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a b s t r a c t 

Obesity has a significant role in the emergence of severe health disorders, associated comorbidities, and mor- 

bidity. According to epidemiological and clinical evidence, obesity has been linked to a number of heart related 

diseases, such as heart failure, coronary heart disease, hypertension, atrial fibrillation, stroke and cardiac arrest. 

The obesity is characterized by changes in adipose tissue’s cell size, which interferes with the tissue’s normal func- 

tion. Furthermore, a variety of bioactive substances are produced and secreted by adipose tissue. Both local and 

systemic effects of obesity’s abnormal expansion of adipose tissue, such as hypoxia, inflammation, dysregular se- 

cretion of adipokine, hypertension, improper function of mitochondria, insulin resistance, abnormal lipid/glucose 

metabolism, pro-inflammatory/pro-thrombotic state, as well as endothelial dysfunction results in variety of heart 

diseases. In this review, we will discuss various biomolecules such as hormones, genes, enzymes, receptors, cy- 

tokines, etc., involved in the mechanisms linking obesity to cardiovascular diseases, and how their regulation can 

be helpful in the treatment of these diseases. 
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. Introduction 

The current lifestyle, which is defined by a lack of exercise and an

nergy-dense diet, has led to the global pandemic of obesity, which

ay soon exceed the number of undernourished people [ 1 ]. Obesity

s defined in a variety of ways, but as per World Health Organization,

t is demarcated as weight in relation to height (kilogram per square

eter) guideline is considered as most the appropriate in describing

besity or overweight. According to this, if a person’s body mass in-

ex (BMI) is greater than 30 kg/m 

2 , he or she is considered obese.

besity can be classified into three categories: group I (30.0 kg/m 

2 

o 34.9 kg/m 

2 ), group II (35.0 kg/m 

2 to 39.9 kg/m 

2 ), and group III

greater than/equivalent to 40 kg/m 

2 ). Higher the BMI values greater

ill be the chances of risks associated with obesity [ 2 , 3 ]. The global

revalence of obesity is atmost expected to exceed 18% in men and

ver 21% in women by the year 2025 if present trends continue,

lacing a significant burden on people, communities, and healthcare

ystems [ 4 ]. Internationally, obesity ranks sixth in terms of mortal-

ty rates, and it shortens the lives of people by seven years by the

ime they reach age 40 [ 5 ]. Obesity-related conditions including dia-

etes mellitus, atherogenic dyslipidemia, and high blood pressure have

urely aided in the development of cardiovascular disease, which is

 major cause of death in Westernized society [ 6 , 7 ]. Stroke, conges-
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ive cardiac failure, heart attack, and cardiovascular death are more

ommon in people with a centralized adipose tissue deposition, and

his is apparent even after controlling of obesity and other risk factors

or cardiovascular disease (CVD) [ 8 , 9 ]. Obesity is related with an el-

vated risk of CVD via multiple mechanisms, some of which are well-

stablished and others that have yet to be discovered. These risk fac-

ors include dyslipidemia, hypertension, glucose intolerance, inflamma-

ory markers, obstructive sleep hypoventilation and the prothrombotic

tate [ 10 ]. 

Large cohort studies utilized as computed tomography imaging has

iven the extra visceral adipose tissue in the abdomen is a reliable in-

icator of the emergence of cardiovascular disease associated risk over

he time [ 11 ]. Despite having normal levels of total and LDL choles-

erol, visceral adipose tissue and abdominal adiposity is linked to dys-

ipidemia, which is characterized by high total and VLDL-triglycerides,

ow HDL cholesterol, smaller and denser particles of LDL (as measured

y higher levels of apolipoprotein) [ 12 , 13 ]. Furthermore, in a clinical

tudy, high visceral adipose tissue will be accompanied by hypertriglyc-

ridemia and low HDL cholesterol, and the dyslipidemia is one of the

ood predictors for onset of CVD [ 11 ]. In this review, we will discuss var-

ous biomolecules and their mechanisms in the pathogenesis of obesity

ssociated CVD and how their regulation can be helpful in the manage-

ent of metabolic disorders and CVD. 
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. Biomolecules whose secretion during obesity can lead in the 

evelopment of CVD 

Adipose tissue plays an important role in the body’s endocrine sys-

em by secreting a variety of hormone-like substances called adipokines

r adipocytokines [ 14 ]. Adipokines have a role in a ’good-bad, ho-

oeostatic balance that has significant advantages, including cardio-

rotection, promotion of endothelial function, angiogenesis, reduction

f hypertension, atherosclerosis, regulation of fibrinolysis clotting, in-

ammation, insulin resistance etc. Adipose tissue and CVD may be re-

ated via the abnormal synthesis and release of adipokines by hyper-

rophic adipocytes [ 15 , 16 ]. Some of the important adipokines are men-

ioned below: 

.1. Leptin 

Leptin is a hormone and cytokine, primarily secreted by adipocyte

ells and production via autocrine and paracrine mechanisms [ 17 ]. Lep-

in is encoded by gene of obese (ob), which was discovered in ob/ob

ice and cloned in a positional cloning study. It has 167 amino acids

nd a molecular weight of 16 kDa [ 18 ]. Leptin is a crucial hormone as it

s involved in a modulation of intake of food and expenditure of energy

nd maintain a healthy weight and metabolic balance. Leptin is detected

n the bloodstream as either in a bound or free hormone [ 3 ]. Leptin level

s increased after eating, and decreased during fasting and as compared

o normal weight people, obese people have greater amounts of plasma

eptin [ 19 ]. Leptin receptors have been found in many different organs

nd tissues, including the heart, liver, kidneys, lungs, pancreas. In hy-

othalamus, leptin and its receptor is expressed and mediate biological

ffects [ 20 ]. 

