick Ndao6, Laurie Sax6, Tammie L. S. Benzinger7,8,
Susan L. Stark4,5,8, David M. Holtzman4,8,9, Anne M. Fagan4,8,9, Suzanne E. Schindler4,8,
Carlos Cruchaga4,9,10,11, Omar H. Butt4, John C. Morris4,8, Phillip I. Tarr6,12,
Beau M. Ances2,4,7,8,9,12*, Gautam Dantas1,2,3,12,13*

Alzheimer’s disease (AD) pathology is thought to progress from normal cognition through preclinical disease
and ultimately to symptomatic AD with cognitive impairment. Recent work suggests that the gut microbiome of
symptomatic patients with AD has an altered taxonomic composition compared with that of healthy, cognitively
normal control individuals. However, knowledge about changes in the gut microbiome before the onset of
symptomatic AD is limited. In this cross-sectional study that accounted for clinical covariates and dietary
intake, we compared the taxonomic composition and gut microbial function in a cohort of 164 cognitively
normal individuals, 49 of whom showed biomarker evidence of early preclinical AD. Gut microbial taxonomic
profiles of individuals with preclinical AD were distinct from those of individuals without evidence of preclinical
AD. The change in gut microbiome composition correlated with β-amyloid (Aβ) and tau pathological biomarkers
but not with biomarkers of neurodegeneration, suggesting that the gut microbiome may change early in the
disease process. We identified specific gut bacterial taxa associated with preclinical AD. Inclusion of these micro-
biome features improved the accuracy, sensitivity, and specificity of machine learning classifiers for predicting
preclinical AD status when tested on a subset of the cohort (65 of the 164 participants). Gut microbiome cor-
relates of preclinical AD neuropathology may improve our understanding of AD etiology and may help to iden-
tify gut-derived markers of AD risk.
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INTRODUCTION
The human gut microbiome harbors a compositionally and func-
tionally diverse community of microorganisms that influences the
health and well-being of their hosts (1, 2). These communities
include >1012 bacterial cells (2), representing thousands of taxa
that encode a vast repertoire of pathways with diverse influences
on human physiology and metabolism (1, 2). Some gut microbes
train the mammalian immune system at birth, whereas others
have lifelong immunomodulatory activity (3, 4). Gut microbiome
dysbiosis, defined as bacterial populations correlated with disease
status and typified by diminished diversity, has been associated

with a number of disorders (2, 5–7). Gut dysfunction and aberrant
microbial content may contribute to the pathogenesis of Alz-
heimer’s disease (AD) and potentially other neurodegenerative dis-
eases (8).

AD pathobiology is thought to progress from cognitively normal
with no evidence of disease to apparently cognitively normal with
biomarker evidence of disease (preclinical AD) and to symptomatic
AD. These transitions are based on the presence of markers identi-
fied by positron emission tomography (PET) imaging or cerebro-
spinal fluid (CSF) assays to detect pathogenic β-amyloid (Aβ) and
tau protein, as well as markers of neurodegeneration identified by
CSF assays and magnetic resonance imaging (MRI) (9). The
amyloid-tau-neurodegeneration or AT(N) marker combination
suggests that neuropathology occurs well before symptom onset,
defined as the point when the clinical dementia rating (CDR)
score becomes abnormal (10).

Several lines of evidence suggest a role for gut microbes in the
evolution of AD pathogenesis. Compared with stool samples from
healthy cognitively normal individuals, those with symptomatic AD
have increased relative abundance of Bacteroidetes and decreased
relative abundance of Firmicutes (6), an imbalance found in other
chronic inflammatory conditions (11). Changes in the gut micro-
biome correlate with the presence of CSF markers of AD, including
phosphorylated tau-181 (p-tau-181) and Aβ (measured by the
Aβ42/Aβ40 ratio) (6). Variations in the bacterial composition of
stool in symptomatic patients with AD were accompanied by a dys-
regulated P-glycoprotein pathway in gut epithelial cells (5), an alter-
ation that contributes to enteric inflammation and disrupted organ
homeostasis (5). Symptomatic patients with AD also show
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increased concentrations of lipopolysaccharide in the circulation
(12), presumably of gut microbial origin. In animal models of
AD, manipulation of the gut microbiota decreases Aβ deposition
and improves neurologic function (13, 14). Last, gut bacteria from
wild-type mice diminish AD pathology in recipient mice (15).

Current AT(N) criteria do not consider gut dysbiosis. However,
identification of microbial community alterations before AD symp-
toms ensue might enable strengthening of the AT(N) framework
with microbiome-derived markers that are more accessible to
assay than current markers (16–20). Early signatures of gut dysbio-
sis in conjunction with preclinical AD markers may inform future
gut microbiome-directed therapies that could potentially slow AD
progression (21, 22).

Here, we examined a Knight Alzheimer ’s Disease Research
Center (ADRC) cohort of cognitively normal individuals with
and without preclinical AD (23–25) to determine whether cogni-
tively normal individuals with preclinical AD may have an AD-as-
sociated dysbiotic gut microbiome, taking into account clinical
covariates and dietary data.We investigated whether specific micro-
biome characteristics in stool samples correlated with preclinical
AD status or established AD biomarkers and determined whether
microbiome characteristics could improve the performance of
machine learning classifiers designed to distinguish healthy individ-
uals from those with preclinical AD.

RESULTS
Global differences in the gut microbiomes of healthy
individuals and those with preclinical AD
Participants (68 to 94 years old; 45% male) recruited from existing
longitudinal studies (26–28) of the Knight ADRC cohort submitted
stool samples from 2019 to 2021, which were sequenced to an
average depth of 21.5 million reads. Participants underwent PET
imaging, MRI imaging, lumbar puncture to obtain CSF samples,
stool sampling, phlebotomy, and clinical and cognitive testing, in-
cluding completion of the CDR scale (10) every 3 years (<65 years
old) or annually (≥65 years old) (fig. S1) (27, 28). The mean interval
between stool sampling and PET imaging or lumbar puncture for
quantification of Aβ and tau was 2.4 and 2.8 years, respectively, and
3.8 months from the most recent CDR assessment. All sampling in-
tervals were summarized according to preclinical AD status (table
S1). We defined preclinical AD status as CDR 0 and Aβ-positive,
with Aβ plaque positivity defined as Centiloid > 16.4, correspond-
ing to an 11C Pittsburgh compound B (PiB)–PET standardized
uptake value ratio (SUVR) > 1.42 (29, 30). Eleven participants did
not have PET Aβ data available, in which case Aβ positivity was
defined as a CSF Aβ42/Aβ40 ratio < 0.0673 (31, 32). Similarly,
healthy status was defined as CDR 0 and Centiloid ≤ 16.4 or CSF
Aβ42/Aβ40 ratio ≥ 0.0673. We used these criteria to assign healthy
(n = 115) or preclinical AD status (n = 49) to 164 participants. We
compared clinical covariates between groups and identified differ-
ences in age, body mass index, apolipoprotein ε4 (APOE ε4) carrier
status, diabetes, and hypertension, which we included as variables in
our linear regression and machine learning models as well as in
analyses of variance (ANOVAs) (Table 1). We also included as a
variable the time interval between stool collection and PET
imaging or lumbar puncture to obtain CSF samples depending on
which biomarker was used to define the preclinical AD status (table
S1). To account for the impact of diet on gut microbiome

composition (33), where dietary behavior can rapidly (within 24
hours) (34) induce taxonomic shifts, we assessed participant nutri-
tional profiles from stool-matched 24-hour diet logs (fig. S2). We
observed no significant difference between the healthy and preclin-
ical AD groups in the overall caloric intake, caloric source distribu-
tion, or intake of anymajor nutrient group (e.g., carbohydrates, fats,
and total dietary fiber) or specific vitamins or minerals (fig. S2).