Several studies have linked leptin to increased risk of CVDs and obe-

ity. High level of leptin can have adverse effects on cardiac functions

ncluding the promotion of inflammation and the vascular smooth mus-

le cell’s proliferation (VSMCs) as well as oxidative stress and platelet

ggregation [ 21 ]. These conditions further contribute to the aforemen-

ioned conditions, such as, endothelial dysfunction, atherogenesis, in-

reased hypertrophic response and worse prognosis were seen in is-

hemic heart disease and heart failure [ 22 ]. Also, high levels of lep-

in in circulation are a sign of resistance of leptin, which is frequent

n obesity and are independently linked to insulin resistance and CVD

n humans. Genetic mutation, leptin self-regulation, restricted tissue ac-

ess, and cellular or circulating molecular modulation are among po-

ential causes of leptin resistance. Obesity is thought to be caused by

 central resistance to leptin, and the damage to the liver, pancreas,

latelets, blood vessels, and heart caused by this resistance is supported

y the evidence. Both leptin resistance in certain tissues and the ex-

ess leptin activity caused by adiposity-associated hyperleptinemia have

een linked to this metabolic and inflammatory-mediated damage [ 23 ].

nterleukin-6 and other innate immune system mediators interact func-

ionally with the leptin pathway, which regulates metabolism and in-

ammation. Therefore, leptin resistance, as well as its link with inflam-

atory and metabolic parameters, might act as a new therapeutic and

iagnostic target in obesity-associated CVD [ 23 ]. 

.2. Visfatin 

Visfatin is an another adipocytokine or cytosolic enzyme with nicoti-

amide phosphoribosyl-transferase activity. It is released by adipocytes,

acrophages, and inflammatory endothelium tissue; found in excess

n obese, insulin resistant, and type 2 diabetic individuals [ 24 ]. Over

he last 10 years, evidence has accumulated suggesting that visfatin

ay be a relationship between obesity and cardiovascular disease in-

ucing matrix metalloproteinase-9 (MMP-9) and nuclear factor B (NF-

B) in monocytes and human endothelial cells. Visfatin act as a pro-

nflammatory mediator that relates to pathogenesis of inflammatory
2 
rocesses in obesity and type 2 diabetes, ultimately resulting in the insta-

ility of atherosclerotic plaques [ 25 ]. Recently, visfatin, discovered by

omacho et al. [ 26 ] causes mice endothelial via a Toll liked receptor-4

TLR-4) related mechanisms including the nod receptor protein 3 inflam-

asome as well as paracrine interleukin-1 beta (IL-1 𝛽) [ 26 ]. Addition-

lly myocardial remodeling relies heavily on visfatin, which is responsi-

le for enhanced fibroblast proliferation and collagen production in the

eart [ 27 ]. According to Wang et al. [ 28 ], Niacinamide mononucleotide

ssociated ERK1/2 or p38 signaling also promotes the proliferation of

lood vessel smooth muscle cells in response to visfatin [ 28 ]. Angiogen-

sis, facilitated by the proliferation and migration of VSMCs and ECs

s another visfatin action implicated in atherosclerosis. These findings

uggest that visfatin is linked to neovascularization in the atherosclero-

is of plaques and adipose tissue that open the way to the potential of

isfatin regulation in obesity [ 29 ]. 

.3. Resistin 

Resistin, an adipocyte-specific hormone expressed in adipocytes,

hich causes insulin resistance in skeletal muscle and liver [ 30 ]. Along

ith adipocytes, resistin are also expressed in macrophages, mononu-

lear leukocytes, bone marrow and spleen. Recent research on resistin

xplain its role in regulation of diabetes, insulin resistance, CVD, etc.

esistin expressed in endothelial dysfunction, inflammation, angiogen-

sis, thrombosis, and dysfunction of smooth muscle are contributors in

he progression of CVD [ 31 ]. 

Resistin and lipopolysaccharids competitively bind to TLR-4 on hu-

an myeloid and epithelial cells [ 32 ]. Stimulation of TLR sets off

 chain reaction of events inside the cell that ultimately results in

hanges to transcription and signaling pathways. Translocation of NF-

B may be triggered by resistin and nucleus, which then triggers the

ro-inflammatory cytokine gene’s transcription, aiding VSMC as well

s endothelial cell growth dysfunction ( Fig. 1 ). The PI3K/AKT path-

ay, which is activated by resistin, can also mediate NF-kB activation.

n addition to activating c-Jun N-terminal kinase (JNK) and mitogen-

ctivated protein kinase (MAPK) p38, it can increase oxidative stress

hat can also lead to the stimulation of MAPK and suppression of eNOS.

uperoxide anions, which are produced at higher rates by resistin, sup-

ress the expression of eNOS and lower NO bioavailability. Proliferation

f VSMCs as well as dysfunction of endothelial (such as improper va-

orelaxation, hyperpermeability, increased thrombosis, higher cell ad-

esion and angiogenesis,) all lead to the atherosclerosis development

s shown in the Fig.1 [ 31 ]. Thus preventing the binding of resistin and

ipopolysaccharides to TLR 4, antagonizing or blocking the activation

f resistin to stop it from taking part in pathogenesis of CVD associated

ith obesity can be effective treatment strategy in aforementioned dis-

ase. 

.4. Fibroblast growth factor (FGF-23) 

The fibroblast growth factors (FGFs) are a large family of polypep-

ides that signals through FGF receptors and play important roles in

any biological processes such as cellular proliferation, survival, migra-

ion, and differentiation [ 33 ]. In humans, there are 22 members in FGF

amily, each of which is found in a distinct kind of tissue and performs a

nique function [ 34 ]. FGF23 an endocrine FGFs member released by the

steocytes, are correlated with atherothrombotic risk associated factors

ncluding such apo A-1 as well as high-density lipoprotein (HDL) in peo-

le without and with severe kidney disease. Patients with chronic renal

isease who have elevated blood FGF23 levels have a greater likelihood

f having heart disease and a more severe and extensive case of CAD,

nd these patients also have a worse prognosis for survival after under-

oing coronary angiography. FGF23 acts directly to the heart through

 signaling route of klotho-independent which is supported by the fact

hat it binds to FGFR and the coreceptor klotho in the parathyroid gland

nd kidney [ 34 ]. Despite FGF23 not being released by the VAT, research
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Fig. 1. Illustration of possible resistin- 

mediated cardiovascular dysfunction path- 

ways. 
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evealed that it to be higher in the obese (especially those with abdom-

nal obesity). This finding suggests a link between FGF23 and visceral

at accumulation [ 35 ]. Because of their metabolic effects and angiogenic

roperties, FGFs recently have been widely researched as possible novel

gents in the prevention and treatment of cardiovascular disease. 

.5. Plasminogen stimulated inhibitor-1 (PAI- 1) 

Plasminogen stimulated inhibitor-1 (PAI-1) is the 45 kDa serine pro-

einase inhibitor having the peptide link Arg345-Met346 at its reactive

ite. By inhibiting both tissue-associated plasminogen activator (t-PA)

s well as urokinase-type plasminogen stimulator (u-PA), PAI-1 controls

he extent to fibrinolysis [ 36 , 37 ]. Platelets and the endothelium are the

rimary sources of PAI-1, but in obese people, adipose tissue becomes

 major source. Therefore, obese persons have been reported to have

igher levels of PAI-1 [ 38 ]. The higher levels of PAI-1 seen in the obese

ay play a significant part in the development of several cardiovascu-

ar diseases by creating a hypofibrinolytic or prothrombotic state [ 39 ].

veraccumulation of fibrin in the vasculature, known as atherothrom-

osis, may be caused by impaired fibrinolysis due to elevated plasma

AI-1 [ 40 ]. It has been shown via experiments that the associations seen

n epidemiology of these CVD’s are more than coincidental. Krishna-

urti et al., study, normal rabbits were infused with defibrinogenating

nake venom induced hypofibrinogenemia, but in rabbits treated with

ndotoxin by a considerably elevated plasma PAI-1 level, renal fibrin

eposits are generated [ 41 ]. In another study, promotion of the endoge-

ous thrombolysis including prevention of thrombus expansion were

een as a result of blocking PAI-1 with a monoclonal antibody in a model

f rabbit’s jugular thrombosis of the veins [ 42 ]. Cardiac myocytes and

ast cells both have a role in the increased PAI-1 expression that leads

o interstitial and perivascular fibrosis in a mice model of myocardial in-

arction resulted by the ligation of coronary system [ 43 ]. Hence, it has

een suggested that PAI-1 might be an effective target of therapeutics

or reducing the risk of cardiovascular disease. 

.6. Inflammatory cytokines 

There is a robust correlation between obesity and inflammatory in-

icators, both of which have a role in the etiology and progression of

ardiovascular diseases [ 44 ]. Chronic inflammation from obesity pro-

otes atherosclerosis. Some of the pathophysiologic processes of obesity

hat leads to inflammation and atherosclerosis include the activation of
3 
dipokines/cytokines and elevations of circulating aldosterone. The in-

reased level of aldosterone in the bloodstream have several detrimental

ffects on the body, including high blood volume, platelet aggregation,

ascular endothelial dysfunction, thrombosis, fibrosis, etc., [ 45 ]. The

evel of pro-inflammatory cytokines, including tumor necrosis factor al-

ha (TNF- 𝛼), high-sensitivity C reactive protein and interleukin-6 (IL-6)

re consistently elevated in obese people [ 46 ]. Various signal transduc-

ion systems work together to help these inflammatory mediators ac-

omplish their effects [ 47 ]. To a large extent, the progression from the

impler obesity to the associated metabolic and cardiac complications

an be attributed to immune cells, as they are a major source of the

nflammatory cytokines as well as other products of pro-inflammatory

roducts. Further, they affect not only the involving tissues but through

he systemic circulation it will affects the whole organism [ 48 ]. 