We performed fecal metagenomic sequencing and profiled rela-
tive abundance of microbial taxa at the species level (MetaPhlAn3)
(35), as well as microbial pathways (HUMAnN 3.0) (figs. S1 and S3)
(35). The Firmicutes/Bacteroidetes ratio for healthy controls was
7.30, with a 95% confidence interval (CI) [4.31, 10.30], and the
ratio for preclinical AD was 5.98, with 95% CI [3.90, 8.06], and
there was no significant difference between these two groups
(Fig. 1A and fig. S3A). Similarly, alpha (within-sample) diversities
calculated on taxa or pathways (fig. S3C) were similar between
groups. In contrast, principal coordinates analysis (PCoA) using
between-sample UniFrac distances (36) demonstrated global differ-
ences in gut taxonomic profiles by preclinical status [P = 0.036, per-
mutational ANOVA (PERMANOVA); P = 0.046, one-way ANOVA
on PCoA1 coordinates by AD status, Benjamini-Hochberg–adjust-
ed] (Fig. 1B and table S2). We observed a binomial structure in the
ordination along PCoA2, which we found to be associated with tax-
onomic alpha diversity (P = 0.006, Student’s t test comparing rich-
ness for samples with PCoA2 > 0 versus PCoA2 ≤ 0); however,
alpha diversity in this cohort was not associated with AD status.
The PERMANOVA results prompted canonical analysis of princi-
pal coordinates (CAP) (37), in which candidate explanatory vari-
ables (“constraints”) are tested for their ability to explain variance
in sample coordinates within an unconstrained ordination; preclin-
ical AD status explained significant multivariate, i.e., taxonomic dif-
ferences in the cohort (P = 0.040, PERMANOVA; P = 0.0004 and P
= 0.0003, one-way ANOVA by AD status on CAP1 and CAP2 co-
ordinates, respectively, Benjamini-Hochberg–adjusted) (Fig. 1C
and table S3). Applying CAP to a PCoA ordination of microbial
pathway profiles using the binary Bray-Curtis dissimilarity metric
(fig. S3D), sample coordinates significantly differed by AD status
along the CAP2 axis (P = 0.036, one-way ANOVA on CAP2 coor-
dinates by AD status) (fig. S3E and tables S4 and S5). These data
suggest that the human gut microbiome may change early in AD,
before cognitive impairment becomes apparent (5, 6).

Gut microbiome profiles correlate with Aβ and tau, but not
neurodegeneration
We determined whether gut microbiome profiles correlated with
specific characteristics of preclinical AD using pairwise Spearman
correlation analyses. We compared summary measures of the gut
microbiome, specifically PCoA axes 1 and 2 from ordinations of mi-
crobial taxonomic and pathway profiles, with the amount of Aβ
plaques measured by PET imaging (38, 39) using the Centiloid
scale (40) as well as the ratio of Aβ42/Aβ40 in CSF samples (41,
42). Gut microbiome summary measures were also compared
with the amount of tau according to PET imaging (43) and the
amount of p-tau-181 in CSF samples (44). They were also compared
with neurodegeneration measured by total tau (t-tau) in CSF (41), a
cortical signature of neurodegeneration, or hippocampus volume
(45), as well as with vascular injury measured as brain white
matter hyperintensities (Fig. 2A). In addition, we asked whether
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these gut microbiome measures were associated with genetic risk
factors: APOE ε4 carrier status and polygenic risk score (46).

PET imaging of Aβ plaques correlated with PCoA1 pathway pro-
files (ρ = −0.21, P = 0.015, Benjamini-Hochberg adjusted) (Fig. 2A),
a result supported by linear regression models. These models addi-
tionally revealed an association of PET Aβ plaques with PCoA2 of
taxonomic profiles (P = 0.080 taxa PCoA2, P = 0.052 pathways
PCoA1, ANOVAs comparing models including the interaction
between PCoA axis coordinates and preclinical AD status against
null models with preclinical AD status as the only predictor, Benja-
mini-Hochberg–adjusted across all models tested) (Fig. 2B and
tables S7 and S8). PET tau also correlated with PCoA2 from taxo-
nomic profiles (ρ = 0.23, P = 0.014, Benjamini-Hochberg–adjusted)
and PCoA1 from pathway profiles (ρ = −0.18, P = 0.040, Benjamini-
Hochberg–adjusted) (Fig. 2A). The correlation of PET tau with
PCoA axes from taxonomic profiles was supported by linear regres-
sion models (P = 0.080 taxa PCoA1, P = 0.018 taxa PCoA2,
ANOVAs, Benjamini-Hochberg–adjusted) (Fig. 2B and tables S6
and S7). The proportion of Aβ-negative but tau-positive (18F-

flortaucipir imaging probe > 1.22) individuals in the cohort was
16.3%, which was similar to proportions previously reported for
comparable cohorts (47, 48).

No microbiome measures included in this analysis were signifi-
cantly correlated with neurodegeneration markers (Fig. 2 and tables
S6 to S8). Neurodegeneration is considered to be a later event than
the appearance of Aβ and tau biomarkers in the AT(N) framework
of preclinical AD (49). An increase in Aβ plaques as measured by
PET imaging before onset of clinical symptoms of dementia is con-
sidered to be associated with a greater risk of progression to symp-
tomatic AD (50).

Specific gut microbiome features are associated with
preclinical AD status
To identify specific taxa and microbial pathways associated with
preclinical AD status, we fitted negative binomial regression
models to taxonomic or microbial pathway abundance data. As
with the PERMANOVA and CAP analyses, in addition to preclini-
cal AD status, we included age, APOE ε4 carrier status, body mass
index, diabetes, and hypertension as model variables, as well as the
time interval between stool sampling and PET imaging or lumbar
puncture for CSF sampling depending on the biomarker used to
define Aβ positivity (Fig. 3 and fig. S4). Species most associated
with preclinical AD status by magnitude of their model coefficients
included Dorea formicigenerans (coefficient = 0.661, 95% CI [0.659,
0.662], P < 0.001; all P values from regression analyses are Benjami-
ni-Hochberg adjusted), Oscillibacter sp. 57_20 (coefficient = 0.512,
95% CI [0.510, 0.514], P < 0.001), Faecalibacterium prausnitzii (co-
efficient = 0.298, 95% CI [0.297, 0.298], P < 0.001), Coprococcus
catus (coefficient = 0.190, 95% CI [0.187, 0.192], P < 0.001), and
Anaerostipes hadrus (coefficient = 0.163, 95% CI [0.163, 0.164], P
< 0.001) (Fig. 3, A and B). We highlight these taxa here because
they were also identified as important features in Random Forest
classifiers for preclinical AD status (Fig. 4 and fig. S3B). Ruminococ-
cus lactaris was associated with preclinical AD status (coefficient =
0.028, 95% CI [0.026, 0.029], P < 0.001), whereas Methanosphaera
stadtmanaewas associated with healthy status (coefficient = −0.240,
95% CI [−0.243, −0.236], P < 0.001); both species were also identi-
fied as an important feature in Random Forest classifiers (Fig. 4 and
fig. S3B) but are not included here because they did not meet filter-
ing criteria for visualization (detected in ≥25 participants or mag-
nitude of the coefficient ≥0.15; data file S2). Seven of 13 gut
microbial species, most associated with healthy status in this
cohort, belonged to the Bacteroides genus (Fig. 3).

Themicrobial pathwaysmost strongly associated with preclinical
AD status included those involved in arginine and ornithine degra-
dation (coefficients = 0.967, 95% CI [0.954, 0.979]; 0.625, 95% CI
[0.615, 0.635]; P < 0.001 in each case) (fig. S4). The pathway most
associated with healthy status was glutamate degradation (coeffi-
cient = −0.992, 95% CI [−1.00, −0.98], P < 0.001) (fig. S4).
Model coefficients of significant features in these regression analy-
ses are collated in data file S2.

Gut microbiome features improve the performance of
classifiers for preclinical AD status
We next sought to determine whether gut microbiome features
improve the predictive performance of Random Forest classifiers
for preclinical AD status, which train on basic demographics and
clinical covariates, including age, APOE ε4 carrier status, body

Table 1. Participant demographics at the time of stool sampling
stratified by AD preclinical status. P, Student’s t test (continuous
variables) or chi-square test (categorical variables). † Rheumatoid arthritis,
lupus, etc.

Healthy Preclinical
AD

P

Number 115 49

Age in years, mean (SD) 77.02
(5.80)

78.96 (4.51) 0.039

Sex (%) Male 49 (42.6) 24 (49.0) 0.562

Years of education,
mean (SD)

16.42
(2.26)

16.69 (2.53) 0.49

Race (%) Black 18 (15.7) 1 (2.0) 0.034

White 96 (83.5) 48 (98.0)

Other 1 (0.9) 0 (0.0)

Body mass index,
mean (SD)

28.81
(5.03)

26.73 (5.19) 0.018

APOE4 (%) e4+ 26 (22.6) 23 (46.9) 0.003

Active depression (%) 3 (2.6) 1 (2.0) 1

Alcohol abuse (%) 7 (6.1) 1 (2.0) 0.481

Autoimmune
disorder† (%)

11 (9.6) 5 (10.2) 1

Cancer (%) 6 (5.2) 2 (4.1) 1

Cardiovascular
disease (%)

14 (12.2) 6 (12.2) 1

Diabetes (%) 22 (19.1) 1 (2.0) 0.008

Hypercholesterolemia
(%)

69 (60.0) 25 (51.0) 0.373

Hypertension (%) 74 (64.3) 23 (46.9) 0.057

Liver disease (%) 7 (6.1) 3 (6.1) 1

Thyroid disease (%) 21 (18.3) 10 (20.4) 0.917

Tobacco use (past or
present) (%)

51 (44.3) 24 (49.0) 0.709
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mass index, diabetes, and hypertension, as well as combinations of
Aβ (PET Aβ and CSF Aβ42/Aβ40 ratio), tau (PET tau and CSF p-
tau-181), neurodegeneration (CSF t-tau, cortical signature, and hip-
pocampus volume), vascular injury (white matter hyperintensities
volume), and genetics (APOE ε4 carrier status and polygenic risk
score). We also tested the contribution of gut microbiome features
in models that lacked canonical AD biomarkers. Aβ positivity un-
derlies the definition of preclinical AD status; access to Aβ amounts

in the brain or CSF diminished the potential relative value of puta-
tive stool markers. We rationalized that the predictive performance
of gut microbiome features would be of interest in the absence of
access to canonical AD biomarkers, which requires neuroimaging
or lumbar puncture. To characterize the upper bound of predictive
performance under this approach, we tested a model that, in addi-
tion to demographic data and clinical covariates, included all avail-
able AD biomarkers in the categories of Aβ, tau, neurodegeneration,

Fig. 1. Healthy and preclinical AD individuals have distinct gut microbiome profiles. (A) Stacked taxonomic (MetaPhlAn3) bar plots at the genus level stratified by
preclinical AD status are shown, with color grouping at the phylum level. u, unclassified. (B) The PCoA on unweighted UniFrac distances was calculated from the Meta-
PhlAn3 taxonomic profiles. Global microbiome composition was different between healthy and preclinical AD individuals after accounting for age, APOE ɛ4 carrier status,
diabetes, body mass index, hypertension, and time elapsed between PET imaging or lumbar puncture for Aβ quantification and stool collection (P = 0.039, PERMANOVA;
table S2). In addition, coordinates of healthy and preclinical AD samples were different along the PCoA axis 1 (P = 0.046, Student’s t test). (C) Corresponding CAP ordi-
nation on unweighted UniFrac distances was calculated from theMetaPhlAn3 taxonomic profiles using the same terms as the PERMANOVA in (B) (preclinical AD status P =
0.038, PERMANOVA; table S3). In addition, sample coordinates along the CAP1 and CAP2 axes differed by AD status (P = 0.001, Student’s t test). Ellipses represent 95%
confidence bounds around group centroids. *P < 0.05 and **P < 0.01. Student’s t test; P values were adjusted using the Benjamini-Hochberg method.

S C I ENCE TRANSLAT IONAL MED IC INE | R E S EARCH ART I C L E

Ferreiro et al., Sci. Transl. Med. 15, eabo2984 (2023) 14 June 2023 4 of 17



Fig. 2. Gut microbiome profiles correlate with Aβ and tau but not neurodegeneration. (A) Pairwise Spearman correlations between microbiome summary metrics
(green) and AD biomarkers (blue, Aβ; purple, tau; orange, neurodegeneration; brown, vascular injury; gray, genetic risk factors). Significant correlations are shown (P <
0.05, Benjamini-Hochberg adjusted), with the size of the circle inversely proportional to the P value. Inset values are Spearman correlations. WMH, white matter hyper-
intensities. (B) Linear regressions of AD biomarkers against gut microbiome–derived axes. Specifically, regressions of PET Aβ, PET tau, or cortical thickness (a measure of
neurodegeneration) against PCoA sample coordinates derived from MetaPhlan3 taxonomic profiles (top and middle rows) or HUMAnN 3.0 functional pathway profiles
(bottom row). Source PCoA ordinations are from Fig. 1B and fig. S3D. †P < 0.1, ANOVAs, Benjamini-Hochberg–adjusted. ANOVAs compare models regressing biomarker ~
PCoA axis*Aβ status against null models regressing biomarker ~ Aβ status to determine significantly improved explanation of variance with addition of the gut micro-
biome summary feature (PCoA axis). Regression models and ANOVAs are summarized in tables S6 to S8.
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and genetic risk (Fig. 4A). We then rationally omitted categories of
AD biomarkers from these models, beginning with Aβ markers,
then all AD biomarkers except for genetics, and then all biomarkers,
leaving only demographics and clinical covariates (Fig. 4A).We also
assessed models that included different combinations of neurode-
generation/vascular and tau biomarkers (fig. S6). We compared
each model’s predictive performance without and with gut micro-
biome features (species relative abundances).