.6.1. Interleukin 6 (IL-6) 

The cytokine IL-6 has several metabolic regulatory functions [ 49 ].

t is released by a variety of tissues, but adipose tissue stands out as

 prominent source, with the ability to generate substantial circulating

uantities of this protein [ 50 ]. The elevated levels of IL-6 during obe-

ity act on the adipose tissue, which causes the secretion of leptin. As

t has been previously discussed that leptin is an adipokine directly or

ndirectly, involved in the processes such as endothelial dysfunction and

therosclerosis. Therefore, IL-6 associated leptin secretion can be a ma-

or risk factor in developing CVDs. Along with this IL-6 has multiple

ther characteristics that promote the development of cardiovascular

iseases. These include the stimulation of endothelial cells, the induc-

ion of pro-thrombotic actions in platelets, the stimulation of SMC pro-

iferation, and the accumulation of lipids in macrophages [ 51 ]. Hence

nhibition of cytokine IL-6 can act as a novel approach in the ameliora-

ion of several heart complications associated with obesity. 

.6.2. Tumor necrosis factor alpha (TNF- 𝛼) 

TNF- 𝛼 is another key player in the systemic inflammatory response

rought on by obesity, and its participation in this response has been

xamined extensively [ 52 ]. The first evidence between inflammation

nd obesity was discovered in 1993; observed that TNF- 𝛼 activated

n adipose tissue in models of diabetes and obesity [ 53 ]. TNF- 𝛼 has

een found to play numerous pathogenic functions in the cardiovascular

ystem. TNF- 𝛼 expression is increased in both adipose tissue and serum

n obese people, and weight reduction in the obese is related with a

ecrease in TNF- 𝛼 levels [ 54 ]. The increased levels of TNF- 𝛼 have seen

n both humans and animals with acute and chronic ischemia damage, as
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ell as in heart failure [ 55 ]. Recently, TNF- 𝛼 antagonist treatment has

een shown to be therapeutically useful in inflammatory illnesses (such

s, arthritis, rheumatoid, etc.), and studies are underway to examine the

se of these drugs in cardiovascular diseases [ 56 ]. 

.7. Angiotensinogen (AGN) 

AGN is 𝛼2-globulin precursor of angiotensin. Adipose tissue has high

evels of AGN expression, and during the adipogenic differentiation

rocess AGN gene expression enhances [ 57 ]. AGN is converted to an-

iotensin (Ang) I by renin, which is subsequently converted to Ang II

y angiotensin converting enzyme (ACE). The Ang II is a potent vaso-

onstrictor and have an important role in the regulation of the blood

ressure [ 58 ]. Hence, it serves as an important link between obesity and

ypertension. There are substantial evidences that being overweight or

bese is a risk factor for developing hypertension by as much as 65–75%

 59 ]. Ang II promotes VCAM-1, ICAM-1, and MCP-1 endothelial expres-

ion, leading to vascular inflammation [ 60 ]. The peptide Ang II plays a

ritical role in the retention of salt. On the other hand, 5 ′ AMP-stimulated

rotein kinase (AMPK) has been shown to have a role in transport of ion

ontrol. According to a research, Ang II and AMPK has a key-role in the

rogression of hypertension in salt sensitive models. The reported data

howed that Ang II reduces AMPK activity in kidney, which results in

etention of sodium and higher salt-sensitivity. The activation of AMPK

nd blocker of Ang II can be a potential treatment target for the obesity-

ssociated salt-related hypertension [ 61 ]. 

.8. Proprotein convertase kexin/subtilisin type 9 (PCSK-9) 

Proprotein convertase kexin/subtilisin type 9 is a glycoprotein, pro-

uced in the liver and measured in blood plasma. There are nine ser-

ne proteases in the proprotein convertase superfamily, PCSK-9 is one

f them [ 62 ]. PCSK-9 has a molar mass of 72 kDa and is made up

f 692 amino acids [ 63 ]. Among the many proteins involved in LDL

etabolism, PCSK-9 plays a crucial role in regulating the lipid home-

stasis, atherosclerosis process, glucose and blood pressure [ 64 ]. In-

itro and in-vivo studies demonstrated that released PCSK-9 attaches

o the LDL receptors and carries it to lysosomes for destruction, pre-

enting the receptors from being recycled within the cell and protect

hem. The high risk of coronary artery disease is associated with PCSK-

 gain-of-function mutations, which may manifest as familial hyperc-

olesterolemia. While PCSK-9 deficiency causes in low LDL-cholesterol

nd protection towards the coronary artery disorders [ 65 , 66 ]. 