The cohort was randomly split into training (n = 99; 30.3% pre-
clinical) and validation (n = 65; 29.2% preclinical) cohorts (fig. S1),
reflecting the prevalence of Aβ positivity in an independent non-
cognitively impaired population of the same age group (32.1%,
95% CI [27.8, 36.4]) (51). We subjected the taxonomic abundance
data from the training cohort to iterative feature selection, applying
the Boruta algorithm (52) 100 times using a new seed in each iter-
ation, and identified taxa that were selected in at least 25 of 100 it-
erations. This identified seven candidate taxa as important features

Fig. 3. Fitting negative binomial models to gut microbiome taxonomic data identifies species associated with AD preclinical status. (A) Model coefficients (left)
and prevalence (right) of top-ranking species significantly associated with healthy or preclinical AD status are shown. Gut microbial species detected in at least 15% of
samples are shown, with Benjamini-Hochberg–adjusted P values of the coefficient < 0.05 and with the magnitude of the coefficient > 0.15. Error bars represent the SE of
the coefficient and may not be visible. Taxa coefficients are from negative binomial regression models (as implemented in MaAsLin2) that additionally included partic-
ipant age, APOE ɛ4 carrier status, diabetes, body mass index, hypertension, and time elapsed between PET imaging or lumbar puncture for Aβ quantification and stool
collection as predictors. (B) Relative abundances of the 10 taxamost associated with preclinical AD (top row) or healthy status (bottom row) by their model coefficient. All
regression model results are available in data file S2.
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for classification of healthy versus preclinical AD samples (Fig. 4
and fig. S6), which were retained for training and testing. Missing
biomarker data were imputed using the k-nearest neighbor method
and are summarized in fig. S5. PET tau exhibited the most missing-
ness (20.7%), whereas all other biomarkers had <11% missingness.

Each model (with or without the seven selected taxa) was then
trained on 100 random subsets (80% or n = 79 in each iteration) of

the training cohort using 10-fold cross-validation in each case. After
each of these 100 iterations, the models were tested against the val-
idation cohort. We collated accuracy, sensitivity, and specificity of
predictions made on the validation cohort (Fig. 4B and fig. S6B).
Unexpectedly, in the comprehensive model trained on all biomark-
ers, including Aβ (“All”; Fig. 4A), gut microbiome features afforded
small but significant improvements in classification accuracy

Fig. 4. Gut microbiome features improve the performance of
Random Forest classifiers for AD status. We compare the perfor-
mance of Random Forest classification models with and without gut
microbiome features, across combinations of AT(N) biomarkers and
genetic risk factors for AD. (A) Summary of features included in each
of the Random Forest models reported in (B) and (C). Feature inclu-
sion is denoted by shaded cells. Models that include or exclude
feature-selected gut taxa are compared (bottom and top of each
model). Feature labels are colored by data/biomarker type (green, gut
taxa; blue, Aβ; purple, tau; orange, neurodegeneration; brown, vas-
cular injury; gray, genetic risk factors; black, clinical covariates). Except
for model “All biomarkers including Aβ,” other models exclude Aβ
biomarkers (PET Aβ and CSF Aβ42/Aβ40 ratio). Model shorthand
names listed in the right margin: CC, clinical covariates; A, Aβ; G,
genetics. Missing data were imputed before model training and are
summarized in fig. S5. The featurewith the most missingness was PET
tau (20.7%). BMI, body mass index; WMH, white matter hyperinten-
sities. (B) Performancemetrics for Random Forest models that include
or exclude feature-selected gut microbiome taxa (gray, no micro-
biome features; green, including relative abundances of feature-se-
lected taxa). Boxplots summarize performance metrics on the
retained validation cohort of models trained on 100 random parti-
tions of the training cohort. Means are denoted by “X” in the box-
plots. **P < 0.01 and ***P < 0.001. ANOVAs with Tukey’s post hoc test,
Bonferroni-adjusted for multiple comparisons at both ANOVA and
Tukey post hoc levels. (C) Importance of the features included in each
model, averaged over the 100 training partitions (black), optionally
with random class label shuffling at each iteration to generate null
distributions (pink). Error bars represent SD. The seven taxonomic
features are highlighted in green. ***P < 0.001. Student’s t test with
Benjamini-Hochberg adjustment (see Table 2 and figs. S5 and S6).
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(difference of means = 0.014, 95% CI [0.013, 0.015], P < 0.001,
ANOVAs with Tukey’s post hoc test, additionally Bonferroni-ad-
justed across models) and specificity (0.047, 95% CI [0.043,
0.052], P < 0.001) (Table 2). When PET Aβ and CSF Aβ42/Aβ40
were omitted (“All − A”), inclusion of the selected taxa offered sig-
nificant improvements in specificity (0.119, 95%CI [0.093, 0.145], P
< 0.001), but not accuracy or sensitivity (Fig. 4B and Table 2). This
pattern of improvements in accuracy or specificity with the addition
of taxonomic features, at the cost of sensitivity, held in other models
that included various combinations of neurodegeneration/vascular,
tau, and genetic biomarkers (fig. S6B and table S9). In contrast, in
models that omitted all AD biomarkers except for genetics (“CC +
G”; Fig. 4A), or AD biomarkers together (“CC”), inclusion of taxo-
nomic features significantly improved accuracy of predictions (CC
+ G: 0.048, 95% CI [0.042, 0.055]; CC: 0.075, 95% CI [0.067, 0.083];
P < 0.001 in each case) and sensitivity of predictions (CC + G: 0.046,
95% CI [0.036, 0.056]; CC: 0.117, 95% CI [0.105, 0.128]; P < 0.001 in
each case), as well as specificity of predictions (0.053, 95% CI [0.026,
0.080], P = 0.002) in the case of the model CC + G (Fig. 4B).

Improvements in accuracy afforded by inclusion of taxonomic
features increased in magnitude as more categories of AD biomark-
ers (Aβ, tau, neurodegeneration/vascular, and genetics) were
omitted (Spearman’s ρ = 0.975, P = 0.005), suggesting that the
utility of microbial features as an indicator of preclinical AD in-
creased with greater scarcity of available data for established AD
biomarkers. When comparing the importance of specific features
in these models against their importance in corresponding null
models trained on class label–shuffled data (pink distributions;
Fig. 4C), six of seven taxonomic features were confirmed as

important, along with participants’ age (models CC + G and CC)
and APOE ε4 carrier status (CC + G).

DISCUSSION
The prevalence of AD continues to grow globally as life expectancies
increase (53), but therapies remain elusive (14). Considerable data
suggest that an interval of at least 10 years exists between the first
deposition of Aβ plaques in the brain and the first clinical signs of
impairment (9). This sequence forms the basis for the concept of
preclinical AD (9), during which biomarkers (e.g., Aβ plaques de-
tected by PiB or 18F-florbetapir (AV45) radioligand during PET
imaging and CSF assays of Aβ42, Aβ40, and tau) can predict
disease progression (54). Early detection of molecular hallmarks
of AD pathology remains critical for implementing effective treat-
ments (55).

We asked whether distinct gut microbiome profiles are present
in the preclinical stage of AD, a point in disease progression when
Aβ biomarker values are abnormal but cognitive impairment has
not ensued. Gut microbiome signatures of preclinical AD, readily
assayed in stool, could enhance early screening measures for AD
risk and improve recruitment of cohorts at this critical stage of
AD progression. We found differing microbiome composition
and microbial functional potential at the preclinical stage of AD.
Furthermore, gut sample PCoA coordinates correlated with PET
Aβ and tau biomarkers (the earliest in the biomarker cascade),
but not with markers of neurodegeneration. The association of
gut features with the definitive molecular hallmarks of early AD

Table 2. Improvements in Random Forest classifier performance after incorporating gutmicrobiome features.Mean accuracy, sensitivity, and specificity for
Random Forest models trained on subsets of AD biomarkers, with or without gut microbiome features (selected MetaPhlAn3 taxa), are presented. Eachmodel was
trained on 100 random subsets of the training cohort. Shown are the mean performance metrics of those 100 models on the validation cohort. Models are
included if they retained significant ANOVA P values after Bonferroni adjustment across all ANOVAs [groups: no microbiome data, including selected taxa
(MetaPhlAn3)]. The corresponding differences of means and 95% confidence intervals (CIs) are reported. P values: Tukey’s post hoc test after ANOVA for each
model, additionally adjusted using the Bonferroni method (see Fig. 4 and table S9).

Model Metric

No
microbiome

data

Including
selected taxa

Including selected taxa – no microbiome data

Mean SD Mean SD Difference
of means

CI
95% lower

CI
95% upper

P

All biomarkers including Aβ

Accuracy 0.985 0.004 0.999 0.006 0.014 0.013 0.015 5.77
× 10−13

Specificity 0.948 0.013 0.996 0.019 0.047 0.043 0.052 5.77
× 10−13

All biomarkers excluding Aβ Specificity 0.413 0.107 0.532 0.074 0.119 0.093 0.145 8.44
× 10−13

Clinical covariates + genetic
biomarkers

Accuracy 0.706 0.024 0.755 0.023 0.048 0.042 0.055 5.77
× 10−13

Sensitivity 0.917 0.036 0.963 0.036 0.046 0.036 0.056 8.38
× 10−13

Specificity 0.196 0.096 0.249 0.099 0.053 0.026 0.080 0.002

Clinical covariates only

Accuracy 0.674 0.036 0.750 0.019 0.075 0.067 0.083 5.77
× 10−13

Sensitivity 0.850 0.051 0.967 0.024 0.117 0.105 0.128 5.77
× 10−13
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pathology strengthens their potential utility as complementary
early-in-progression predictive markers.

The microbial pathways most associated with preclinical AD
status in regression models (L-arginine, L-ornithine, and 4-amino-
butanoate degradation) share succinate as a product. Succinate,
known largely as an intermediate of the tricarboxylic acid cycle, is
also a bacterial metabolite produced in the gut that has been asso-
ciated with obesity (56) and inflammatory bowel disease (57) and is
increasingly appreciated as immunomodulatory (58–61), where
gut-driven inflammation is associated with AD pathogenesis (62).
In addition, succinate is a major precursor for the short-chain
fatty acid (SCFA) propionate, which has previously been found to
be elevated in symptomatic individuals with AD, as well as in AD
mouse models, compared with healthy controls (63). The pathway
most associated with healthy individuals (L-glutamate degradation
V) produces the SCFA acetate, which not only has been observed to
inhibit Aβ aggregation in vitro (64) and protect against cognitive
impairment in mice (65) but also has been associated with an ele-
vated Aβ SUVR in a human cohort (66).

Of the taxa significantly associated with preclinical AD status in
regression models, Alistipes, Barnesiella, and Odoribacter were pre-
viously found in symptomatic individuals with AD (5). Distinct
Bacteroides species were highly associated with preclinical AD and
healthy groups (Bacteroides intestinalis and Bacteroides caccae, re-
spectively), highlighting the importance of species-level associa-
tions. We did not observe a significant difference in the overall
Bacteroidetes-to-Firmicutes ratio between healthy individuals and
individuals with preclinical AD, in contrast to a comparison of
healthy individuals and symptomatic individuals with AD (6). Cap-
turing the Bacteroidetes-to-Firmicutes ratio longitudinally as an in-
dividual progresses from preclinical to symptomatic ADwould help
to elucidate whether this metric emerges with symptomatic AD.
Methanobrevibacter smithii was associated with preclinical AD
and was negatively correlated with fecal concentrations of butyrate,
a SCFA (67) that attenuated Aβ plaque deposition and neuroinflam-
mation in a mouse model of AD (68).

Because preclinical AD status is defined by Aβ burden, improve-
ments in predictive performance of Random Forest classifiers af-
forded by taxonomic features were small in magnitude when the
more difficult-to-obtain Aβ variables were included in the model
(1.4 and 5.0% improvements in mean accuracy and specificity, re-
spectively, for model All). In contrast, in models trained just on de-
mographics, clinical covariates, and genetics (CC + G), inclusion of
taxonomic features afforded 6.8 and 27.1% improvements in mean
accuracy and specificity, respectively, whereas models trained on de-
mographics and clinical covariates only (CC) saw improvements of
11.2 and 13.7% in mean accuracy and sensitivity with inclusion of
taxonomic features. Gut microbiome features could enhance early
screening measures to identify candidates for follow-up CSF or PET
Aβ assays to verify preclinical AD status. Of the taxonomic features
included in the models after feature selection (D. formicigenerans,
Oscillibacter sp. 57_20, F. prausnitzii, C. catus, A. hadrus, M. stadt-
manae, and R. lactaris), all were identified as significantly associated
with preclinical AD or healthy status in negative binomial regres-
sion analyses. This agreement lends support for these taxa to be
considered candidate markers in preclinical AD. Of these, F. praus-
nitzii, Oscillibacter sp. 57_20, and D. formicigenerans ranked as the
three most important taxonomic variables in the models CC + G
and CC. D. formicigenerans degrades mucin and may play an

inflammatory role in patients with multiple sclerosis (69). Oscilli-
bacter spp. were correlated with decreased colonic epithelial integ-
rity in the context of a high-fat diet in mice (70). In contrast,
Oscillibacter sp. 57_20 received a beneficial score in a recent
large-cohort microbiome-wide association study (PREDICT 1)
(71). Similarly, F. prausnitzii is typically considered an anti-inflam-
matory commensal (72) and is known to be enriched in non-AD
individuals compared with those with AD dementia (5). These con-
tradictions highlight the importance of host and environmental
context, disease stage, and strain-specific effects when considering
potential roles of the gut microbiome in disease (73, 74). In silico
analyses of F. prausnitzii genomes have revealed two phylogroups
that share less than 90% average nucleotide identity (75) and a
high degree of genome plasticity (76). More recently, an approach
assembling genomes from metagenomes identified 22 Faecalibacte-
rium-like species-level genome bins, suggesting that the diversity of
functional potential and anti-inflammatory phenotypes within Fae-
calibacterium spp. is not yet fully elucidated. Strain specificity of F.
prausnitzii–mediated protective effects was recently demonstrated
in a mouse model of AD (77).

Overall, the associations we report in this study between the gut
microbiome and preclinical AD status or AD markers support the
existence of an enteric neuroimmune axis in neurodegenerative
disease (8). Here, we report that such associations are established
in preclinical AD, potentially positioning at least a few of these mi-
crobial species in the causal chain. However, additional investiga-
tion is needed to validate these associations in broader preclinical
AD cohorts, assess causality, and determine whether these associa-
tions extend to symptomatic AD or are succeeded by other gut mi-
crobiome or immune features concomitant with disease
progression. The specificity of these associations also needs to be
tested in a cohort of patients with non-AD dementias. Antecedent
gut microbiome signatures of AD have the potential to complement
the current AT(N) framework by improving accessibility and sensi-
tivity of early screening measures, because stool is an easily obtained
analyte, and sequencing costs continue to decrease (78). Blood bio-
markers such as plasma Aβ42/Aβ40, p-tau-217, and neurofilament
light have emerged as predictive biomarkers of cognitive decline
and subsequent AD dementia in unimpaired elderly populations
(79). Use of stool analytes could similarly reduce inequities in
access to imaging technologies (80), and its acquisition is much
less invasive than lumbar puncture to obtain CSF. Because stool
can be acquired at home, its use could increase coverage of commu-
nity testing programs, especially in people with poor access to
medical settings (81). Improved early detection of AD risk may
also increase enrollment in research studies at a critical juncture
in AD progression, before the onset of neurodegeneration and cog-
nitive decline, and inform the development of therapies to interdict
this progression. Whereas mechanisms that govern the impact of
the gut on AD severity and progression have not been fully elucidat-
ed, such efforts potentially could lead to gut microbiome–directed
interventions that reverse or ameliorate AD pathology (82). For
example, in a recent study, specific strains of F. prausnitzii from
healthy participants reduced cognitive impairment in a murine
model of brain amyloidosis (77). Similarly, dietary supplementation
of the 5xFAD mouse model of AD with mannan oligosaccharide–
modulated SCFA production by gut microbes suppressed neuroin-
flammation and alleviated cognitive impairment (68). In a phase 2
randomized trial, sodium oligomannate (a marine algae–derived
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oligosaccharide) improved outcomes in cognitive function in
AD (22).