Several studies indicated that obese have higher PCSK-9 level than

he normal weight individuals. Since, PCSK-9 promotes apoB-100,

riglyceride and VLDL synthesis. It is possible that hepatic VLDL over-

roduction represents a causative link between high PCSK-9 level and

he dyslipidemia in obesity development [ 67 ]. Further, in-vivo and in-

itro studies suggest that PCSK-9 may promote vascular inflammation

nd hasten the progression of atherosclerosis [ 68 ]. PCSK-9 is also found

o be involved in the regulation of epithelial sodium channel surface ex-

ression which may influence hypertension, a significant cardiovascular

isk factor. It can be concluded that targeting PCSK-9 or its inhibition

an be helpful in reducing CVD’s risk factors. 

. Biomolecules whose secretion in obese is helpful in the 

melioration of CVD associated to obesity 

.1. Adiponectin 

Adiponectin is a hormone-like protein that has been shown to have

nti-cancer and vaso-protective effects [ 69 ]. The normal range for

diponectin in the blood is 3–30 g/ml. There are three receptors (Adi-

oR) in two families that adiponectin may bind to are AdipoR1, Adi-

oR2, and T-cadherin. It is the very first class of receptors that have
4 
even transmembrane domains. Skeletal muscle is particularly rich in

dipoR1 expression, whereas the liver is where AdipoR2 is at its most

bundance [ 70 , 71 ]. Key metabolic threats for cardiovascular disease,

uch as inflammation and oxidative stress, are reduced when AdipoR1

nd AdipoR2 are activated [ 72 ]. These receptors increase mitochondrial

iogenesis, improve oxidation of fatty acid in the liver and skeletal mus-

le, increase glucose uptake in cells, decrease hepatic gluconeogenesis,

aise lactate production in skeletal muscle [ 73 ]. Some evidence suggests

hat AdipoR1 and AdipoR2 act in opposite ways on the glucose and lipid

etabolism pathways [ 74 ]. Previous studies suggests that AdiopR1-null

ice developed more fat and glucose intolerance after following a diet.

hile AdipoR2-null mice, which are naturally thin, have the opposite

ffect [ 75 ]. The ablation of AdipoR2 increased type 2 diabetes but de-

reased the dyslipidemia and insulin resistance brought on by a high-fat

iet [ 76 ]. 

Adiponectin is the third receptor, which has a T-cadherin shape and

 large molecular weight, is expressed in a variety of tissues, includ-

ng smooth muscle cells (SMCs), vascular endothelial cells and pericytes

 77 ]. In cases of recurrent atherosclerosis, its manifestation dramatically

ises. For instance, vascular endothelial cells are shielded from apopto-

is by activated T-cadherin. Both in-vivo and in-vitro studies have shown

hat T-cadherin expression is essential for the revascularization action

f adiponectin [ 78 ]. Adiponectin affects human myocardium in an indi-

ect way by acting as an antioxidant [ 79 ]. It regulates intracellular re-

ox signaling in blood vessels by activating adenosine monophosphate-

ctivated protein kinase as well as peroxisome proliferator dependant

eceptor [ 80 ]. Adipocytokine and adiponectin increase insulin sensitiv-

ty in both the skeletal and liver muscle. Atherosclerosis formation in

ascular walls is also inhibited by adiponectin’s anti-inflammatory prop-

rties [ 81 , 82 ]. In addition, it stimulates NO production by increasing the

ctivity of endothelial nitric oxide synthase (eNOS). Endothelial-derived

O protects the vascular system by increasing vasodilation and decreas-

ng platelet aggregation, monocyte adhesion, and inflammation [ 83 ].

diponectin preferentially inhibits endothelial cell apoptosis and up-

egulates IL-10 synthesis in macrophages, both of which lead to greater

xpression of tissue inhibitor of metalloproteinase mRNA and protein

roduction. As a result, adiponectin may prevent plaque rupture by

locking the activity of matrix metalloproteinases [ 84 ]. 

The expression of adiponectin is found to be suppressed in the defec-

ive adipocytes associated with obesity, despite the fact that adipocytes

n lean people manufacture the maximum amounts of this protein [ 85 ].

ro-inflammatory cytokines, hypoxia, and oxidative stress are all fea-

ures of the adipose tissue microenvironment that are linked with obe-

ity and hence suppress adipocyte adiponectin production, supporting

his hypothesis [ 50 ]. Obesity associated CVDs, such as high blood pres-

ure, ventricular hypertrophy, and high risk of heart attack are all in-

erlinked to low serum levels of adiponectin [ 86 ]. As lower circulating

diponectin levels and increased oxidative stress are correlated, there-

ore they are likely to have the significant role in pathophysiology of the

besity associated metabolic and cardiovascular disease [ 87 ]. Weight

oss or caloric restriction leads to increasing adiponectin levels, and this

ncrease is associated with increased insulin sensitivity. 