There are important limitations to our study and clear areas
where further investigation is needed. First, whereas we account
for them in our analyses, the intervals of neuroimaging, serum
and CSF assessments, and stool samplings raise the possibility
that true biomarker concentrations in participants at the time of
stool sampling differed from the biomarker values used in these
analyses. Whereas the rate of AD progression in our cohort is
such that biomarker values are not expected to change significantly
over the course of 3 years (83) (the interval at which Knight ADRC
participants undergo neuroimaging and serum and CSF assess-
ment), this estimation is at a population level, and it is possible
that a specific participant may have traversed an inflection point
in biomarker values. Similarly, the composition of the adult gut mi-
crobiome is generally stable (84, 85), but it is susceptible to pertur-
bation in response to changes in environmental factors such as
activity, medication, and aging (86–88). Future studies will benefit
from synchronous biomarker assessments and stool sampling, as
well as from longitudinal sampling of participants to account for
natural intraparticipant variation in microbiome composition. In
addition, preclinical AD status does not imply that an individual
will necessarily progress to symptomatic AD. Long-term longitudi-
nal tracking of participants with time-matched neuroimaging, bio-
logical and cognitive assessments, and stool sampling will enable
the identification of individuals who progress to mild cognitive im-
pairment or symptomatic AD. Corresponding analyses will deter-
mine whether gut features predict this transition or stabilization
from progression. Second, whereas stool metagenome sequencing
offers abundant information about taxonomic composition and
functional potential of the gut microbiome, including strain level
resolution, such investigations would be bolstered by broader mul-
tiomics approaches including metatranscriptomics to assay the rep-
ertoire of microbial genes that are actively expressed at the time of
sampling, as well as metabolomics to profile the bioactive small
molecules present in the gut. In particular, assaying metabolites
that have been implicated in neurodegenerative disease, such as
SCFAs and secondary bile salts, and corresponding correlation
analyses with taxonomic composition data could strengthen mech-
anistic hypotheses about the role of specific gut taxa in AD. Simi-
larly, clinical measures of gut health, including markers of systemic
and enteric inflammation, as well as gut permeability, will strength-
en our understanding of preclinical AD-associated gut dysbiosis
and dysfunction. Longitudinal measurements will enable determi-
nation of whether microbiome dysbiosis precedes host enteric dys-
function or vice versa within the context of AD.

In summary, we report global and specific differences in the gut
microbiome at the preclinical stage of AD. We further demonstrate
that addition of gut microbiome features improved accuracy, sensi-
tivity, and specificity of classifiers for preclinical AD. Microbiome
markers in stool might complement early screening measures for
preclinical AD and generate encouraging hypotheses about poten-
tial roles of the gut in AD progression. Last, microbially at-risk pop-
ulations could open new opportunities for gut-directed
interventions to interdict progression to clinical AD.

MATERIALS AND METHODS
Study design
The objective of this cross-sectional, observational study was to
identify differences in the gut microbiome profiles of healthy par-
ticipants (n = 115) and participants with preclinical AD (n = 49), as
well as any correlations of gut microbiome features with AD bio-
markers. Symptomatic participants were excluded (CDR > 0)
(10). The AD biomarkers included in analyses were brain Aβ
plaques calculated from PET imaging (on the Centiloid scale) (40,
89) using 11C PiB or AV45 depending on data availability or, if PiB
and AV45 were both available, using the most recent value. Other
biomarkers included tau measured by PET imaging (43), the Aβ42/
Aβ40 ratio in CSF (41, 42), p-tau-181 and t-tau in CSF (41, 44), and
MRI measures of white matter hyperintensities volume, hippocam-
pus volume, and cortical signature (45). In addition, we included
the polygenic risk score (46) and APOE ε4 carrier status. Partici-
pants for this stool study were recruited from existing longitudinal
cohort studies (26–28) at the Knight ADRC at Washington Univer-
sity School of Medicine (WUSM) in St. Louis. The Knight ADRC
cohort undergoes assessments including PET, MRI, and CSF collec-
tion via lumbar puncture; blood draws every 3 years; and clinical
and cognitive testing every 3 years (participants younger than 65
years old) or annually (participants 65 and older) (27, 28). Bio-
marker and clinical measures from the most recently available neu-
rological and cognitive assessments for each participant were used.
Time elapsed between neurological and cognitive assessments and
stool collections are summarized in table S1. Processing of stool
samples was done blinded to AD status. All participants underwent
identical procedures, so no group randomization was carried out.
Sample sizes were not determined in advance.

Participants
Participants were recruited for this study from existing longitudinal
cohort studies (26–28) at the Knight ADRC at WUSM, St. Louis
from July 2019 to October 2021, primarily from the Adult Children
Study (ACS), which deliberately seeks to enroll individuals whomay
have preclinical AD (26, 27). Eligibility to the ACS includes being
healthy and being between 45 and 64 years of age at the time of en-
rollment, as well as either (i) having two parents who were never
affected by AD and lived past 70 years of age or (ii) having a
parent who developed AD before the age of 80. Genetic risk data
for all participants are available in Table 1 (APOE ε4 carrier
status) or in data file S1. Enrollees from existing Knight ADRC
cohorts were approached for enrollment in this study in a random-
ized fashion. Participants ranged from 68 to 94 years of age. All par-
ticipants were asymptomatic, with their most recent (within 3.8
months on average) CDR equal to 0. Preclinical AD was defined
as CDR = 0 and Aβ positive. Aβ-positive was defined as Centiloid
> 16.4, where Centiloid was calculated from PiB SUVR or AV45
SUVR depending on availability or most recent acquisition. If
PET Aβ biomarkers were not available (n = 11 participants), then
Aβ positivity was defined as a CSF Aβ42/Aβ40 ratio < 0.0673 (31,
32). Healthy was defined as CDR = 0 and Aβ negative (Centiloid ≤
16.4 or CSF Aβ42/Aβ40 ratio ≥ 0.0673). CDR rating was performed
by qualified clinicians in accordance with established scoring rules
(10); dementia diagnostic criteria conformed to the National Insti-
tute on Aging–Alzheimer ’s Association Work Group
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recommendations (90). Other than CDR = 0, additional exclusion
criteria were as previously described for recruitment to the Knight
ADRC (28).

Study protocols were approved by the WUSM Institutional
Review Board, and all participants provided written informed
consent to the use of clinical and genetic information for research
purposes. Demographic, biomarker, and genetic data were extracted
on 22 February 2022. Clinical metadata were extracted on 3 May
2022. Data were analyzed from 1 March 2022 to 18 January 2023.

Clinical assessment
All CDR scores were obtained from assessments by experienced cli-
nicians trained in the use of the CDR. The CDR is used to determine
whether dementia is present and, if so, to stage its severity. When
using global scores, a CDR of 0 indicates that the individual is “cog-
nitively normal,” whereas a CDR of 0.5 and a CDR of 1 indicate very
mild and mild dementia, respectively (91). For this study, all partic-
ipants had a CDR of 0.

Other clinical metadata (demographics and health information,
including body mass index, diabetes, hypertension, history of drug
use, etc.) were collected according to assessment protocols from ex-
isting longitudinal cohort studies (26–28) at the WUSM Knight
ADRC, under which experienced clinicians conduct interviews
with participants and a collateral source to obtain, in addition to
cognitive evaluations, clinical metadata according to the Uniform
Data Set protocol of the National Alzheimer ’s Coordination
Center (92, 93).

APOE ε4 status and polygenic risk scores
DNA samples were collected at enrollment and genotyped using
either an Illumina 610 or OmniExpress chip. Genotyping
methods were previously published (94). To control for effects of
APOE ε4 on individuals in this analysis, APOE status was converted
from a genotype to a binary variable. Participants either had at least
one copy of the APOE ε4 allele (“APOE ε4 positive”) or had no
copies of the allele (“APOE ε4 negative”). Polygenic risk scores
were calculated at a genome-wide P value threshold (5.0 × 10−8)
using Kunkle stage 1 and stage 2 combined summary statistics by
excluding the APOE region on chr19 (95). PRSice-2 was used to
obtain the risk scores, applying the default clumping parameters
(--clump-p 1; --clump-r2 0.1; --clump-kb 250) (96).

MRI acquisition
Imaging was performed using a 3.0 Tesla Trio Siemens Biograph
mMR (Erlangen, Germany) or 3.0 Tesla Siemens TIM Trio (Erlang-
en, Germany) scanner. High-resolution three-dimensional sagittal
T1 magnetization prepared–rapid gradient echo anatomical images
were acquired using the Alzheimer’s Disease Neuroimaging Initia-
tive protocol: For the Siemens BiographmMR, scanning parameters
of repetition time (TR) = 2300 ms, time to echo (TE) = 2.95 ms, flip
angle = 9°, 176 slices, acquisitionmatrix = 240 by 256, and voxel size
= 1 mm by 1 mm by 1.2 mm; for the Siemens TIM Trio, scanning
parameters of TR = 2400 ms, TE = 3.16 ms, flip angle = 8°, 176
slices, acquisition matrix = 256 by 256, and voxel size = 1 mm by
1 mm by 1 mm. T1-weighted scans were segmented with FreeSurfer
5.3. Previous work has identified the temporal (inferior, middle,
and superior), parietal (inferior and superior), and entorhinal cor-
tices; precuneus; and hippocampus as the regions that are most af-
fected by disease and change the earliest (45). We converted

volumes to z scores separately in the left and right hemispheres rel-
ative to the entire cohort and averaged them to obtain an “AD sig-
nature region.” The AD signature region creates a summary metric
that succinctly describes brain volume atrophy due to AD (45).

PET imaging of Aβ and tau
Imaging studies were obtained at baseline and then every 3 years
thereafter by the Knight ADRC. PET images were acquired within
2 years (mean = 0.6 ± 1.2 years) of MRI using the methodology pre-
viously described (97, 98). PET data were processed using the PET
Unified Pipeline (github.com/ysu001/PUP), which uses regions of
interest defined using the FreeSurfer version 5.3 (Martinos Center
for Biomedical Imaging, Charlestown, MA, USA) Desikan-Killiany
atlas. Data were transformed into SUVRs using cerebellar gray as a
reference and partial volume corrected by calculating regional
spread functions as part of a geometric transfer matrix framework.
PET Aβ imaging was performed using either 11C PiB or AV45. The
time window for quantification was 30 to 60 min postinjection for
PiB and 50 to 70 min for AV45. Centiloids were used to harmonize
measures from these two different tracers (40).

PET tau imaging was performed using 18F-flortaucipir (AV1451)
with SUVRs calculated for the 80- to 100-min postinjection
window. A summary measure of tauopathy—previously defined
as the arithmetic mean of the amygdala, entorhinal cortex, inferior
temporal, and lateral occipital regions based on FreeSurfer version
5.3 segmentation—was calculated for each participant (43).

CSF collection and analysis
CSF (10 to 20 ml) was collected by lumbar puncture using a 22-
gauge Sprotte spinal needle (Geisingen, Germany). Lumbar punc-
tures were performed in the morning after overnight fasting by a
trained neurologist. CSF was aliquoted (500 μl) into polypropylene
tubes and was free of visible blood contamination. After collection,
samples were gently inverted and frozen at −80°C. CSFAβ42, Aβ40,
t-tau, and p-tau-181 were measured as previously described using
an automated chemiluminescent enzyme immunoassay (LUMI-
PULSE G1200, Fujirebio, Malvern, PA, USA) (32). CSF Aβ42/
Aβ40 ratios were calculated for this study.

Stool collection
Stool samples were collected from 20 December 2019 to 12 October
2021 under an established community sample acquisition protocol
(99, 100); samples were produced at participants’ homes with stan-
dardized instructions and collection materials and transported the
same day to WUSM in insulated packages by a commercial courier,
at which point samples were frozen (−80°C) and aliquoted under
barcode provenance until processing for bacterial DNA extraction.

Food logs and nutritional analyses
Twenty-four-hour food log questionnaires were sent out with stool
collection kits. Participants self-reported all the food, drink, and any
supplements consumed in the 24 hours before stool collection.
Entry fields included the time and type of meal, food item, quantity,
brand or restaurant, preparation, and condiments. Food logs were
processed and entered by a registered and licensed dietitian into the
Food Processor Nutrition Analysis software (ESHA Inc., Salem,
OR). This tool was used to match food entries to a database of
>146,000 food items, which encapsulates the U.S. Department of
Agriculture (USDA) Agricultural Research Service Food and
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Nutrient Research Database for Dietary Studies and USDA SR-
Legacy nutrient databases, and to generate 24-hour stool-matched
nutritional profiles for each participant. These profiles included the
total caloric intake, caloric intake by the macronutrient group, and
percent recommended daily (% RDV) intake of essential nutrients
(e.g., carbohydrates, total dietary fiber, vitamins, and minerals). %
RDV was determined in the software on the basis of participant sex
and age.

Metagenomic sequencing
One hundred to 200 mg of frozen stool were used as input to the
DNeasy PowerSoil Pro Kit (QIAGEN, Germantown, MD, USA)
to extract genomic DNA. DNA yields were measured using the
Quant-iT PicoGreen dsDNA Assay Kit (Thermo Fisher Scientific,
Waltham, MA, USA). A total of 0.5 ng of genomic DNA per
sample was used to create sequencing libraries with the Nextera
Kit (Illumina, San Diego, CA, USA) (101). The libraries were
pooled in equimolar concentrations and sequenced on a NovaSeq
6000 (2 × 150 base pairs) to obtain an average of 21.5 million
reads per sample (SD, 8.5 million; min, 7.0 million; max, 58.0
million). The reads were demultiplexed by sequencing barcode. Il-
lumina (Nextera-PE) adaptors were removed, and reads were
quality-filtered and trimmed using Trimmomatic v0.38 (102),
with parameters ILLUMINACLIP: Nextera-PE.fa:2:30:10:1:TRUE,
LEADING:10, TRAILING:10, SLIDINGWINDOW:4:20, and
MINLEN:60. Contaminating human reads were removed using De-
conSeq v0.4.3 against hsref38 (103), and paired ends were repaired
using repair.sh from bbtools v38.26 (sourceforge.net/projects/
bbmap/).