.2. Prokineticin 

Prokineticins are immunoregulatory proteins or adipokines that are

nvolved in angiogenic (raising vessel development), or aneroxic (reduc-

ng food intake) activities [ 88 ]. Two known isoforms of prokineticins

re Prokineticin-1 (PK1) and Prokineticin-2 (PK2). They are secreted by

onocytes, macrophages, reproductive organs, and exerts their effects

y binding to prokinectin receptors which are G protein-coupled recep-

ors PKR1 and PKR2 [ 89 ]. PK2 has been found to be involved in the

egulation appetite and stops the accumulation of fat via binding to the

KR1 receptor [ 88 ]. Prokineticins have been identified in abundance

n obese human WAT, leading to their classification as an adipokine in

ecent years [ 90 ]. 
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It has been suggested in several studies that adipocyte hyperplasia,

nflammatory changes in adipose tissue, and disruptions in extracellu-

ar matrix remodeling, are the main factors leading to the development

f obesity. By limiting food intake and restricting the proliferation and

ifferentiation of preadipocytes, PK2 can limit the unwanted growth of

dipose tissue. In mice, a lack of PKR1 in adipose tissue has an opposing

ffect on the central control of body weight. In a study, when the PKR1

as deleted from the adipocytes (PKR1 ad-\ − ) of the mice, abnormally

arge amounts of fat around their abdomens were observed [ 90 ]. Ac-

elerated preadipocyte proliferation and differentiation led to the pro-

uction of new adipocytes in both PKR1 null and PKR1 ad-\ − animals.

dipose tissue phenotype of mice that fed with high-fat diet, has found

o be changed from proliferative to hypertrophic and increase in calo-

ies that involve in the transition from hyperplasia to hypertrophy [ 91 ].

ue to the fact that adipocytes are not generated from other adipocytes

ut rather from precursor cells (preadipocytes), PKR1 inhibits the dif-

erentiation of preadipocytes into adipocytes [ 88 , 90 ]. 

The biological actions of prokineticins are mediated mostly by Gq

rotein signaling. The Gq/G11 signaling pathway plays a crucial role

n stimulating heart growth and hypertrophy [ 92 ]. The signaling of

KR1 is also essential for the survival of cardiomyocyte under hypoxic

tress as well as promotes the angiogenesis either by stimulating MAPK

nd Akt signaling or directly triggering endothelial cells’ proliferation

nd migration [ 93 ]. Transient intracardiac PKR1 transfection in an an-

mal model of myocardial infarction prevents function loss and tissue

 94 ]. Prokineticin-2 and PKR1 expression is elevated in a mouse model

f acute myocardial infarction and reduced in the hearts of individu-

ls with end-stage heart failure. Akt, acting as a cardioprotector, was

lso shown to be elevated by 60% in-vivo in treated PKR1 hearts as

ell as by the same amount in PK2-treated cardiomyocytes. As a re-

ult of these findings, prokineticin-2/PKR1 signaling is thought to be

rucial for proper myocardial growth and coronary repair [ 91 ]. Some

ew evidences suggests that postnatal neovasculogenesis may be trig-

ered by PKR1 by stimulating epicardial progenitor cell differentiation

n the adult, while PRK2 activation in the heart has deleterious effects

n cardiomyocytes, causing dilated cardiomyopathy and the production

f a paracrine substance that causes capillary fenestration and leak-

ge of vascular system. Based on the results of the studies, researchers

ave proposed a model in which PKR2 and PKR1 exert signaling antag-

nistic effects on cardiac physiology and pathophysiology, and agonists

nd antagonists that specifically target PKR1 and PKR2 can be helpful

n the treatment of cardiovascular diseases [ 94 ]. 

.3. Apelin 

The word "apelin" derives from "APJ Endogenous Ligand," which de-

cribes the receptor orphan G protein-coupled APJ [ 95 ]. Apelin is one

f the members of adipokines secreted by adipocytes. Apelin and its

eceptors are distributed throughout the body, and involved in numer-

us physiological and clinical processes, such as blood pressure control,

uid balance, the stress response in the endocrine system, cardiac con-

raction, angiogenesis, cellular energy metabolism and clinical condi-

ions, including congestive heart failure, obesity, diabetes, and cancer

 96 ]. It acts by enhancing coronary blood flow by means of vasodilation

nd has robust inotropic effects [ 97 ]. The apelin-APJ axis controls car-

iac hypertrophy, myocardial remodeling, and cardiac smooth muscle

ontraction in response to pathological stress [ 98 ]. Age-related cardiac

ailure in apelin-deficient animals may be avoided by intravenous infu-

ion of apelin, indicating a crucial role for the apelinergic system in sus-

aining heart function throughout life [ 99 ]. Patients with chronic heart

ailure have lower amounts of apelin in their blood and hearts, indicat-

ng a possible role for a depressed apelinergic system in the pathogenesis

f heart failure. Contrarily, plasma apelin concentrations are higher in

bese -patients, and therapy with apelin in obese situations promotes

lucose consumption in adipose tissue and skeletal muscle, leading to

nhanced insulin sensitivity [ 100 ]. The high-fat nutrition obesity model
5 
as used to further illustrate the positive impacts of the apelinergic

athway on heart function and structure [ 101 ]. Apelinase treatment

eversed the weight increase, metabolic impairment, and endothelial

esistance stress seen in patients with established obesity cardiomyopa-

hy. Apelin enhanced cardiac diastolic role as well as increased the

ize of cardiac myocytes by re-establishing sarco/endoplasmic retic-

lum, Ca 2 + -ATPase levels, lowering phospholamban phosphorylation,

nd enhancing mitochondrial respiration efficiency [ 29 ].These findings

upport a protective and helpful function for apelin in obesity-related

ardiac problems such as hypertrophic cardiomyopathy and myocardial

nfarction. 

.4. Fibroblast growth factor 21 (FGF 21) 

Fibroblast growth factor 21 (FGF 21) is a metabolic hormone that

revents the emergence of obesity and diabetes in animal models

y regulating energy homeostasis. Humans with metabolic disorders

uch as obesity and cardiovascular disease i.e., coronary heart disease,

therosclerosis have increased levels of this substance [ 102 ]. It has been

hown that the liver, adipose tissue, and pancreas are the primary organs

esponsible for secreting fibroblast growth factor 21 (FGF 21) [ 103 ]. The

eroxisome proliferator-stimulated receptor- 𝛼 increases FGF 21 expres-

ion in the livers of animals and humans, while PPAR 𝛾 does the same in

dipose tissue. Both PPAR 𝛾 and PPAR 𝛼 play crucial roles in regulating

holesterol and glucose levels, as well as in the development of cardio-

ascular disease [ 104 ]. FGF 21 has been demonstrated to enhance lipid

rofiles and suppress essential events in the etiology of atherosclerosis

n in-vivo and in-vitro experiments [ 105 ]. According research by Zhang

t al., to explore the effects of FGF 21 as a therapy and its principal

echanism using a vitamin D 3 and high-fat diet rat model of atheroscle-

osis. Forkhead box O (FOXO) protein expression levels were analysed

n atherosclerosis model mice treated with varying dosages of FGF 21,

nd the role of FGF 21 on neointimal cell production and endothelial-

ependent relaxation was also studied. The results showed that FGF 21

ramatically reduced blood lipid, Rho kinase, and NF- 𝜅B levels, all of

hich contributed to the treatment of atherosclerosis and may be the

rocesses behind anti-atherosclerotic effects in the rat model [ 103 ]. Fur-

hermore, FGF 21 stimulates in adipocytes the generation of adiponectin

hich has antihypertensive properties, and works on the hypothalamus

o release corticosterone. Accordingly, FGF 21 ′ s effects on the liver, the

rain, and adipose tissue may contribute to a reduction in blood pressure

 106 ]. 

.5. Peroxisome proliferator-activated receptors (PPARs) 

PPAR’s are the ligand-activated factors of nuclear transcription that

ontrol the various genes expression involved in cholesterol, glucose and

ipid metabolism, the dysregulation of which may contribute to obe-

ity and cardiovascular disease [ 107 ]. These are of three types: PPAR

, PPAR 𝛼 (also called as PPAR 𝛽 or PPAR 𝛿/ 𝛽) and PPAR 𝛾 [ 108 ].

issues such as the liver, kidney, heart, and muscles, where fatty acid

atabolism plays a significant role, are rich in PPAR 𝛼 expression. PPAR

/ 𝛽 is most abundant PPAR isoform in skeletal muscle, while PPAR- 𝛾 are

ound in adipose tissue, where it plays a role in regulating adipocyte de-

elopment and lipid storage and making the body more insulin sensitive

 109 ]. The subtypes of PPARs offer great therapeutic potential in many

iseases [ 110 ]. PPAR’s upon activation form heterodimers with that of

etinoid X receptor in the nucleus, which binds to peroxisome prolifer-

tor response elements (PPREs) in region of target genes promoters and

nitiates transcription [ 111 ]. 

Fibrates are the pharmacological compounds that are involved in the

ctivation of PPAR 𝛼 [ 111 ]. They upregulate lipase activity and down-

egulate Apolipoprotein C- III (apo C-III) expression, both of which en-

ance intravascular lipolysis [ 112 ]. In addition to promoting fatty acid

bsorption and retention, improving fatty acid catabolism, and lowering

atty acid synthesis in hepatocytes, PPAR activation may also contribute
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Fig. 2. Effect of biochemical changes on 

metabolism and vascular system of the body on 

activation of PPAR 𝛼 and PPAR 𝛾 by their phar- 

macological agonists. 
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o suppression of triglyceride synthesis and VLDL lipoprotein formation.

hese PPAR 𝛼 activators may also lower triglyceride levels in the blood,

ncrease LDL clearance by shifting the distribution of LDL in the plasma

rom tiny dense particles to big buoyant ones with a greater affinity for

he LDL receptor and boost HDL synthesis by stimulating the formation

f apo A-II and apo A-I in the human liver. Beside these it also increases

po A-V expression [ 112 , 113 ]. 