Processed reads were used as input to MetaPhlAn3 v3.0.7 (35) to
determine per-sample taxonomic relative abundances using clade-
specific marker genes, as well as HUMAnN 3.0 v3.0.0a4 (35) to
functionally profile the metagenomes. For rarefaction analysis,
reads were incrementally subsampled (100 to 20 million) and rean-
alyzed withMetaPhlAn2. The R package phyloseq v1.38.0 (104) was
used to estimate sample alpha diversities (richness) on the basis of
count-transformed taxonomic abundance data, followed by pair-
wise Wilcoxon tests between all subsampling depths, with Benjami-
ni-Hochberg adjustment. The read threshold was defined as the
lowest read depth at which there was no significant difference in
sample alpha diversities compared to any higher read depth.
Samples that passed the empirically determined read threshold (5
million reads) were retained in downstream analyses (n = 164).

Statistical analyses
Statistical analyses were conducted in R v4.1.3, and visualizations
were generated with ggplot2 v3.3.5 unless otherwise specified. Dif-
ferences in demographics or clinical covariates between healthy and
preclinical AD groups were determined by Student’s t or chi-square
tests. Differences in nutritional intake between groups were tested
individually for each nutritional component (fig. S2) by Student’s t
test, with Benjamini-Hochberg correction across all comparisons.
Output from MetaPhlAn3 and HUMAnN 3.0 along with sample
metadata was used to generate phyloseq objects (phyloseq
v1.38.0). The phylogenetic tree for the MetaPhlAn taxonomic data-
base was obtained from the MetaPhlAn github repository
(mpa_v30_CHOCOPhlAn_201901_species_tree.nwk) and incor-
porated into the MetaPhlAn3 phyloseq object to calculate

between-sample UniFrac distances (36). The tree was visualized
using iTOL v6.5.8 (105).

The phyloseq estimate_richness function was used to calculate
sample alpha diversities (richness and the Shannon diversity
index) from count-transformed taxonomic and pathway abundanc-
es (MetaPhlAn3 and HUMAnN 3.0 output, respectively). Lowly
abundant MetaPhlAn3 taxa (with mean relative abundance across
samples ≤ 0.1%) and HUMAnN 3.0 pathways (with mean relative
abundance across samples ≤ 0.01%) were filtered out before down-
stream analyses. Vegan v2.5.7, as called in phyloseq, was used for
PCoA and CAP (37) using unweighted UniFrac distances for Meta-
PhlAn3 data or binary Bray-Curtis dissimilarities (106) for
HUMAnN 3.0 pathway data. Significant group differences were
tested by PERMANOVAusing between-sample distances or dissim-
ilarities as implemented in vegan v2.5.7 with the adonis2 function,
which adds terms sequentially. Terms included in PERMANOVAs
were in the following order: age, APOE ε4 carrier status, diabetes,
body mass index, hypertension, interval between stool collection
and Aβ biomarker acquisition, and Aβ (preclinical AD) status. Sig-
nificance of the constraints (the same terms included in PERMA-
NOVAs) in CAP analyses was tested by ANOVA as implemented in
vegan v2.5.7 (anova function). Group differences in principal coor-
dinates were assessed by one-way ANOVA, with P values adjusted
using the Benjamini-Hochberg method.

Pairwise Spearman correlations of AD biomarkers and gut mi-
crobiome features were visualized using the R package corrplot
v0.92 (107), filtered to show only correlations with Benjamini-
Hochberg–adjusted P < 0.05. Fixed effects linear regression analyses
of AD biomarkers (PETAβ, PET tau, and cortical signature) against
PCoA axes from ordinations of taxonomic (MetaPhlAn3) or
pathway (HUMAnN 3.0) abundance data were carried out using
the lm and aov functions (stats v4.1.3). Model summaries are pro-
vided in tables S6 to S8. Linear regression models were considered
statistically significant if ANOVAs against their respective null
models resulted in Benjamini-Hochberg–adjusted P < 0.1, adjusted
across the models tested.

To identify specific taxa and pathways significantly associated
with preclinical AD status, MaAsLin2 v1.10.0 (108) was used to
fit negative binomial models to count-transformed abundance
data individually for the two data types. Because relative abundanc-
es of taxa and pathway data were preserved after count transforma-
tion, the normalization parameter was set to “NONE.” The
remaining MaAsLin2 execution parameters were set to the follow-
ing: standardize = “TRUE,” min_abundance = 0 (because abun-
dance data were already filtered for lowly abundant taxa or
pathways), min_prevalence = 0, transform = “NONE” (because
count transformation occurred outside of the MaAsLin2 model ex-
ecutions), analysis_method = “NEGBIN,” and max_significance =
0.05. That is, significant features were required to have Benjami-
ni-Hochberg–adjusted P < 0.05. Fixed effects included age, APOE
ε4 carrier status, diabetes, body mass index, hypertension, interval
between stool collection and Aβ biomarker acquisition, and Aβ
(preclinical AD) status. For visualization, significant features were
additionally filtered to include only those observed in at least 25
of 164 samples (15% of the cohort) and with a magnitude of the
fitted coefficient > 0.15.

Training and testing of Random Forest classifiers for AD pre-
clinical status were implemented through caret v6.0.86. The cate-
gorical variables sex, race, hypertension, diabetes, and APOE ε4
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status were numerically encoded. The data were imputed using VIM
v6.1.0, using the k-nearest neighbor method with k = 5. Data miss-
ingness is summarized both by feature and by combinations of fea-
tures in fig. S5. Data were then combinatorially subsetted by AT(N)
or vascular injury (white matter hyperintensities volume) + genetic
biomarker categories (model definitions in Fig. 4A and fig. S6A).
The demographic variables age, sex, race, and education (years) as
well as the clinical covariates body mass index, hypertension, and
diabetes were included as predictors in every model, as were time
intervals between stool collection and neurological assessments.
The cohort was randomly split 60:40 into training (n = 99) and val-
idation (n = 65) cohorts (createDataPartition function from the
caret package with random seed = 42). Within the training
cohort, feature selection was carried out on taxonomic abundance
data by applying the Boruta (v7.0.0) (52) feature selection pipeline
100× using a new seed in each iteration (set.seed = 1:100), with
maxRuns = 500 in each iteration. From this, we identified taxa
that had been selected in at least 25 of 100 iterations (n = 7 taxa).
Continuous variables were z-scored (“center” and “scale” methods
in the caret preProcess function). Then, Random Forest models
were trained either including or excluding these feature-selected
taxa. Each model was trained on 100 random subsets (80%; n =
79, seed = 1100) of the training cohort using 10-fold cross-valida-
tion in each case and the “Accuracy” test metric, with default pa-
rameters ntree = 500 and search = “grid” for mtry (the number of
variables to be randomly sampled at each tree node). These 100
models were applied to predict the preclinical status of the retained
validation cohort. Predictive performance of models including or
excluding the feature-selected taxa was compared using accuracy,
sensitivity, and specificity retained as performance metrics. To
identify cases in which inclusion of taxonomic features improved
the performance of the trained classifier, for each model (All, All
− A, CC + G, CC, CC + NT, CC + GT, CC + GN, CC + N, and
CC + T) and performance metric (accuracy, sensitivity, and specif-
icity) pair, performance was compared with or without the selected
taxa using one-way ANOVA.Model-performance metric pairs with
Bonferroni-adjusted P < 0.05 were considered; comparisons were
retested using Tukey’s test and subjected to a second round of Bon-
ferroni adjustment (aov and TukeyHSD functions from stats
v4.1.3). To assess the importance of specific features, models were
retrained with random shuffling of training cohort class labels at
each iteration. The resulting null distributions for feature impor-
tance were compared against their corresponding empirical distri-
butions with Student’s t test and Benjamini-Hochberg adjustment
for multiple hypothesis testing. R code and data for statistical anal-
yses are available at https://doi.org/10.5281/zenodo.7964088.
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