Thiazolidinediones (TZDs) is a class of an insulin sensitizers which

ctivates PPAR 𝛾. As PPAR 𝛾 ligands, TZDs alter lipid profiles (by ele-

ating HDL cholesterol levels) and circulating free fatty acids, plasma

ipolysis of triglycerides, absorption of fatty acids, and triglycerides stor-

ge in the adipocytes. PPAR 𝛾 activation occurs because of the induc-

ion of the gene’s expression governing adipocyte metabolism of fatty

cids, and transport proteins of fatty acids. Thus, PPAR 𝛾 activation re-

ults in reduced free fatty acids release and insulin-resistance-related

dipocytokines (including tumour necrosis factor (TNF- 𝛼), leptin, and

esistin), increased synthesis of adiponectin ( Fig. 2 ), which has anti-

therosclerotic property [ 111 ]. 

At the arterial wall level, PPAR- 𝛼 and PPAR- 𝛾 activators suppress

xpression of the markers of pro-inflammatory, limit cytokine and

hemokine production, and stimulate efflux of macrophage cholesterol

ia Scavenger receptor class B type I and ATP-binding cassette trans-

orter ABCA1 stimulation. PPARs also inhibit the production of a vaso-

onstrictor peptide endothelin-1 [ 114 ] and promote the vasodilatory

ediator nitric oxide release [ 115 ]. Furthermore, TZDs modify endothe-

ial function in diabetes patients by suppressing the development of

dvanced receptors for the glycation end-products (AGE) present in

he endothelial cells. In addition, PPAR 𝛽/ 𝛿 is responsible for regu-

ating glucose metabolism of glucose, amounts of various antioxidants

hat are endogenous and present in the heart, cardiomyocyte apopto-

is, mitochondrial biogenesis, the mechanism that insulin uses to send

ignals, and responses of lipid-associated myocardial inflammatory re-

ponses. As a consequence of this, PPAR 𝛽/ 𝛿 ligands have the poten-

ial to enhance cardiac function and slow down the progression of

he pathological conditions such as cardiac hypertrophy, heart fail-

re, ischemia-reperfusion injury, damage to cardiac oxidative system,

ysfunction of cardiac lipotoxic heart and lipid associated inflamma-

ion of heart [ 116 ]. This reduces the cells’ sensitivity to AGE-induced

ro-inflammatory responses [117] . Therefore, risk profile that is pre-

isposed to cardiovascular disease is improved by PPAR’s agonists

 Fig. 2 ). 
d

6 
Although lipids are necessary for the heart to operate by providing

he energy it needs, but too much lipids or an improper distribution

f lipids, further can lead to condition known as dyslipidemia. Dyslipi-

emia can result in cardiac dysfunction due to aberrant cardiac shape

nd function. In patients with dyslipidemia, plasma levels of HDL choles-

erol are low, while levels of triglyceride-rich VLDL and small-and-dense

DL cholesterol are increased. Obesity is one of the most common causes

f atherogenic dyslipidemia, which is a significant risk factor for cardio-

ascular diseases [ 118 ]. PPAR 𝛽/ 𝛿 have a synergistic impact on several

rgans, including the liver, adipose tissue, and skeletal muscle, which

llows them to maintain normal levels of lipids in the body. Gene ex-

ression profiling shows that hepatic PPAR 𝛽/ 𝛿 regulation of the genes

xpression based in lipoprotein metabolism (VLDLR, ApoA5, ApoA4,

poC1), which is consistent with the triglyceride-lowering activity of

PAR 𝛽/ 𝛿 in-vivo [ 119 ]. PPAR 𝛽/ 𝛿 controls many aspects of metabolism

f fatty acid and therapeutic intervention at this site has been shown to

meliorate heart disorders associated with alterations in this pathway

 120 ]. 

. Conclusion and future perspective 

Individuals with identical BMIs may have wildly different metabolic

nd CVD risk profiles due to the complexities of obesity. Obesity in-

uence hemodynamics and alter cardiac anatomy that proliferate the

isk of CVDs. Therefore, a need arises to investigate the mechanisms

hat are at the root of obesity-related cardiac dysfunctions and to find

ays to improve the treatment of patients who suffer from both obe-

ity and cardiovascular disease through the conduct of additional re-

earch. Although the specific processes between obesity and CVDs are

ot fully known, adipose tissue’s propensity to grow and create pro-

nflammatory cytokines that impair cardiac systolic and diastolic func-

ions and atherosclerotic plaque formation plays a crucial impact. In re-

ent years, biomarkers and surrogate endpoints have grown along with

enetic and physiological understanding of obesity and related CVDs.

hese biomarkers belong to a diverse category that is mostly associated

ith obesity-related processes such as inflammation, oxidative stress,

dipocyte physiology, and dietary control. These biomolecules involved

n these processes have a major role in the detection, treatment, and

ollow-up of these features; yet, the intricacy of the networks involved

inders their validation as a biomarker of risk, diagnostic, and/or pre-

ictive. 
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